WHO. World malaria report. Geneva: World Health Organization; 2015.
Google Scholar
White N, Pukrittayakamee S, Hien T, Faiz M, Mokuolu O, Dondorp A. Erratum: malaria (the lancet (2014) 383 (723-735)). Lancet. 2014;383(9918):696.
Article
Google Scholar
WHO. World malaria report. Geneva: World Health Organization; 2016.
Google Scholar
Vinetz JM, Clain J, Bounkeua V, Eastman RT, Fidock D. Chemotherapy of malaria. In: The pharmacological basis of therapeutics, vol. 12; 2011. p. 1383–418.
Google Scholar
Anders RF, Adda CG, Foley M, Norton RS. Recombinant protein vaccines against the asexual blood-stages of Plasmodium falciparum. Human vaccines. 2010;6(1):39–53.
Article
CAS
PubMed
Google Scholar
Hemingway J, Shretta R, Wells TN, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14(3):e1002380.
Article
PubMed
PubMed Central
Google Scholar
Gessler M, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop. 1994;56(1):65–77.
Article
CAS
PubMed
Google Scholar
Bellakhdar J, Claisse R, Fleurentin J, Younos C. Repertory of standard herbal drugs in the Moroccan pharmacopoea. J Ethnopharmacol. 1991;35(2):123–43.
Article
CAS
PubMed
Google Scholar
Darias V, Bravo L, Barquin E, Herrera DM, Fraile C. Contribution to the ethnopharmacological study of the Canary Islands. J Ethnopharmacol. 1986;15(2):169–93.
Article
CAS
PubMed
Google Scholar
Haloui E, Marzouk Z, Marzouk B, Bouftira I, Bouraoui A, Fenina N. Pharmacological activities and chemical composition of the Olea europaea L. leaf essential oils from Tunisia. J Food Agric Environ. 2010;8(2):204–8.
CAS
Google Scholar
Beentje H, Adamson J, Bhanderi D. Kenya trees, shrubs, and lianas: National Museums of Kenya; 1994.
Dharani N, Yenesew A. Medicinal plants of East Africa: an illustrated guide: Najma Dharani; 2010.
Google Scholar
Yadav RH. Medicinal plants in folk medicine system of Ethiopia. J Poisonous Med Plants Res. 2013;1(1):7–11.
Google Scholar
Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2004;92(2–3):177–91.
Article
PubMed
Google Scholar
El-Amin M, Virk P, Elobeid M, Almarhoon ZM, Hassan ZK, Omer SA, et al. Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats. Pak J Pharm Sci. 2013;26(2):359–65.
PubMed
Google Scholar
Fares R, Bazzi S, Baydoun SE, Abdel-Massih RM. The antioxidant and anti-proliferative activity of the Lebanese Olea europaea extract. Plant Foods Hum Nutr. 2011;66(1):58–63.
Article
PubMed
Google Scholar
Lafka T-I, Lazou AE, Sinanoglou VJ, Lazos ES. Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods. 2013;2(1):18–31.
Article
PubMed
PubMed Central
Google Scholar
Susalit E, Agus N, Effendi I, Tjandrawinata RR, Nofiarny D, Perrinjaquet-Moccetti T, et al. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with captopril. Phytomedicine. 2011;18(4):251–8.
Article
CAS
PubMed
Google Scholar
Lee-Huang S, Zhang L, Huang PL, Chang Y-T, Huang PL. Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem Biophys Res Commun. 2003;307(4):1029–37.
Article
CAS
PubMed
Google Scholar
OECD. Test no. 425: acute oral toxicity: up and down procedure. Paris: OECD Publishing; 2008. https://doi.org/10.1787/9789264071049-en
Book
Google Scholar
Peters W. The four-day suppressive in vivo antimalarial test. Ann Trop Med Parasitol. 1975;69:155–71.
Article
CAS
PubMed
Google Scholar
Ryley J, Peters W. The antimalarial activity of some quinolone esters. Ann Trop Med Parasitol. 1970;64(2):209–22.
Article
CAS
PubMed
Google Scholar
Peters W. Drug resistance in Plasmodium bergheiVincke and lips, 1948. I. Chloroquine resistance. Exp Parasitol. 1965;17(1):80–9.
Article
CAS
PubMed
Google Scholar
Peters W, Robinson B. The chemotherapy of rodent malaria. XLVII. Studies on pyronaridine and other Mannich base antimalarials. Ann Trop Med Parasitol. 1992;86(5):455–65.
Article
CAS
PubMed
Google Scholar
Mekonnen LB. In vivo antimalarial activity of the crude root and fruit extracts of Croton macrostachyus (Euphorbiaceae) against Plasmodium berghei in mice. J Tradit Complement Med. 2015;5(3):168–73.
Article
PubMed
PubMed Central
Google Scholar
Amelo W, Nagpal P, Makonnen E. Antiplasmodial activity of solvent fractions of methanolic root extract of Dodonaea angustifolia in Plasmodium berghei infected mice. BMC Complement Altern Med. 2014;14(1):462.
Article
PubMed
PubMed Central
Google Scholar
Kalita S, Kumar G, Karthik L, Rao KVB. Phytochemical composition and in vitro hemolytic activity of Lantana camara L.(Verbenaceae) leaves. Pharmacologyonline. 2011;1:59–67.
Google Scholar
Sasidharan S, Chen Y, Saravanan D, Sundram K, Latha LY. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med. 2011;8(1):2-3.
Peter I, Anatoli V. The current global malaria situation. Malaria parasite biology, pathogenesis, and protection, vol. 1: ASM press, WDC; 1998. p. 1–22.
Krettli AU, Adebayo JO, Krettli LG. Testing of natural products and synthetic molecules aiming at new antimalarials. Curr Drug Targets. 2009;10(3):261–70.
Article
CAS
PubMed
Google Scholar
Basir R, Rahiman SF, Hasballah K, Chong W, Talib H, Yam M, et al. Plasmodium berghei ANKA infection in ICR mice as a model of cerebral malaria. Iran J Parasitol. 2012;7(4):62.
CAS
PubMed
PubMed Central
Google Scholar
Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004;3(6):509.
Article
CAS
PubMed
Google Scholar
Del Boccio P, Di Deo A, De Curtis A, Celli N, Iacoviello L, Rotilio D. Liquid chromatography–tandem mass spectrometry analysis of oleuropein and its metabolite hydroxytyrosol in rat plasma and urine after oral administration. J Chromatogr B. 2003;785(1):47–56.
Article
Google Scholar
Tan H-W, Tuck KL, Stupans I, Hayball PJ. Simultaneous determination of oleuropein and hydroxytyrosol in rat plasma using liquid chromatography with fluorescence detection. J Chromatogr B. 2003;785(1):187–91.
Article
CAS
Google Scholar
Olorunniyi O. In vivo antimalarial activity of crude aqueous bark extract of Trichilia monadelpha against plasmodium berghei berghei (NK65) in mice. Int J Pharm Med Bio Sci. 2013;2(4):2278–5221.
Google Scholar
Taherkhani M, Rustaiyan A, Nahrevanian H, Naeimi S, Taherkhani T. Comparison of antimalarial activity of Artemisia turanica extract with current drugs in vivo. J Vector Borne Dis. 2013;50(1):51.
PubMed
Google Scholar
Salawu OA, Tijani A, Babayi H, Nwaeze A, Anagbogu R, Agbakwuru V. Antimalarial activity of ethanolic stem bark extract of Faidherbia Albida (Del) a. Chev (Mimosoidae) in mice. Arch Appl Sci Res. 2010;2(5):261–8.
CAS
Google Scholar
Waako P, Gumede B, Smith P, Folb P. The in vitro and in vivo antimalarial activity of Cardiospermum halicacabum L. and Momordica foetida Schumch. Et Thonn. J Ethnopharmacol. 2005;99(1):137–43.
Article
CAS
PubMed
Google Scholar
Unekwuojo EG, Omale J, Aminu RO. Suppressive, curative and prophylactic potentials of Morinda lucida (Benth) against erythrocytic stage of mice infective chloroquine sensitive Plasmodium berghei NK-65. British J Appl Sci Technol. 2011;1(3):131.
Article
CAS
Google Scholar
Kokwaro G, Mwai L, Nzila A. Artemether/lumefantrine in the treatment of uncomplicated falciparum malaria. Expert Opin Pharmacother. 2007;8(1):75–94.
Article
CAS
PubMed
Google Scholar
Kwaghe A, Ambali A. Preliminary phytochemical screening of fresh and dried Moringa oleifera leaves and that of chloroform, ethylacetate and n-butanol fractions. Sahel J Vet Sci. 2009;8(2):5.
Traore M. Investigation of antiplasmodial compounds from two plants, Cochlospermum tinctorium a. rich and Gardenia sokotensis hutch. Afr J Tradit Complement Altern Med. 2006;3(4):34–41.
Article
CAS
Google Scholar
Böttger S, Melzig MF. The influence of saponins on cell membrane cholesterol. Bioorg Med Chem. 2013;21(22):7118–24.
Article
PubMed
Google Scholar
Benavente-Garcıa O, Castillo J, Lorente J, Ortuno A, Del Rio J. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000;68(4):457–62.
Article
Google Scholar
Smirnoff N. Antioxidants and reactive oxygen species in plants: Wiley Online Library; 2005.
Wannang NN, Jimam NS, Omale S, Dapar ML, Gyang SS, Aguiyi JC. Effects of Cucumis metuliferus (Cucurbitaceae) fruits on enzymes and haematological parameters in albino rats. Afr J Biotechnol. 2007;6(22)5-7.
Saba AB, Oridupa OA, Ofuegbe SO. Evaluation of haematological and serum electrolyte changes in Wistar rats administered with ethanolic extract of whole fruit of Lagenaria breviflora Robert. J Med Plants Res. 2009;3(10):758–62.
Google Scholar
Yun JW. Possible anti-obesity therapeutics from nature–a review. Phytochemistry. 2010;71(14–15):1625–41.
Article
CAS
PubMed
Google Scholar
Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ. Malarial anemia: of mice and men. Blood. 2007;110(1):18–28.
Article
CAS
PubMed
Google Scholar
Samet I, Villareal MO, Motojima H, Han J, Sayadi S, Isoda H. Olive leaf components apigenin 7-glucoside and luteolin 7-glucoside direct human hematopoietic stem cell differentiation towards erythroid lineage. Differentiation. 2015;89(5):146–55.
Article
CAS
PubMed
Google Scholar
Mohandas N, An X. Malaria and human red blood cells. Med Microbiol Immunol. 2012;201(4):593–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kremsner P, Greve B, Lell B, Luckner D, Schmid D. Malarial anaemia in African children associated with high oxygen-radical production. Lancet. 2000;355(9197):40–1.
Article
CAS
PubMed
Google Scholar
Loria P, Miller S, Foley M, Tilley L. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J. 1999;339(2):363–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dascombe M, Sidara J. The absence of fever in rat malaria is associated with increased turnover of 5-hydroxytryptamine in the brain. Temperature Regulation: Springer; 1994. p. 47–52.
Chapter
Google Scholar
Mengiste B, Makonnen E, Urga K. Invivo antimalarial activity of Dodonaea Angustifolia seed extracts against Plasmodium berghei in mice model. Momona Ethiop J Sci. 2012;4(1):47–63.
Article
Google Scholar
Felter H, Lloyd J. King’s American dispensatory. 18th edn; 3rd revn. Vol I & II Cincinnati: Ohio Valley; 1898.
Google Scholar
Dikasso D, Makonnen E, Debella A, Abebe D, Urga K, Makonnen W, et al. In vivo anti-malarial activity of hydroalcoholic extracts from Asparagus africanus lam. In mice infected with Plasmodium berghei. Ethiop J Health Dev. 2006;20(2):112–8.
Google Scholar
Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981− 2002. J Nat Prod. 2003;66(7):1022–37.
Article
CAS
PubMed
Google Scholar
Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid Based Complement Alternat Med. 2015;2015:541591.
Article
PubMed
PubMed Central
Google Scholar
Chebbi Mahjoub R, Khemiss M, Dhidah M, Dellaï A, Bouraoui A, Khemiss F. Chloroformic and methanolic extracts of Olea europaea L. leaves present anti-inflammatory and analgesic activities. ISRN pharmacol. 2011;2011:564972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batista R, De Jesus Silva Júnior A, De Oliveira AB. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules. 2009;14(8):3037–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazid M, Khan T, Mohammad F. Role of secondary metabolites in defense mechanisms of plants. Biol Med. 2011;3(2):232–49.
CAS
Google Scholar
Golenser J, Waknine JH, Krugliak M, Hunt NH, Grau GE. Current perspectives on the mechanism of action of artemisinins. Int J Parasitol. 2006;36(14):1427–41.
Article
CAS
PubMed
Google Scholar
Saxena M, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of medicinal plants. J Pharmacogn Phytochem. 2013;1(6):22.
Elford BC, Cowan G, Ferguson D. Parasite-regulated membrane transport processes and metabolic control in malaria-infected erythrocytes. Biochem J. 1995;308(Pt 2):361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soares JBC, Menezes D, Vannier-Santos MA, Ferreira-Pereira A, Almeida GT, Venancio TM, et al. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl Trop Dis. 2009;3(7):e477.
Article
Google Scholar
Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009;7(12):864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taramelli D, Monti D, Basilico N, Parapini S, Omodeo-Sale F, Olliaro P. A fine balance between oxidised and reduced haem controls the survival of intraerythrocytic plasmodia. Parassitologia. 1999;41(1–3):205–8.
CAS
PubMed
Google Scholar
Hansen DS. Inflammatory responses associated with the induction of cerebral malaria: lessons from experimental murine models. PLoS Pathog. 2012;8(12):e1003045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masihi KN. Fighting infection using immunomodulatory agents. Expert Opin Biol Ther. 2001;1(4):641–53.
Article
CAS
PubMed
Google Scholar
Aherne S, Daly T, O'Connor T, O'Brien N. Immunomodulatory effects of β-sitosterol on human Jurkat T cells. Planta Med. 2007;73(09):P_011.
Article
Google Scholar