CDC. Malaria 2019 [cited 2022 12]. Available from: https://www.cdc.gov/malaria/index.html.
WHO. World malaria report. Geneva: World Health Organization; 2020.
Google Scholar
Uwimana A, Legrand E, Stokes BH, Ndikumana J-LM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro artemisinin-resistant plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26:1602–8.
Article
CAS
Google Scholar
Stokes BH, Ward KE, Fidock DA. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med. 2022;386:1385–6.
Article
Google Scholar
Jai-aue A, Makchuchit S, Juckmeta T, Itharat A. Anti-allergic, anti-inflammatory and antioxidant activities of the different extracts of Thai traditional remedy called prabchompoothaweep for allergic rhinitis treatment. J Med Assoc Thail. 2014;97(Suppl 8):S140–8.
Google Scholar
Onthong N, Chonpatathip U, Rajanivat Y, Patthananurak K, Sangvichien S, Kamoltham T. A comparative study on the effects of Prabchompoothaweep remedy and loratadine in treatment of patients with allergic rhinitis and upper respiratory tract infections at Pathumtani hospital. J Health Educ. 2019;42:135–45.
Google Scholar
Singh N, Kapur KK, Singh SP, Shanker K, Sinha JN, Kohli RP. Mechanism of cardiovascular action of Terminalia arjuna. Planta Med. 1982;45:102–4.
Article
CAS
Google Scholar
Dwivedi S, Jauhari R. Beneficial effects of Terminalia arjuna in coronary artery disease. Indian Heart J. 1997;49:507–10.
CAS
Google Scholar
Kusumoto IT, Nakabayashi T, Kida H, Miyashiro H, Hattori M, Namba T, et al. Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytother Res. 1995;9:180–4.
Article
CAS
Google Scholar
Ram A, Lauria P, Gupta R, Kumar P, Sharma VN. Hypocholesterolaemic effects of Terminalia arjuna tree bark. J Ethnopharmacol. 1997;55:165–9.
Article
CAS
Google Scholar
Kumar P, Katram N, e M R, Mudili DV, Anand T, Anilakumar K. DNA damage protecting and free radical scavenging properties of Terminalia arjuna bark in PC-12 cells and plasmid DNA. Free radic antioxid. 2013;3:35–9.
Article
Google Scholar
Bachaya H, Iqbal Z, Khan M, Jabbar A, Gilani A-u, Islam UD. In vitro and in vivo anthelmintic activity of Terminalia arjuna bark. Int J Agric Biol. 2009;11:273–8.
Google Scholar
Chusri S, Sinvaraphan N, Chaipak P, Luxsananuwong A, Voravuthikunchai SP. Evaluation of antibacterial activity, phytochemical constituents, and cytotoxicity effects of Thai household ancient remedies. J Altern Complement Med. 2014;20:909–18.
Article
Google Scholar
Senguttuvan J, Paulsamy S, Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac. J Trop Biomed. 2014;4:S359–67.
Article
Google Scholar
Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.
Article
CAS
Google Scholar
Makler MT, Hinrichs DJ. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am J Trop Med Hyg. 1993;48:205–10.
Article
CAS
Google Scholar
Chaniad P, Phuwajaroanpong A, Techarang T, Horata N, Chukaew A, Punsawad C. Evaluation of the antimalarial activity and toxicity of Mahanil-tang-thong formulation and its plant ingredients. BMC Complement Med Ther. 2022;22:51.
Article
CAS
Google Scholar
Koch A, Tamez P, Pezzuto J, Soejarto D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol. 2005;101:95–9.
Article
CAS
Google Scholar
Peters W. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol. 1975;69:155–71.
Article
CAS
Google Scholar
Chaniad P, Techarang T, Phuwajaroanpong A, Punsawad C. Antimalarial activity and toxicological assessment of Betula alnoides extract against Plasmodium berghei infections in mice. Evid Based Complement Altern Med. 2019;2019:2324679.
Article
Google Scholar
Muluye AB, Desta AG, Abate SK, Dano GT. Anti-malarial activity of the root extract of Euphorbia abyssinica (Euphorbiaceae) against Plasmodium berghei infection in mice. Malar J. 2019;18:261.
Article
Google Scholar
Misganaw D, Engidawork E, Nedi T. Evaluation of the anti-malarial activity of crude extract and solvent fractions of the leaves of Olea europaea (Oleaceae) in mice. Evid Based Complement Altern Med. 2019;19:171.
Article
Google Scholar
Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18:e3000411.
Article
CAS
Google Scholar
Organisation for Economic Co-operation and Development (OECD). Test No. 425: acute oral toxicity: up-and-down procedure. 2008.
Google Scholar
Wichapoon B, Punsawad C, Chaisri U, Viriyavejakul P. Glomerular changes and alterations of zonula occludens-1 in the kidneys of Plasmodium falciparum malaria patients. Malar J. 2014;13:176.
Article
Google Scholar
Viriyavejakul P, Khachonsaksumet V, Punsawad C. Liver changes in severe Plasmodium falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression. Malar J. 2014;13:106.
Article
Google Scholar
Kigondu EVM, Rukunga GM, Gathirwa JW, Irungu BN, Mwikwabe NM, Amalemba GM, et al. Antiplasmodial and cytotoxicity activities of some selected plants used by the Maasai community. Kenya S Afr J Bot. 2011;77:725–9.
Article
Google Scholar
Berthi W, González A, Rios A, Blair S, Cogollo Á, Pabón A. Anti-plasmodial effect of plant extracts from Picrolemma huberi and Picramnia latifolia. Malar J. 2018;17:151.
Article
Google Scholar
Wang Z, Xiao S, Wang Y, Liu J, Ma H, Wang Y, et al. Effects of light irradiation on essential oil biosynthesis in the medicinal plant Asarum heterotropoides Fr. Schmidt var. mandshuricum (maxim) Kitag. PLoS One. 2020;15:e0237952.
Article
CAS
Google Scholar
Saijo R. Biosynthetic pathways of gallic acid. Chagyo Kenkyu Hokoku (Tea Res J) 2014;2014:118_127-118_131.
Farag MA, Hegazi NM, Donia MS. Molecular networking based LC/MS reveals novel biotransformation products of green coffee by ex vivo cultures of the human gut microbiome. Metabolomics. 2020;16:86.
Article
CAS
Google Scholar
Ene AC, Ameh DA, Kwanashie HO, Agomo P, Atawodi SE. Preliminary in vivo antimalarial screening of petroleum ether, chloroform and methanol extracts of fifteen plants grown in Nigeria. J Pharmacol Toxicol. 2008;3:254–60.
Article
Google Scholar
Thiengsusuk A, Muhamad P, Chaijaroenkul W, Na-Bangchang K. Antimalarial activity of piperine. J Trop Med. 2018;2018:9486905.
Article
Google Scholar
Suganthy N, Muniasamy S, Archunan G. Safety assessment of methanolic extract of Terminalia chebula fruit, Terminalia arjuna bark and its bioactive constituent 7-methyl gallic acid: in vitro and in vivo studies. Regul Toxicol Pharmacol. 2018;92:347–57.
Article
CAS
Google Scholar
Indrayanto G, Putra GS, Suhud F. Validation of in-vitro bioassay methods: application in herbal drug research. Profiles Drug Subst Excip Relat Methodol. 2021;46:273–307.
Article
Google Scholar
Vitorino KA, Alfonso JJ, Gómez AF, Santos APA, Antunes YR, Caldeira CA, et al. Antimalarial activity of basic phospholipases A2 isolated from Paraguayan Bothrops diporus venom against Plasmodium falciparum. Toxicon: X. 2020;8:100056.
Article
CAS
Google Scholar
Fenta M, Kahaliw W. Evaluation of antimalarial activity of hydromethanolic crude extract and solvent fractions of the leaves of Nuxia congesta R. Br. Ex Fresen (Buddlejaceae) in Plasmodium berghei infected mice. J Exp Pharmacol. 2019;11:121–34.
Article
CAS
Google Scholar
Aragaw TJ, Afework DT, Getahun KA. Antimalarial activities of hydromethanolic crude extract and chloroform fraction of Gardenia ternifolia leaves in Plasmodium berghei infected mice. Evid based Complement Altern Med. 2020;2020:6674002.
Article
Google Scholar
Popa GL, Popa MI. Recent advances in understanding the inflammatory response in malaria: a review of the dual role of cytokines. J Immunol Res. 2021;2021:7785180.
Article
Google Scholar
Vasquez M, Zuniga M, Rodriguez A. Oxidative stress and pathogenesis in malaria. Front Cell Infect Microbiol. 2021:11.
Amalraj A, Gopi S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.:a review. J Tradit Complement Med. 2017;7:65–78.
Article
Google Scholar
Bariweni M, Oboma Y, Ozolua R. Toxicological studies on the aqueous leaf extract of Pavetta crassipes (K. Schum) in rodents. J Pharm Pharmacogn Res. 2018;6:1–16.
CAS
Google Scholar
Ezeja MI, Anaga AO, Asuzu IU. Acute and sub-chronic toxicity profile of methanol leaf extract of Gouania longipetala in rats. J Ethnopharmacol. 2014;151:1155–64.
Article
CAS
Google Scholar
Elford BC. L-glutamine influx in malaria-infected erythrocytes: a target for antimalarials? Parasitol Today. 1986;2:309–12.
Article
CAS
Google Scholar
Al-Adhroey A, B.A.H Z-A. In vivo antimalaria tests of Nigella sativa (black seed) different extracts. Am J Pharmacol Toxicol. 2007;2:46–50.
Article
Google Scholar
Abdillah S, Tambunan R, Farida Y, Sandhiutami N, Dewi R. Phytochemical screening and antimalarial activity of some plants traditionally used in Indonesia. Asian Pac. J Trop Biomed. 2015:77.
Anuthakoengkun A, Itharat A. Inhibitory effect on nitric oxide production and free radical scavenging activity of Thai medicinal plants in osteoarthritic knee treatment. J Med Assoc Thail. 2014;97(Suppl 8):S116–24.
Google Scholar
Lekana-Douki JB, Oyegue Liabagui SL, Bongui JB, Zatra R, Lebibi J, Toure-Ndouo FS. In vitro antiplasmodial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa. BMC Res Notes. 2011;4:506.
Article
CAS
Google Scholar
Shaik MM. Phytochemistry and pharmacological potential of Terminalia arjuna L. J Med Plant Res. 2013;15:3.
Google Scholar
Mandal S, Patra A, Samanta A, Roy S, Mandal A, Mahapatra TD, et al. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac J Trop Biomed. 2013;3:960–6.
Article
CAS
Google Scholar
Shimadzu corporation. A guide to GCMS sample introduction systems: choosing the best system for your analysis. 1st ed. p. 1–40.
Bai J, Wu Y, Liu X, Zhong K, Huang Y, Gao H. Antibacterial activity of shikimic acid from pine needles of Cedrus deodara against Staphylococcus aureus through damage to cell membrane. Int J Mol Sci. 2015;16:27145–55.
Article
CAS
Google Scholar
Zhang H, Jiang Z, Shen C, Zou H, Zhang Z, Wang K, et al. 5-Hydroxymethylfurfural alleviates inflammatory lung injury by inhibiting endoplasmic reticulum stress and NLRP3 inflammasome activation. Front Cell Dev Biol. 2021;9:782427.
Article
Google Scholar
Zhao L, Chen J, Su J, Li L, Hu S, Li B, et al. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J Agric Food Chem. 2013;61:10604–11.
Article
CAS
Google Scholar
Zhang T, Ma L, Wu P, Li W, Li T, Gu R, et al. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non-small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol Rep. 2019;41:1779–88.
CAS
Google Scholar
Khasanah U, WidyaWaruyanti A, Hafid AF, Tanjung M. Antiplasmodial activity of isolated polyphenols from Alectryon serratus leaves against 3D7 Plasmodium falciparum. Pharm Res. 2017;9:S57–s60.
Google Scholar
Alfaqih H, Abu BN. The potential of pyrogallol as a possible antimalarial drug candidate. Academic. J Microbiol Immunol Infect. 2020;1:2020.
Google Scholar
du Preez-Bruwer I, Mumbengegwi DR, Louw S. In vitro antimalarial properties and chemical composition of Diospyros chamaethamnus extracts. S Afr J Bot. 2022;149:290–6.
Article
Google Scholar