Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–734.
Article
PubMed
Google Scholar
Klimova B, Valis M, Kuca K. Cognitive decline in normal aging and its prevention: a review on non-pharmacological lifestyle strategies. Clin Interv Aging. 2017;12:903–10.
Article
PubMed
PubMed Central
Google Scholar
Gallagher D, Kiss A, Lanctot KL, Herrmann N. Toward prevention of Mild Cognitive Impairment in older adults with depression: an observational study of potentially modifiable risk factors. J Clin Psychiatry. 2018;80:18m12331.
Article
PubMed
PubMed Central
Google Scholar
D’Cunha NM, McKune AJ, Panagiotakos DB, Georgousopoulou EN, Thomas J, Mellor DD. Evaluation of dietary and lifestyle changes as modifiers of S100beta levels in Alzheimer’s disease. Nutr Neurosci. 2019;22:1–18.
Article
PubMed
Google Scholar
Lai DWL, Chan KC, Xie XJ, Daoust GD. The experience of growing old in chronic mental health patients. Aging Ment Health. 2019;24:1514–22.
Seddon N, D’Cunha NM, Mellor DD, McKune AJ, Georgousopoulou EN, Panagiotakos DB, et al. Effects of Curcumin on cognitive function—a systematic review of randomized controlled trials. Explor Res Hypothesis Med. 2019;4(1):1.
Article
Google Scholar
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal. 2013;2013:162750.
PubMed
PubMed Central
Google Scholar
Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel). 2015;2(3):251–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel). 2018;5(3):93.
Article
CAS
Google Scholar
Reyes-Izquierdo T, Nemzer B, Shu C, Huynh L, Argumedo R, Keller R, et al. Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects. Br J Nutr. 2013;110(3):420–5.
Article
CAS
PubMed
Google Scholar
Robinson JL, Hunter JM, Reyes-Izquierdo T, Argumedo R, Brizuela-Bastien J, et al. Cognitive short- and long-term effects of coffee cherry extract in older adults with mild cognitive decline. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2019:1–17.
Lasaite L, Spadiene A, Savickiene N, Skesters A, Silova A. The effect of Ginkgo biloba and Camellia sinensis extracts on psychological state and glycemic control in patients with type 2 diabetes mellitus. Nat Prod Commun. 2014;9(9):1345–50.
CAS
PubMed
Google Scholar
Zhang XY, Zhang WF, Zhou DF, Chen DC, Xiu MH, Wu HR, et al. Brain-derived neurotrophic factor levels and its Val66Met gene polymorphism predict tardive dyskinesia treatment response to Ginkgo biloba. Biol Psychiatry. 2012;72(8):700–6.
Article
CAS
PubMed
Google Scholar
Rainey-Smith SR, Brown BM, Sohrabi HR, Shah T, Goozee KG, Gupta VB, et al. Curcumin and cognition: a randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br J Nutr. 2016;115(12):2106–13.
Article
CAS
PubMed
Google Scholar
Scholey A, Cox K, Pipingas A, White D. A highly bioavailable curcumin extract improves neurocognitive function and mood in healthy older people: a 12- week randomised, double-blind, placebo-controlled trial (OR32–05-19). Curr Dev Nutr. 2019;3(Supplement_1):nzz052.OR32-05-19.
Martin A, Stillman J, Miguez MJ, et al. The effect of dietary supplementation on brain-derived neurotrophic factor and cognitive functioning in Alzheimer's dementia. J Clin Transl Res. 2017;3:337–43.
CAS
PubMed
PubMed Central
Google Scholar
Rosado-Pérez J, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Effect of Sechium edule var. nigrum spinosum (Chayote) on oxidative stress and pro-inflammatory markers in older adults with metabolic syndrome: an exploratory study. Antioxidants (Basel). 2019;8:146.
Article
CAS
Google Scholar
Kuchta A, Konopacka A, Waleron K, Viapiana A, Wesołowski M, Dąbkowski K, et al. The effect of Cistus incanus herbal tea supplementation on oxidative stress markers and lipid profile in healthy adults. Cardiol J. 2019.
Zhang J, Wang Z, Xu S, Chen Y, Chen K, Liu L, Wang Y, Guo R, Zhang Z. The effects of CCRC on cognition and brain activity in aMCI patients: a pilot placebo controlled BOLD fMRI study. Curr Alzheimer Res. 2014;5:484–93.
Article
CAS
Google Scholar
Lin C, Zhou Z, Xu J, Li Q, Guo J, Long M, Wu D, Zhang Y. Changes of brain activity during a functional magnetic resonance imaging stroop task study: effect of Chinese herbal formula in Alzheimer’s disease. Eur J Integr Med. 2017;16:46–53.
Article
Google Scholar
Best T, Clarke C, Nuzum N, Teo WP. Acute effects of combined Bacopa, American ginseng and whole coffee fruit on working memory and cerebral haemodynamic response of the prefrontal cortex: a double-blind, placebo-controlled study. Nutr Neurosci. 2019:1–12.
Vikram P, Chiruvella KK, Ripain IHA, Arifullah M. A recent review on phytochemical constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian Pac J Trop Biomed. 2014;4(6):430–5.
Article
PubMed
PubMed Central
Google Scholar
George A, Ng CP, O’Callaghan M, Jensen GS, Wong HJ. In vitro and ex-vivo cellular antioxidant protection and cognitive enhancing effects of an extract of Polygonum minus Huds (Lineminus™) demonstrated in a Barnes maze animal model for memory and learning. BMC Complement Altern Med. 2014;14(1):161.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wan Yahaya WA, Abu Yazid N, Mohd Azman NA, Almajano MP. Antioxidant activities and Total phenolic content of Malaysian herbs as components of active packaging film in beef patties. Antioxidants (Basel). 2019;8(7):204.
Article
CAS
Google Scholar
Abubakar MA, Zulkifli RM, Hassan WN, Shariff AH, Malek NA, Zakaria Z, et al. Antibacterial properties of Persicaria minor (Huds.) ethanolic and aqueous-ethanolic leaf extracts. J Appl Pharm Sci. 2015;5:050–6.
CAS
Google Scholar
Udani JK. Effects of SuperUlam on supporting concentration and mood: a randomized, double-blind, placebo-controlled crossover study. Evid Based Complement Altern Med. 2013;2013:238454.
Article
Google Scholar
Yahya HM, Shahar S, Ismail SNA, Aziz AF, Che Din N, Abdul Hakim BN. Mood, cognitive function and quality of life improvements in middle aged women following supplementation with Polygonum Minus extract. Sains Malaysiana. 2017;46:245–54.
Article
CAS
Google Scholar
Zhong B. How to calculate sample size in randomized controlled trial? J Thoracic Dis. 2009;1:51–4.
Google Scholar
Ma F, Wu T, Zhao J, Han F, Marseglia A, Liu H, Huang G. Effects of 6-month folic acid supplementation on cognitive function and blood biomarkers in mild cognitive impairment: a randomized controlled trial in China. J Gerontol Series A. 2015;10:1376–83.
Google Scholar
Lau H, Shahar S, Hussin N, Kamarudin MZ, Hamid TA, Mukari SZ, Rajab NF, et al. Methodology approaches and challenges in population-based longitudinal study of a neuroprotective model for healthy longevity. Geriatr Gerontol Int. 2019;19:233–9.
Article
PubMed
Google Scholar
Ming YK, Zulkawi NB, Vandana Kotak C, Choudhary YK. Acute and sub-acute oral toxicity of Polygonum minus aqueous extract (Biotropics® PM101) in Wistar rats. Int J Pharm Pharm Sci. 2013;5(2):120–4.
Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. London: 6th edition, pharmaceutical press; 2009. p. 506-9.
Wang YR, Liu SF, Shen YC, Chen CL, Huang CN, Pan TM, Wang CK. A randomized, double-blind clinical study to determine the effect of ANKASCIN 568 plus on blood glucose regulation. J Food Drug Anal. 2017;25(2):409–16.
Article
CAS
PubMed
Google Scholar
Yoshikawa Y, Kishimoto Y, Tagami H, Kanahori S. Assessment of the safety of hydrogenated resistant maltodextrin: reverse mutation assay, acute and 90-day subchronic repeated oral toxicity in rats, and acute no-effect level for diarrhea in humans. J Toxicol Sci. 2013;38(3):459–70.
Article
CAS
PubMed
Google Scholar
Kendig MD, Lin CS, Beilharz JE, Rooney KB, Boakes RA. Maltodextrin can produce similar metabolic and cognitive effects to those of sucrose in the rat. Appetite. 2014;77:1–12.
Article
PubMed
Google Scholar
Baral S, Pariyar R, Kim J, Lee HS, Seo J. Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol Aging. 2017;52:39–52.
Article
CAS
PubMed
Google Scholar
Wu CH, Yang MY, Wang CJ. Quercetin-3-O-glucuronide inhibits doxorubicin resistance by reducing endoplasmic reticulum stress in hepatocellular carcinoma cells. J Funct Foods. 2019;54:301–9.
Article
CAS
Google Scholar
Chen J, Deng X, Liu N, Li M, Liu B, Fu Q, Qu R, et al. Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J Funct Foods. 2016;22:463–76.
Article
CAS
Google Scholar
Emrani S, Wasserman V, Matusz E, Miller D, Lamar M, Price CC, Ginsberg TB, et al. Visual versus verbal working memory in statistically determined patients with mild cognitive impairment: on behalf of the consortium for clinical and epidemiological neuropsychological data analysis (CENDA). J Int Neuropsychol Soc. 2019;25(10):1001–10.
Article
PubMed
Google Scholar
Bashir MI, Kaz Abdul Aziz NH, Mohamed Noor DA. Possible antidepressant potential of a cognitive enhancer Polygonum minus based on its major chemical constituents in leaf part. Drug Intervention Today. 2020;13:549–57.
Google Scholar
Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs. 2013;22:863–80.
Article
CAS
PubMed
Google Scholar
Baul HS, Rajiniraja M. Mechanistic study of inhibition of monoamine oxidase-B by quercetin as the potential therapeutic strategy for Parkinson’s disease: an in silico approach. J Comput Methods Sci Eng. 2018;18:1067–73.
CAS
Google Scholar
Herraiz T, Guillen H. Monoamine oxidase-A inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions. Biomed Res Int. 2018;1:1–10.
Samad N, Saleem A, Yasmin F, Shehzad MA. Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice. Physiol Res. 2018;67(5):795–808.
Article
CAS
PubMed
Google Scholar
Mehta V, Verma P, Sharma N, Sharma A, Thakur A, Malairaman U. Quercetin, ascorbic acid, caffeine and ellagic acid are more efficient than rosiglitazone, metformin and glimepiride in interfering with pathways leading to the development of neurological complications associated with diabetes: a comparative in-vitro study. Bull Fac Pharmacy Cairo Univ. 2017;55(1):115–21.
Article
Google Scholar
Rahvar M, Owji AA, Mashayekhi FJ. Effect of quercetin on the brain-derived neurotrophic factor gene expression in the rat brain. Bratislavske lekarske listy. 2018;119(1):28–31.
CAS
PubMed
Google Scholar
Jakaria M, Azam S, Jo SH, Kim IS, Dash R, Choi DK. Potential therapeutic targets of Quercetin and its derivatives: its role in the therapy of cognitive impairment. J Clin Med. 2019;8(11):1789.
Article
CAS
PubMed Central
Google Scholar
Sharma P, Kumar A, Singh D. Dietary flavonoids interaction with CREB-BDNF pathway: an unconventional approach for comprehensive management of epilepsy. Curr Neuropharmacol. 2019;17(12):1158–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida T, Ishikawa M, Niitsu T, Nakazato M, Watanabe H, Shiraishi T, et al. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One. 2012;7(8):e42676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314(5796):140–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Wang Y, Pattwell S, Jing D, Liu T, Zhang Y, et al. Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. J Neurosci. 2009;29(13):4056–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradley-Whitman MA, Lovell MA. Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch Toxicol. 2015;89(7):1035–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christapher PV, Parasuraman S, Raj PV, Mohammed Saghir SA, Asmawi MZ, Vikneswaran M. Influence of extracting solvent on pharmacological activity and cytotoxicity of Polygonum minus, a commonly consumed herb in Southeast Asia. Pharmacogn Mag. 2016;12(Suppl 4):S424–s430.
PubMed
PubMed Central
Google Scholar
Ting Y, Chang WT, Shiau DK, Chou PH, Wu MF, Hsu CL. Antiobesity efficacy of Quercetin-Rich supplement on diet-induced obese rats: effects on body composition, serum lipid profile, and gene expression. J Agric Food Chem. 2018;66(1):70–80.
Article
CAS
PubMed
Google Scholar
Seo MJ, Lee YJ, Hwang JH, Kim KJ, Lee BY. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J Nutr Biochem. 2015;26(11):1308–16.
Article
CAS
PubMed
Google Scholar
Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother. 2019;109:1085–99.
Article
CAS
PubMed
Google Scholar
George A, Chinnappan S, Chintamaneni M, Kotak CV, Choudhary Y, Kueper T, Radhakrishnan AK. Anti-inflammatory effects of Polygonum minus (Huds) extract (Lineminus™) in in-vitro enzyme assays and carrageenan induced paw edema. BMC Complement Altern Med. 2014;14:355.
Article
PubMed
PubMed Central
CAS
Google Scholar
Almeida AF, Borge GIA, Piskula M, Tudose A, Tudoreanu L, Valentová K, Williamson G, Santos CN. Bioavailability of quercetin in humans with a focus on interindividual variation. Compr Rev Food Sci Food Saf. 2018;17(3):714–31.
Article
CAS
PubMed
Google Scholar
Rich GT, Buchweitz M, Winterbone MS, Kroon PA, Wilde PJ. Towards an understanding of the low bioavailability of quercetin: a study of its interaction with intestinal lipids. Nutrients. 2017;9(2):111.
Article
PubMed Central
CAS
Google Scholar
Giglia G, Brighina F, Rizzo S, Puma S, Indovino S, Maccora S, et al. Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex enhances memory-guided responses in a visuospatial working memory task. Funct Neurol. 2014;29(3):189–93.
PubMed
PubMed Central
Google Scholar
Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49(5):1195–205.
Article
PubMed
Google Scholar
Tota S, Awasthi H, Kamat PK, Nath C, Hanif K. Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behav Brain Res. 2010;209(1):73–9.
Article
CAS
PubMed
Google Scholar
Li Y, Zhou S, Li J, Sun Y, Hasimu H, Liu R, et al. Quercetin protects human brain microvascular endothelial cells from fibrillar beta-amyloid1-40-induced toxicity. Acta Pharm Sin B. 2015;5(1):47–54.
Article
PubMed
PubMed Central
Google Scholar
Kyrtsos CR, Baras JS. Modeling the role of the Glymphatic pathway and cerebral blood vessel properties in Alzheimer's disease pathogenesis. PLoS One. 2015;10(10):e0139574.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hotta H. Chapter 1 - Neurogenic control of parenchymal arterioles in the cerebral cortex. In: Masamoto K, Hirase H, Yamada K, editors. Progress in Brain Research. 225. Amsterdam: Elsevier; 2016. p. 3–39.
Kwon H, Reiss AL, Menon V. Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad Sci U S A. 2002;99(20):13336–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajah MN, Languay R, Valiquette L. Age-related changes in prefrontal cortex activity are associated with behavioural deficits in both temporal and spatial context memory retrieval in older adults. Cortex. 2010;46(4):535–49.
Article
PubMed
Google Scholar
Koyama MS, O’Connor D, Shehzad Z, Milham MP. Differential contributions of the middle frontal gyrus functional connectivity to literacy and numeracy. Sci Rep. 2017;7(1):17548.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garavan H, Ross TJ, Murphy K, Roche RA, Stein EA. Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. NeuroImage. 2002;17(4):1820–9.
Article
CAS
PubMed
Google Scholar
Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64(3):501–8.
Article
PubMed
Google Scholar