Hoareau L, Da Silva EJ: Medicinal plants: A re-emerging health aid. Electron J Biotechnol. 1999, 2: 56-70.
Google Scholar
Edeoga HO, Okwu DE, Mbaebie BO: Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005, 4: 685-688.
Article
CAS
Google Scholar
Agra MF, Freitas PF, Barbosa-Filho JM: Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev Bras Farmacogn. 2007, 17: 114-140.
Article
Google Scholar
Atindehou KK, Schmid C, Brun R, Koné MW, Traore D: Antitrypanosomal and antiplasmodial activity of medicinal plants from Côte d’Ivoire. J Ethnopharmacol. 2004, 90: 221-227.
Article
Google Scholar
Muthu C, Ayyanar M, Raja N, Ignacimuthu S: Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu. India. J Ethnobiol Ethnomed. 2006, 2: 43-
Article
PubMed
PubMed Central
Google Scholar
Gansané A, Sanon S, Ouattara LP, Traoré A, Hutter S, Ollivier E, Azas N, Traore AS, Guissou IP, Sirima SB, Nebié I: Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: Contribution for their preservation. Parasitol Res. 2010, 106: 335-340.
Article
PubMed
Google Scholar
Pietrovski EF, Rosa KA, Facundo VA, Rios K, Marques MC, Santo AR: Antinociceptive properties of the ethanolic extract and of the triterpene 3beta,6beta,16beta-trihidroxilup-20(29)-ene obtained from the flowers of Combretum leprosum in mice. Pharmacol Biochem Behav. 2006, 83: 90-99.
Article
CAS
PubMed
Google Scholar
De Morais Lima GR, de Sales IR, Caldas Filho MR, de Jesus NZ, de Sousa FH, Barbosa-Filho JM, Cabral AG, Souto AL, Tavares JF, Batista LM: Bioactivities of the genus Combretum (Combretaceae): a review. Molecules. 2012, 17: 9142-9206.
Article
PubMed
Google Scholar
Eloff JN, Katerere DR, McGaw LJ: The biological activity and chemistry of the southern African Combretaceae. J Ethnopharmacol. 2008, 119: 686-699.
Article
CAS
PubMed
Google Scholar
Ribeiro SS, de Jesus AM, dos Anjos CS, da Silva TB, Santos AD, de Jesus JR, Andrade MS, Sampaio TS, Gomes WF, Alves PB, Carvalho AA, Pessoa C, de Moraes MO, Pinheiro ML, Prata AP, Blank AF, Silva-Mann R, Moraes VR, Costa EV, Nogueira PC, Bezerra DP: Evaluation of the cytotoxic activity of some Brazilian medicinal plants. Planta Med. 2012, 78: 1601-1606.
Article
CAS
PubMed
Google Scholar
Longhi-Balbinot DT, Martins DF, Lanznaster D, Silva MD, Facundo VA, Santos AR: Further analyses of mechanisms underlying the antinociceptive effect of the triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene in mice. Eur J Pharmacol. 2011, 653: 32-40.
Article
CAS
PubMed
Google Scholar
Longhi-Balbinot DT, Lanznaster D, Baggio CH, Silva MD, Cabrera CH: Anti-inflammatory effect of triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene obtained from Combretum leprosu m Mart & Eich in mice. J Ethnopharmacol. 2012, 142: 59-64.
Article
CAS
PubMed
Google Scholar
Lopes LS, Marques RB, Pereira SS, Ayres MC, Chaves MH: Antinociceptive effect on mice of the hydroalcoholic fraction and (-) epicatechin obtained from Combretum leprosum Mart & Eich. Braz J Med Biol Res. 2010, 43: 1184-1192.
Article
CAS
PubMed
Google Scholar
McGaw LJ, Eloff JN: Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J Ethnopharmacol. 2008, 119: 559-574.
Article
CAS
PubMed
Google Scholar
McGaw LJ, Rabe T, Sparg SG, Jäger AK, Eloff JN: An investigation on the biological activity of Combretum species. J Ethnopharmacol. 2001, 75: 45-50.
Article
CAS
PubMed
Google Scholar
Facundo VA, Andrade CHS, Silveira ER, Braz-Filho R, Hufford C: Triterpenes and flavonoids from Combretum leprosum. Phytochemistry. 1993, 32: 411-515.
Article
CAS
Google Scholar
Della-Pace ID, Rambo LM, Ribeiro LR, Saraiva AL, de Oliveira SM, Silva CR, Villarinho JG, Rossato MF, Ferreira J, de Carvalho LM, de Oliveira Lima F, Furian AF, Oliveria MS, Santos AR, Facundo VA, Fighera MR, Royes LF: Triterpene 3β, 6β, 16β trihidroxilup-20(29)-ene protects against excitability and oxidative damage induced by pentylenetetrazol: the role of Na(+), K(+)-ATPase activity. Neuropharmacology. 2013, 67: 455-464.
Article
CAS
PubMed
Google Scholar
Hagemeister F, Cabanillas F, Coleman M, Gregory SA, Zinzani PL: The role of mitoxantrone in the treatment of indolent lymphomas. Oncologist. 2005, 10: 150-159.
Article
CAS
PubMed
Google Scholar
Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C: A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991, 139: 271-279.
Article
CAS
PubMed
Google Scholar
Singh NP, McCoy MT, Tice RR, Schneider EL: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988, 175: 184-191.
Article
CAS
PubMed
Google Scholar
Nadin SB, Vargas-Roig LM, Ciocca DR: A silver staining method for single-cell gel assay. J Histochem Cytochem. 2001, 49: 1183-1186.
Article
CAS
PubMed
Google Scholar
Collins AR, Ma AG, Duthie SJ: The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mut Res. 1995, 336: 69-77.
Article
CAS
Google Scholar
Burlinson B, Tice RR, Speit G, Agurell E, Brendler-Schwaab SY, Collins AR, Escobar P, Honma M, Kumaravel TS, Nakajima M, Sasaki YF, Thybaud V, Uno Y, Vasquez M, Hartmann A: Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res. 2007, 627: 31-35.
Article
CAS
PubMed
Google Scholar
Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M: Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983, 130: 1910-1917.
CAS
PubMed
Google Scholar
Burke D, Dawson T, Stearns T: Methods in Yeast Genetics, a CSH Laboratory Course Manual. 2000, Plainview, NY: CSH Laboratory Press
Google Scholar
Longo VD, Gralla EB, Valentine JS: Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem. 1996, 271: 12275-12280.
Article
CAS
PubMed
Google Scholar
Cyrne L, Martins L, Fernandes L, Marinho HS: Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic Biol Med. 2003, 34: 385-393.
Article
CAS
PubMed
Google Scholar
Da Costa Júnior JS, de Almeida AA, Costa JP, das Graças Lopes Citó AM, Saffi J, de Freitas RM: Superoxide dismutase and catalase activities in rat hippocampus pretreated with garcinielliptone FC from Platonia insignis. Pharm Biol. 2012, 50: 453-457.
Article
PubMed
Google Scholar
Schuller RC, Von Borstel RC: Spontaneous mutability in yeast. I. Stability of lysine reversion rates to variation of adenine concentration. Mutat Res. 1974, 24: 17-23.
Article
CAS
PubMed
Google Scholar
Acton EM, Narayanan VL, Risbood PA, Shoemaker RH, Vistica DT, Boyd MR: Anticancer specificity of some ellipticinium salts against human brain tumors in vitro. J Med Chem. 1994, 37: 2185-2189.
Article
CAS
PubMed
Google Scholar
Ibáñez E, Plano D, Font M, Calvo A, Prior C, Palop JA, Sanmartín C: Synthesis and antiproliferative activity of novel symmetrical alkylthio- and alkylseleno-imidocarbamates. Eur J Med Chem. 2011, 46: 265-274.
Article
PubMed
Google Scholar
Mazumder K, Tanaka K, Fukase K: Cytotoxic activity of ursolic acid derivatives obtained by isolation and oxidative derivatization. Molecules. 2013, 18: 8929-8944.
Article
CAS
PubMed
Google Scholar
Butler MS: The role of natural product chemistry in drug discovery. J Nat Prod. 2004, 67: 2141-2153.
Article
CAS
PubMed
Google Scholar
Newman DJ, Cragg GM, Snader KM: The influence of natural products upon drug discovery. Nat Prod Rep. 2000, 17: 215-234.
Article
CAS
PubMed
Google Scholar
Newman DJ, Cragg GM, Snader KM: Natural products as sources of new drugs over the period 1981–2002. J Nat Prod. 2003, 66: 1022-1037.
Article
CAS
PubMed
Google Scholar
Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown DM, Wani MC, Wall ME, Hieken TJ, Gupta TKD, Pezzuto JM: Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med. 1995, 1: 1046-1051.
Article
CAS
PubMed
Google Scholar
Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Łos M: Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med. 2013, 17: 12-29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes-Zurita FJ, Pachón-Peña G, Lizárraga D, Rufino-Palomares EE, Cascante M, Lupiáñez JA: The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer. 2011, 11: 154-
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimm D, Wehland M, Pietsch J, Infanger M, Bauer J: Drugs interfering with apoptosis in breast cancer. Curr Pharm Des. 2011, 17: 272-283.
Article
CAS
PubMed
Google Scholar
Fiandalo MV, Kyprianou N: Caspase control: protagonists of cancer cell apoptosis. Exp Oncol. 2012, 34: 165-175.
CAS
PubMed
PubMed Central
Google Scholar
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT: Anti-apoptosis and cell survival: a review. Biochim Biophys Acta. 1813, 2011: 238-259.
Google Scholar
Park HH: Structural features of caspase-activating complexes. Int J Mol Sci. 2012, 2012 (13): 4807-4818.
Article
Google Scholar
Kim PK, Mahidhara R, Seol DW: The role of caspase-8 in resistance to cancer chemotherapy. Drug Resist Updat. 2001, 4: 293-296.
Article
CAS
PubMed
Google Scholar
Cillessen SA, Hess CJ, Hooijberg E, Castricum KC, Kortman P, Denkers F, Vos W, van de Wiel MA, Schuurhuis GJ, Ossenkoppele GJ, Meijer CJ, Oudejans JJ: Inhibition of the intrinsic apoptosis pathway downstream of caspase-9 activation causes chemotherapy resistance in diffuse large B-cell lymphoma. Clin Cancer Res. 2007, 13: 7012-7021.
Article
CAS
PubMed
Google Scholar
Hara S, Miyake H, Arakawa S, Kamidono S, Hara I: Over expression of inhibitor of caspase 3 activated deoxyribonuclease in human renal cell carcinoma cells enhances their resistance to cytotoxic chemotherapy in vivo. J Urol. 2001, 166: 2491-2494.
Article
CAS
PubMed
Google Scholar
Snyder RD, Arnone MR: Putative identification of functional interactions between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay. Mutat Res. 2002, 503: 21-35.
Article
CAS
PubMed
Google Scholar
Harmand PO, Duval R, Delage C, Simon A: Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and caspase-3 activation in M4Beu melanoma cells. Int J Cancer. 2005, 114: 1-11.
Article
CAS
PubMed
Google Scholar
Shishodia S, Majumdar S, Banerjee S, Aggarwal BB: Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003, 63: 4375-4383.
CAS
PubMed
Google Scholar
Ma CM, Cai SQ, Cui JR, Wang RQ, Tu PF, Hattori M, Daneshtalab M: The cytotoxic activity of ursolic acid derivatives. Eur J Med Chem. 2005, 40: 582-589.
Article
CAS
PubMed
Google Scholar
Parra A, Rivas F, Martin-Fonseca S, Garcia-Granados A, Martinez A: Maslinic acid derivatives induce significant apoptosis in b16f10 murine melanoma cells. Eur J Med Chem. 2011, 46: 5991-6001.
Article
CAS
PubMed
Google Scholar
Lin CC, Huang CY, Mong MC, Chan CY, Yin MC: Antiangiogenic potential of three triterpenic acids in human liver cancer cells. J Agric Food Chem. 2011, 59: 755-762.
Article
CAS
PubMed
Google Scholar
Martín R, Carvalho-Tavares J, Ibeas E, Hernández M, Ruiz-Gutierrez V, Nieto ML: Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res. 2007, 67: 3741-3751.
Article
PubMed
Google Scholar
Reyes FJ, Centelles JJ, Lupiáñez JA, Cascante M: (2Alpha,3beta)-2,3-dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells. FEBS Lett. 2006, 580: 6302-6310.
Article
CAS
PubMed
Google Scholar
Fulda S, Debatin KM: Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediatr Oncol. 2000, 35: 616-618.
Article
CAS
PubMed
Google Scholar
Karpova MB, Sanmun D, Henter JI, Smirnov AF, Fadeel B: Betulinic acid, a natural cytotoxic agent, fails to trigger apoptosis in human Burkitt’s lymphoma-derived B-cell lines. Int J Cancer. 2006, 118: 246-252.
Article
CAS
PubMed
Google Scholar
Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F: Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett. 2002, 175: 17-25.
Article
CAS
PubMed
Google Scholar
Rabi T, Wang L, Banerjee S: Novel triterpenoid 25-hydroxy-3-oxoolean-12-en-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Breast Cancer Res Treat. 2007, 101: 27-36.
Article
CAS
PubMed
Google Scholar
Chen HW, Hsu MJ, Chien CT, Huang HC: Effect of alisol B acetate, a plant triterpene, on apoptosis in vascular smooth muscle cells and lymphocytes. Eur J Pharmacol. 2001, 419: 127-138.
Article
CAS
PubMed
Google Scholar