Júnior IIS, Barbosa HM, Carvalho DC, Barros RA, Albuquerque FP, Da Silva DHA, et al. Brazilian Morus nigra attenuated hyperglycemia, dyslipidemia, and prooxidant status in alloxan-induced diabetic rats. Sci World J. 2017;2017. https://doi.org/10.1155/2017/5275813.
Atlas D. International diabetes federation. IDF diabetes Atlas. 7th ed. Brussels: International Diabetes Federation; 2015.
Google Scholar
Verry C, Sancey L, Dufort S, Le Duc G, Mendoza C, Lux F, et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol. BMJ Open. 2019;9(2):e023591.
Article
PubMed
PubMed Central
Google Scholar
Basit A, Fawwad A, Siddiqui SA, Baqa K. Current management strategies to target the increasing incidence of diabetes within Pakistan. Diabetes Metab Syndr Obes. 2019;12:85.
Article
PubMed
Google Scholar
Karunamoorthi K, Jegajeevanram K, Vijayalakshmi J, Mengistie E. Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. Evid-Based Complement Altern Med. 2013;18(1):67–74.
Article
Google Scholar
Oliveira HC, dos Santos MP, Grigulo R, Lima LL, Martins DT, Lima JC, et al. Antidiabetic activity of Vatairea macrocarpa extract in rats. J Ethnopharmacol. 2008;115(3):515–9.
Article
PubMed
Google Scholar
Maritim A, Sanders A, Watkins Iii J. Diabetes, oxidative stress, and antioxidants: a review. Biochem. Mol Toxicol. 2003;17(1):24–38.
Article
CAS
Google Scholar
Park K-H, Koh D-S, Lee S-H, Jung I-M, Kim K-H, Lee C-H, et al. Anti-allergic and anti-asthmatic activity of helioscopinin-a, a polyphenol compound, isolated from Euphorbia helioscopia. J Microbiol Biotechnol. 2001;11(1):138–42.
CAS
Google Scholar
Barla A, Birman H, Kültür Ş, Öksüz S. Secondary metabolites from Euphorbia helioscopia and their vasodepressor activity. Turk J Chem. 2006;30(3):325–32.
CAS
Google Scholar
Uzair M, Loothar B, Choudhary B. Biological screening of Euphorbia helioscopia L. Pak J Pharm Sci. 2009;22(2):184–6.
Mu S-Z, Shang S, Yan C, Yang F-M, Hao X-J. Study on chemical constituents of Euphorbia helioscopia and their antitumor activities. Zhong Yao Cai. 2013;36(7):1092–6.
CAS
PubMed
Google Scholar
Saleem U, Ahmad B, Ahmad M, Hussain K, Bukhari NI. Anti-nociceptive, anti-inflammatory and anti-pyretic activities of latex and leaves methanol extract of Euphorbia helioscopia. Asian Pac J Trop Dis. 2015;5(4):322–8.
Article
Google Scholar
Webster GL. Classification of the Euphorbiaceae. Ann Missouri Bot Gard. 1994;81:3–32.
Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab. 2012;16(Suppl 2):S267.
Article
PubMed
PubMed Central
Google Scholar
Mustafa I, Faisal MN, Hussain G, Muzaffar H, Imran M, Ijaz MU, et al. Efficacy of Euphorbia helioscopia in context to a possible connection between antioxidant and antidiabetic activities: a comparative study of different extracts. BMC Compl Alternative Med. 2021;21(1):1–12.
Google Scholar
Buyukdere Y, Gulec A, Akyol A. Cafeteria diet increased adiposity in comparison to high fat diet in young male rats. PeerJ. 2019;7:e6656.
Article
PubMed
PubMed Central
Google Scholar
Brahmanaidu P, Uddandrao VS, Sasikumar V, Naik RR, Pothani S, Begum MS, et al. Reversal of endothelial dysfunction in aorta of streptozotocin-nicotinamide-induced type-2 diabetic rats by S-Allylcysteine. Mol Cell Biochem. 2017;432(1–2):25–32.
Article
CAS
PubMed
Google Scholar
Kamboj A, Kumar S, Kumar V. Evaluation of antidiabetic activity of hydroalcoholic extract of cestrum nocturnum leaves in streptozotocin-induced diabetic rats. Adv Pharmacol Pharm Sci. 2013;2013.
Devi S, Kumar M. In-vivo Antidiabetic activity of Methanolic extract of Euphorbia hirta L. Int J Diab Endocrinol. 2017;2(3):36.
Google Scholar
Varadharajan Madhavan AM, Lalitha DS, Yoganarasimhan S. Studies on anti-hyperglycemic effect of Euphorbia antiquorum L. root in diabetic rats. J Intercult Ethnopharmacol. 2015;4(4):308.
Article
PubMed
PubMed Central
Google Scholar
Saleem U, Ahmad B, Ahmad M, Hussain K, Bukhari NI. Investigation of in vivo antioxidant activity of Euphorbia helioscopia latex and leaves methanol extract: a target against oxidative stress induced toxicity. Asian Pac J Trop Med. 2014;7:S369–75.
Article
Google Scholar
Nisar J, Mustafa I, Anwar H, Sohail MU, Hussain G, Ullah MI, et al. Shiitake culinary-medicinal mushroom, Lentinus edodes (Agaricomycetes): a species with antioxidant, immunomodulatory, and hepatoprotective activities in hypercholesterolemic rats. Int J Med Mushrooms. 2017;19(11):981–90.
Anwar H, Suchodolski JS, Ullah MI, Hussain G, Shabbir MZ, Mustafa I, et al. Shiitake culinary-medicinal mushroom, Lentinus edodes (Agaricomycetes), supplementation alters gut microbiome and corrects dyslipidemia in rats. Int J Med Mushrooms. 2019;21(1):79–88.
Al-Assaff AA, Takruri HR. Feeding Sprague dawley rats with Jordanian wild edible plants and a high fat diet reduced the malondialdehyde levels. J Agric Sci. 2019;11(10):71–9.
Google Scholar
Sattar M, Anwar H, Faisal MN, Hussain G, Irfan S, Rasul A, et al. Synergetic effects of GOS and cu nanoparticles as prebiotics on biochemical and metabolic hormonal profile in alloxan induced diabetic rats model. Pak J Pharm Sci. 2020;33(3):1297–302.
Google Scholar
Hadwan MH, Abed HN. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief. 2016;6:194–9.
Article
PubMed
Google Scholar
Petrica L, Gluhovschi C, Velciov S. Chronic kidney disease and the involvement of estrogen hormones in its pathogenesis and progression. Rom J Intern Med. 2012;50(2):135–44.
PubMed
Google Scholar
Basma AA, Zakaria Z, Latha LY, Sasidharan S. Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L. Asian Pac J Trop Dis. 2011;4(5):386–90 Basma AA, Zakaria Z, Latha LY, Sasidharan S. Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L. Asian Pac J Trop Dis. 2011;4(5):386-90.
Article
CAS
Google Scholar
Anwer T, Sharma M, Pillai KK, Iqbal M. Effect of Withania somnifera on insulin sensitivity in non-insulin-dependent diabetes mellitus rats. Basic Clin Pharmacol Toxicol. 2008;102(6):498–503.
Article
CAS
PubMed
Google Scholar
Bezerra RM, Ueno M, Silva MS, Tavares DQ, Carvalho CR, Saad MJ. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J Nutr. 2000;130(6):1531–5.
Article
CAS
PubMed
Google Scholar
Teff KL, Elliott SS, Tschöp M, Kieffer TJ, Rader D, Heiman M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab. 2004;89(6):2963–72.30.
Article
CAS
PubMed
Google Scholar
Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100(1):278–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nderitu AM, Dykes L, Awika JM, Minnaar A, Duodu KG. Phenolic composition and inhibitory effect against oxidative DNA damage of cooked cowpeas as affected by simulated in vitro gastrointestinal digestion. Food Chem. 2013;141(3):1763–71.
Article
PubMed
Google Scholar
Xu JG, Tian CR, Hu QP, Luo JY, Wang XD, Tian XD. Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. J Agric Food Chem. 2009;57(21):10392–8.
Article
CAS
PubMed
Google Scholar
Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51–60.
Article
CAS
PubMed
Google Scholar
Ugochukwu N, Babady N. Antioxidant effects of Gongronema latifolium in hepatocytes of rat models of non-insulin dependent diabetes mellitus. Fitoterapia. 2002;73(7–8):612–8.
Article
CAS
PubMed
Google Scholar
Taylor R, Agius L. The biochemistry of diabetes. Biochem J. 1988;250:625–40 36. Wang C. The relationship between type 2 diabetes mellitus and related thyroid diseases. J Diabetes Res. 2013;2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogbonna S, Ezeani I. Risk factors of thyroid dysfunction in patients with type 2 diabetes mellitus. Front Endocrinol. 2019;10:440.
Article
Google Scholar
Swamy R, Kumar N, Srinivasa K, Manjunath G, Prasad Byrav D, Venkatesh G. Evaluation of hypothyroidism as a complication in type II diabetes mellitus. Biomed Res. 2012;23(2):170–2.
Google Scholar
Parmar HS, Kar A. Antidiabetic potential of Citrus sinensis and Punica granatum peel extracts in alloxan treated male mice. Biofactors. 2007;31(1):17–24.
Article
CAS
PubMed
Google Scholar
Wannamethee SG, Tchernova J, Whincup P, Lowe GD, Kelly A, Rumley A, et al. Plasma leptin: associations with metabolic, inflammatory and haemostatic risk factors for cardiovascular disease. Atherosclerosis. 2007;191(2):418–26.
Article
CAS
PubMed
Google Scholar
McNeely MJ, Boyko EJ, Weigle DS, Shofer JB, Chessler SD, Leonnetti DL, et al. Association between baseline plasma leptin levels and subsequent development of diabetes in Japanese Americans. Diabetes Care. 1999;22(1):65–70.
Article
CAS
PubMed
Google Scholar
Söderberg S, Zimmet P, Tuomilehto J, Chitson P, Gareeboo H, Alberti K, et al. Leptin predicts the development of diabetes in Mauritian men, but not women: a population–based study. Int J Obes. 2007;31(7):1126–33.
Article
Google Scholar
Welsh P, Murray HM, Buckley BM, De Craen AJ, Ford I, Jukema JW, et al. Leptin predicts diabetes but not cardiovascular disease: results from a large prospective study in an elderly population. Diabetes Care. 2009;32(2):308–10.
Article
PubMed
PubMed Central
Google Scholar
Cooper G, Willis A, Clark A, Turner R, Sim R, Reid K. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci. 1987;84(23):8628–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X-X, Pan Y-H, Huang Y-M, Zhao H-L. Neuroendocrine hormone amylin in diabetes. World J Diabetes. 2016;7(9):189.
Article
PubMed
PubMed Central
Google Scholar
Hrnciar J. Amylin as an additional possible pathogenic factor in NIDDM and the insulin resistance syndrome. Vnitr Lek. 1996;42(8):557–60.
CAS
PubMed
Google Scholar
Maurya AK, Tripathi S, Ahmed Z, Sahu RK. Antidiabetic and antihyperlipidemic effect of Euphorbia hirta in streptozotocin induced diabetic rats. Pharm Lett. 2012;4(2):703–7.
Google Scholar
Maqsood S, Benjakul S, Abushelaibi A, Alam A. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: a detailed review. Compr Rev Food Sci. 2014;13(6):1125–40.
Article
CAS
Google Scholar
Al-Nahdi AM, John A, Raza H. Cytoprotective effects of N-acetylcysteine on streptozotocin-induced oxidative stress and apoptosis in RIN-5F pancreatic β-cells. Cell Physiol Biochem. 2018;51(1):201–16.
Article
CAS
PubMed
Google Scholar
Ntimbane T, Mailhot G, Spahis S, Rabasa-Lhoret R, Kleme ML, Melloul D, et al. CFTR silencing in pancreatic β-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response. Am J Physiol Endocrinol Metab. 2016;310(3):E200–12.
Article
PubMed
Google Scholar
Al Nahdi AM, John A, Raza H. Elucidation of molecular mechanisms of streptozotocin-induced oxidative stress, apoptosis, and mitochondrial dysfunction in Rin-5F pancreatic β-cells. Oxidative Med Cell Longev. 2017;2017:1–15. https://doi.org/10.1155/2017/7054272 53. Sasikala S, Naidu MD. Evaluation of protective effect of Centella asiatica leaves on pancreas function in diabetic rats. Int J Herb Med. 2019;7(1):55–60.
Article
CAS
Google Scholar
Kim JH, Kang MJ, Choi HN, Jeong SM, Lee YM, Kim JI. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr Res Pract. 2011;5(2):107–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Sayed MI, Al-Massarani S, El Gamal A, El-Shaibany A, Al-Mahbashi HM. Mechanism of antidiabetic effects of Plicosepalus Acaciae flower in streptozotocin-induced type 2 diabetic rats, as complementary and alternative therapy. BMC Complement Med Ther. 2020;20(1):1–5.
Google Scholar
Cignarella A, Bolego C. Mechanisms of estrogen protection in diabetes and metabolic disease. Horm Mol Biol Clin Invest. 2010;4(2):575–80.
CAS
Google Scholar