Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11(10):719–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel). 2018;10(9).
Article
PubMed Central
CAS
Google Scholar
Boyd LR, Muggia FM. Carboplatin/paclitaxel induction in ovarian Cancer: the finer points. Oncol (Williston Park). 2018;32(8):418–420–22-414.
Google Scholar
Cavaliere F, Giannarelli D, Valle M, Federici O, Liotta G, Perri P, Di Filippo F, Garofalo A, Ialongo P: Peritoneal carcinomatosis from ovarian epithelial primary: combined aggressive treatment. In Vivo 2009, 23(3):441–446.
Pan SY, Litscher G, Gao SH, Zhou SF, Yu ZL, Chen HQ, Zhang SF, Tang MK, Sun JN, Ko KM. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evid Based Complement Alternat Med. 2014;2014:525340.
PubMed
PubMed Central
Google Scholar
Ji XM, Wu ZC, Liu GW, Yu HY, Liu H, Wang ZT, Wei XH, Ouyang B. Wenxia Changfu formula () induces apoptosis of lung adenocarcinoma in a transplanted tumor model of drug-resistance nude mice. Chin J Integr Med. 2016;22(10):752–8.
Article
CAS
PubMed
Google Scholar
Siu KM, Mak DH, Chiu PY, Poon MK, Du Y, Ko KM. Pharmacological basis of 'Yin-nourishing' and 'Yang-invigorating' actions of Cordyceps, a Chinese tonifying herb. Life Sci. 2004;76(4):385–95.
Article
CAS
PubMed
Google Scholar
Ng TB, Wang HX. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol. 2005;57(12):1509–19.
Article
CAS
PubMed
Google Scholar
Yue K, Ye M, Zhou Z, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. 2013;65(4):474–93.
Article
CAS
PubMed
Google Scholar
Park C, Hong SH, Lee JY, Kim GY, Choi BT, Lee YT, Park DI, Park YM, Jeong YK, Choi YH. Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol Rep. 2005;13(6):1211–6.
PubMed
Google Scholar
Lee H, Kim YJ, Kim HW, Lee DH, Sung MK, Park T. Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol Pharm Bull. 2006;29(4):670–4.
Article
CAS
PubMed
Google Scholar
Rao YK, Fang SH, Wu WS, Tzeng YM. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator's production and human cancer cell proliferation. J Ethnopharmacol. 2010;131(2):363–7.
Article
CAS
PubMed
Google Scholar
Sung NY, Kim SC, Kim YH, Kim G, Lee Y, Sung GH, Kim JH, Yang WS, Kim MS, Baek KS, et al. Anti-proliferative and pro-apoptotic activities of 4-Methyl-2,6-bis(1-phenylethyl) phenol in Cancer cells. Biomol Ther (Seoul). 2016;24(4):402–9.
Article
CAS
Google Scholar
Bizarro A, Ferreira IC, Sokovic M, van Griensven LJ, Sousa D, Vasconcelos MH, Lima RT. Cordyceps militaris (L.) link fruiting body reduces the growth of a non-small cell lung Cancer cell line by increasing cellular levels of p53 and p21. Mol. 2015;20(8):13927–40.
Article
CAS
Google Scholar
Lee HH, Lee S, Lee K, Shin YS, Kang H, Cho H. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. Daru. 2015;23:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao JH, Zhong JJ. Secondary metabolites from Cordyceps species and their antitumor activity studies. Recent Pat Biotechnol. 2007;1(2):123–37.
Article
CAS
PubMed
Google Scholar
Hwang JH, Joo JC, Kim DJ, Jo E, Yoo HS, Lee KB, Park SJ, Jang IS. Cordycepin promotes apoptosis by modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer cells. Am J Cancer Res. 2016;6(8):1758–71.
CAS
PubMed
PubMed Central
Google Scholar
Hwang JH, Park SJ, Ko WG, Kang SM, Lee DB, Bang J, Park BJ, Wee CB, Kim DJ, Jang IS, et al. Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/slug signaling pathway. Am J Cancer Res. 2017;7(3):417–32.
CAS
PubMed
PubMed Central
Google Scholar
Hwang IH, Oh SY, Jang HJ, Jo E, Joo JC, Lee KB, Yoo HS, Lee MY, Park SJ, Jang IS. Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression. PLoS One. 2017;12(10):e0186489.
Article
PubMed
PubMed Central
CAS
Google Scholar
Joo JC, Hwang JH, Jo E, Kim YR, Kim DJ, Lee KB, Park SJ, Jang IS. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget. 2017;8(7):12211–24.
Article
PubMed
PubMed Central
Google Scholar
Cui ZY, Park SJ, Jo E, Hwang IH, Lee KB, Kim SW, Kim DJ, Joo JC, Hong SH, Lee MG, et al. Cordycepin induces apoptosis of human ovarian cancer cells by inhibiting CCL5-mediated Akt/NF-kappaB signaling pathway. Cell Death Discov. 2018;4:62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104(4):487–501.
Article
CAS
PubMed
Google Scholar
Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 2003;14(3–4):193–209.
Article
CAS
PubMed
Google Scholar
Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–90.
Article
CAS
PubMed
Google Scholar
Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 2002;23(3):529–36.
Article
CAS
PubMed
Google Scholar
Wang X, Huycke MM. Extracellular superoxide production by enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterol. 2007;132(2):551–61.
Article
CAS
Google Scholar
Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361–71.
Article
CAS
PubMed
Google Scholar
Thommesen L, Laegreid A. Distinct differences between TNF receptor 1- and TNF receptor 2-mediated activation of NFkappaB. J Biochem Mol Biol. 2005;38(3):281–9.
CAS
PubMed
Google Scholar
Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterol. 2010;138(6):2101–14 e2105.
Article
CAS
Google Scholar
Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2011;12(8):715–23.
Article
CAS
PubMed
Google Scholar
Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest. 2008;118(2):560–70.
CAS
PubMed
PubMed Central
Google Scholar
Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev. 2014;25(4):453–72.
Article
CAS
PubMed
Google Scholar
Jupp OJ, McFarlane SM, Anderson HM, Littlejohn AF, Mohamed AA, MacKay RH, Vandenabeele P, MacEwan DJ. Type II tumour necrosis factor-alpha receptor (TNFR2) activates c-Jun N-terminal kinase (JNK) but not mitogen-activated protein kinase (MAPK) or p38 MAPK pathways. Biochem J. 2001;359(Pt 3):525–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Wang X, Moore DR, Lightfoot SA, Huycke MM. TNF-alpha mediates macrophage-induced bystander effects through Netrin-1. Cancer Res. 2012;72(20):5219–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, David E, Kim KW, Goldmann T, Amit I, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214(4):905–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Reza I, Diaz L, Garcia-Becerra R. Preclinical and clinical aspects of TNF-alpha and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci. 2017;24(1):90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soo Jung Park H-JJ, Hwang I-H, Kim J m, Jo E, Lee m-g, Jang I-s, Joo JC. Cordyceps militaris extract inhibits the NF-κB pathway and induces apoptosis through MKK7-JNK signaling activation in TK-10 human renal cell carcinoma. Nat Prod Commun. 2018;13(4):465–70.
Google Scholar
Cui ZY, Jo E, Jang HJ, Hwang IH, Lee KB, Yoo HS, Park SJ, Jung MK, Lee YW, Jang IS. Modified ginseng extract induces apoptosis in HepG2 Cancer cells by blocking the CXCL8-mediated Akt/nuclear factor-[formula: see text] B signaling pathway. Am J Chin Med. 2018:1–18.
Szlosarek PW, Grimshaw MJ, Kulbe H, Wilson JL, Wilbanks GD, Burke F, Balkwill FR. Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Mol Cancer Ther. 2006;5(2):382–90.
Article
CAS
PubMed
Google Scholar
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.
Article
PubMed
Google Scholar
Marcus CS, Maxwell GL, Darcy KM, Hamilton CA, McGuire WP. Current approaches and challenges in managing and monitoring treatment response in ovarian cancer. J Cancer. 2014;5(1):25–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coukos G, Rubin SC. Chemotherapy resistance in ovarian cancer: new molecular perspectives. Obstet Gynecol. 1998;91(5 Pt 1):783–92.
CAS
PubMed
Google Scholar
Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ, Gately K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol. 2013;3:120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res. 2001;478(1–2):23–43.
Article
CAS
PubMed
Google Scholar
Thevenod F, Friedmann JM, Katsen AD, Hauser IA. Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem. 2000;275(3):1887–96.
Article
CAS
PubMed
Google Scholar
Chuang SE, Yeh PY, Lu YS, Lai GM, Liao CM, Gao M, Cheng AL. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol. 2002;63(9):1709–16.
Article
CAS
PubMed
Google Scholar
Kumar A, Sunita P, Jha S, Pattanayak SP. Daphnetin inhibits TNF-alpha and VEGF-induced angiogenesis through inhibition of the IKKs/IkappaBalpha/NF-kappaB, Src/FAK/ERK1/2 and Akt signalling pathways. Clin Exp Pharmacol Physiol. 2016;43(10):939–50.
Article
CAS
PubMed
Google Scholar
Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Saito M, Kawagoe J, Takahashi K, Yada-Hashimoto N, et al. Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem. 2004;279(22):23477–85.
Article
CAS
PubMed
Google Scholar
Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res. 2005;65(15):6934–42.
Article
CAS
PubMed
Google Scholar
Tuli HS, Sandhu SS, Sharma AK: Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 2014, 4(1):1–12.
Article
PubMed
PubMed Central
Google Scholar
Park JG, Son YJ, Lee TH, Baek NJ, Yoon DH, Kim TW, Aravinthan A, Hong S, Kim JH, Sung GH, et al. Anticancer efficacy of Cordyceps militaris ethanol extract in a Xenografted leukemia model. Evid Based Complement Alternat Med. 2017;2017:8474703.
PubMed
PubMed Central
Google Scholar
Egan LJ, Eckmann L, Greten FR, Chae S, Li ZW, Myhre GM, Robine S, Karin M, Kagnoff MF. IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci U S A. 2004;101(8):2452–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu W, Chen Q, Ying S, Xia X, Yu Z, Lui Y, Tranter G, Jin B, Song C, Seymour LW, et al. Evolutionarily conserved primary TNF sequences relate to its primitive functions in cell death induction. J Cell Sci. 2016;129(1):108–20.
Article
CAS
PubMed
Google Scholar
Faustman D, Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov. 2010;9(6):482–93.
Article
CAS
PubMed
Google Scholar
Bremer E. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN Oncol. 2013;2013:371854.
PubMed
PubMed Central
Google Scholar