Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(22):2647–58.
Article
CAS
PubMed
Google Scholar
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. doi:10.1038/nature04330.
Article
CAS
PubMed
Google Scholar
Fiorucci S, Cipriani S, Mencarelli A, Renga B, Distrutti E, Baldelli F. Counter-regulatory role of bile acid activated receptors in immunity and inflammation. Curr Mol Med. 2010;10(6):579–95.
CAS
PubMed
Google Scholar
Song P, Zhang Y, Klaassen CD. Dose-response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice. Toxicol Sci. 2011;123(2):359–67. doi:10.1093/toxsci/kfr177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Powolny A, Xu J, Loo G. Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int J Biochem Cell Biol. 2001;33(2):193–203.
Article
CAS
PubMed
Google Scholar
Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59. doi:10.1194/jlr.R500013-JLR200.
Article
CAS
PubMed
Google Scholar
McGarr SE, Ridlon JM, Hylemon PB. Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J Clin Gastroenterol. 2005;39(2):98–109.
PubMed
Google Scholar
Bajor A, Gillberg PG, Abrahamsson H. Bile acids: short and long term effects in the intestine. Scand J Gastroenterol. 2010;45(6):645–64. doi:10.3109/00365521003702734.
Article
PubMed
Google Scholar
Lorbek G, Lewinska M, Rozman D. Cytochrome P450s in the synthesis of cholesterol and bile acids--from mouse models to human diseases. FEBS J. 2012;279(9):1516–33. doi:10.1111/j.1742-4658.2011.08432.x.
Article
CAS
PubMed
Google Scholar
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev. 2010;62(1):1–96. doi:10.1124/pr.109.002014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Klaassen CD. Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice. J Lipid Res. 2010;51(11):3230–42. doi:10.1194/jlr.M007641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajilic-Stojanovic M. Function of the microbiota. Best Pract Res Clin Gastroenterol. 2013;27(1):5–16. doi:10.1016/j.bpg.2013.03.006.
Article
CAS
PubMed
Google Scholar
Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell. 2000;6(3):507–15.
Article
CAS
PubMed
Google Scholar
Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–35. doi:10.1016/j.cmet.2013.01.003.
Article
CAS
PubMed
Google Scholar
Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50(10):1955–66. doi:10.1194/jlr.R900010-JLR200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3(5):543–53.
Article
CAS
PubMed
Google Scholar
Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5.
Article
CAS
PubMed
Google Scholar
Hu X, Bonde Y, Eggertsen G, Rudling M. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. J Intern Med. 2014;275(1):27–38. doi:10.1111/joim.12140.
Article
CAS
PubMed
Google Scholar
Li Y, Jadhav K, Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease. Biochem Pharmacol. 2013;86(11):1517–24. doi:10.1016/j.bcp.2013.08.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Csanaky IL, Lu H, Zhang Y, Ogura K, Choudhuri S, Klaassen CD. Organic anion-transporting polypeptide 1b2 (Oatp1b2) is important for the hepatic uptake of unconjugated bile acids: Studies in Oatp1b2-null mice. Hepatology. 2011;53(1):272–81. doi:10.1002/hep.23984.
Article
CAS
PubMed
Google Scholar
Vuddanda PR, Chakraborty S, Singh S. Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs. 2010;19(10):1297–307. doi:10.1517/13543784.2010.517745.
Article
CAS
PubMed
Google Scholar
Sun N, Chan FY, Lu YJ, Neves MA, Lui HK, Wang Y, et al. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity. PLoS One. 2014;9(5):e97514. doi:10.1371/journal.pone.0097514.
Article
PubMed
PubMed Central
Google Scholar
Barnes PM, Bloom B, Nahin RL. Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Report. 2008;10(12):1–23.
Homma N, Kono M, Kadohira H, Yoshihara S, Masuda S. The effect of berberine chloride on the intestinal flora of infants. Arzneimittelforschung. 1961;11:450–4.
CAS
PubMed
Google Scholar
Chae SH, Jeong IH, Choi DH, Oh JW, Ahn YJ. Growth-inhibiting effects of Coptis japonica root-derived isoquinoline alkaloids on human intestinal bacteria. J Agric Food Chem. 1999;47(3):934–8.
Article
CAS
PubMed
Google Scholar
Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One. 2012;7(8):e42529. doi:10.1371/journal.pone.0042529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit. 2011;17(7):RA164–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Xiao X, Feng K, Wang T, Li W, Yuan T et al. Berberine moderates glucose and lipid metabolism through multipathway mechanism. Evid Based Complement Altern Med. 2011;2011. doi:10.1155/2011/924851
Wang Y, Jia X, Ghanam K, Beaurepaire C, Zidichouski J, Miller L. Berberine and plant stanols synergistically inhibit cholesterol absorption in hamsters. Atherosclerosis. 2010;209(1):111–7. doi:10.1016/j.atherosclerosis.2009.08.050.
Article
CAS
PubMed
Google Scholar
Zhang Y, Limaye PB, Renaud HJ, Klaassen CD. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol Appl Pharmacol. 2014;277(2):138–45. doi:10.1016/j.taap.2014.03.009.
Article
CAS
PubMed
Google Scholar
Chan MY. The effect of berberine on bilirubin excretion in the rat. Comp Med East West. 1977;5(2):161–8.
PubMed
Google Scholar
Tsai PL, Tsai TH. Hepatobiliary excretion of berberine. Drug Metab Dispos. 2004;32(4):405–12. doi:10.1124/dmd.32.4.405.
Article
CAS
PubMed
Google Scholar
Alnouti Y, Csanaky IL, Klaassen CD. Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;873(2):209–17. doi:10.1016/j.jchromb.2008.08.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Limaye PB, Lehman-McKeeman LD, Klaassen CD. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice. PLoS One. 2012;7(4):e34522. doi:10.1371/journal.pone.0034522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masuda N. Deconjugation of bile salts by Bacteroids and Clostridium. Microbiol Immunol. 1981;25(1):1–11.
Article
CAS
PubMed
Google Scholar
Ohiwa T, Katagiri K, Hoshino M, Hayakawa T, Nakai T. Tauroursodeoxycholate and tauro-beta-muricholate exert cytoprotection by reducing intrahepatocyte taurochenodeoxycholate content. Hepatology. 1993;17(3):470–6.
CAS
PubMed
Google Scholar
Takikawa H, Sano N, Aiso M, Takamori Y, Yamanaka M. Effect of tauro-alpha-muricholate and tauro-beta-muricholate on oestradiol-17 beta-glucuronide-induced cholestasis in rats. J Gastroenterol Hepatol. 1997;12(1):84–6.
Article
CAS
PubMed
Google Scholar
Milkiewicz P, Roma MG, Elias E, Coleman R. Hepatoprotection with tauroursodeoxycholate and beta muricholate against taurolithocholate induced cholestasis: involvement of signal transduction pathways. Gut. 2002;51(1):113–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Q, Liu P, Wu X, Liu W, Shen X, Lan T, et al. Berberine attenuates lipopolysaccharide-induced extracelluar matrix accumulation and inflammation in rat mesangial cells: involvement of NF-kappaB signaling pathway. Mol Cell Endocrinol. 2011;331(1):34–40. doi:10.1016/j.mce.2010.07.023.
Article
CAS
PubMed
Google Scholar
Kim S, Choi JH, Kim JB, Nam SJ, Yang JH, Kim JH, et al. Berberine suppresses TNF-alpha-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules. 2008;13(12):2975–85. doi:10.3390/molecules13122975.
Article
CAS
PubMed
Google Scholar
Luo Y, Hao Y, Shi TP, Deng WW, Li N. Berberine inhibits cyclin D1 expression via suppressed binding of AP-1 transcription factors to CCND1 AP-1 motif. Acta Pharmacol Sin. 2008;29(5):628–33. doi:10.1111/j.1745-7254.2008.00786.x.
Article
CAS
PubMed
Google Scholar
Clemons NJ, McColl KE, Fitzgerald RC. Nitric oxide and acid induce double-strand DNA breaks in Barrett's esophagus carcinogenesis via distinct mechanisms. Gastroenterology. 2007;133(4):1198–209. doi:10.1053/j.gastro.2007.06.061.
Article
CAS
PubMed
Google Scholar
Fisher MM, Magnusson R, Miyai K. Bile acid metabolism in mammals. I. Bile acid-induced intrahepatic cholestasis. Lab Invest. 1971;25(1):88–91.
CAS
PubMed
Google Scholar
Javitt NB. Cholestasis in rats induced by taurolithocholate. Nature. 1966;210(5042):1262–3.
Article
CAS
PubMed
Google Scholar
Bayerdorffer E, Mannes GA, Ochsenkuhn T, Dirschedl P, Paumgartner G. Variation of serum bile acids in patients with colorectal adenomas during a one-year follow-up. Digestion. 1994;55(2):121–9.
Article
CAS
PubMed
Google Scholar
Bayerdorffer E, Mannes GA, Richter WO, Ochsenkuhn T, Wiebecke B, Kopcke W, et al. Increased serum deoxycholic acid levels in men with colorectal adenomas. Gastroenterology. 1993;104(1):145–51.
Article
CAS
PubMed
Google Scholar
Chadwick VS, Gaginella TS, Carlson GL, Debongnie JC, Phillips SF, Hofmann AF. Effect of molecular structure on bile acid-induced alterations in absorptive function, permeability, and morphology in the perfused rabbit colon. J Lab Clin Med. 1979;94(5):661–74.
CAS
PubMed
Google Scholar
Wang Y, Huang Y, Lam KS, Li Y, Wong WT, Ye H, et al. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res. 2009;82(3):484–92. doi:10.1093/cvr/cvp078.
Article
CAS
PubMed
Google Scholar
Keitel V, Reinehr R, Gatsios P, Rupprecht C, Gorg B, Selbach O, et al. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology. 2007;45(3):695–704. doi:10.1002/hep.21458.
Article
CAS
PubMed
Google Scholar