Holden C: Mental health: global survey examines impact of depression. Science. 2000, 288: 39-40. 10.1126/science.288.5463.39.
Article
CAS
PubMed
Google Scholar
Saveanu RV, Nemeroff CB: Etiology of depression: genetic and environmental factors. Psychiatr Clin North Am. 2012, 35: 51-71. 10.1016/j.psc.2011.12.001.
Article
PubMed
Google Scholar
Kulkarni SK, Dhir A: An overview of curcumin in neurological disorders. Indian J Pharm Sci. 2010, 72: 149-154. 10.4103/0250-474X.65012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drevets WC: Neuroimaging studies of mood disorders. Biol Psychiatry. 2000, 48: 813-829. 10.1016/S0006-3223(00)01020-9.
Article
CAS
PubMed
Google Scholar
Hirvonen J, Hietala J, Kajander J, Markkula J, Rasi-Hakala H, Salminen JK, Nagren K, Aalto S, Karlsson H: Effects of antidepressant drug treatment and psychotherapy on striatal and thalamic dopamine D2/3 receptors in major depressive disorder studied with [11C] raclopride PET. J Psychopharmacol. 2011, 25: 1329-1336. 10.1177/0269881110376691.
Article
CAS
PubMed
Google Scholar
Kulkarni S, Dhir A, Akula KK: Potentials of curcumin as an antidepressant. Sci World J. 2009, 9: 1233-1241.
Article
CAS
Google Scholar
Kulkarni SK, Bhutani MK, Bishnoi M: Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology. 2008, 201: 435-442. 10.1007/s00213-008-1300-y.
Article
CAS
PubMed
Google Scholar
Wang R, Xu Y, Wu HL, Li YB, Li YH, Guo JB, Li XJ: The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur J Pharmacol. 2008, 578: 43-50. 10.1016/j.ejphar.2007.08.045.
Article
CAS
PubMed
Google Scholar
Sanmukhani J, Anovadiya A, Tripathi CB: Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm. 2011, 68: 769-775.
CAS
PubMed
Google Scholar
Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ: Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol, Biochem Behav. 2005, 82: 200-206. 10.1016/j.pbb.2005.08.009.
Article
CAS
Google Scholar
Bhutani MK, Bishnoi M, Kulkarni SK: Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol, Biochem Behav. 2009, 92: 39-43. 10.1016/j.pbb.2008.10.007.
Article
CAS
Google Scholar
Lin TY, Lu CW, Wang CC, Wang YC, Wang SJ: Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry. 2011, 35: 1785-1793. 10.1016/j.pnpbp.2011.06.012.
Article
CAS
PubMed
Google Scholar
Huang Z, Zhong XM, Li ZY, Feng CR, Pan AJ, Mao QQ: Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci Lett. 2011, 493: 145-148. 10.1016/j.neulet.2011.02.030.
Article
CAS
PubMed
Google Scholar
Dvivedi J, Pandey S, Gupta R: Effect of curcumin on glucose absorption: an experimental study on albino rats. Indian J Physiol Pharmacol. 2011, 55: 207-212.
CAS
PubMed
Google Scholar
Hu H, Su L, Xu YQ, Zhang H, Wang LW: Behavioral and [F-18] fluorodeoxyglucose micro positron emission tomography imaging study in a rat chronic mild stress model of depression. Neuroscience. 2010, 169: 171-181. 10.1016/j.neuroscience.2010.04.057.
Article
CAS
PubMed
Google Scholar
Sung KK, Jang DP, Lee S, Kim M, Lee SY, Kim YB, Park CW, Cho ZH: Neural responses in rat brain during acute immobilization stress: a [F-18] FDG micro PET imaging study. Neuro Image. 2009, 44: 1074-1080.
PubMed
Google Scholar
Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J: Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev. 2012, 36: 2085-2117. 10.1016/j.neubiorev.2012.07.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grippo AJ: Mechanisms underlying altered mood and cardiovascular dysfunction: the value of neurobiological and behavioral research with animal models. Neurosci Biobehav Rev. 2009, 33: 171-180. 10.1016/j.neubiorev.2008.07.004.
Article
CAS
PubMed
Google Scholar
Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X, Li X: Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res. 2006, 1122: 56-64. 10.1016/j.brainres.2006.09.009.
Article
CAS
PubMed
Google Scholar
Chen XN, Meng QY, Bao AM, Swaab DF, Wang GH, Zhou JN: The involvement of retinoic acid receptor-alpha in corticotropin-releasing hormone gene expression and affective disorders. Biol Psychiatry. 2009, 66: 832-839. 10.1016/j.biopsych.2009.05.031.
Article
CAS
PubMed
Google Scholar
Grippo AJ, Sullivan NR, Damjanoska KJ, Crane JW, Carrasco GA, Shi J, Chen Z, Garcia F, Muma NA, Van de Kar LD: Chronic mild stress induces behavioral and physiological changes, and may alter serotonin 1A receptor function, in male and cycling female rats. Psychopharmacology. 2005, 179: 769-780. 10.1007/s00213-004-2103-4.
Article
CAS
PubMed
Google Scholar
Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA: Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006, 47: 999-1006.
CAS
PubMed
Google Scholar
Schweinhardt P, Fransson P, Olson L, Spenger C, Andersson JL: A template for spatial normalisation of MR images of the rat brain. J Neurosci Methods. 2003, 129: 105-113. 10.1016/S0165-0270(03)00192-4.
Article
PubMed
Google Scholar
Stanford SC: The open field test: reinventing the wheel. J Psychopharmacol. 2007, 21: 134-135. 10.1177/0269881107073199.
Article
PubMed
Google Scholar
Willner P: Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005, 52: 90-110. 10.1159/000087097.
Article
CAS
PubMed
Google Scholar
Willner P, Muscat R, Papp M: Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992, 16: 525-534. 10.1016/S0149-7634(05)80194-0.
Article
CAS
PubMed
Google Scholar
Hecht D: Depression and the hyperactive right-hemisphere. Neurosci Res. 2010, 68: 77-87. 10.1016/j.neures.2010.06.013.
Article
PubMed
Google Scholar
Grimm S, Beck J, Schuepbach D, Hell D, Boesiger P, Bermpohl F, Niehaus L, Boeker H, Northoff G: Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatry. 2008, 63: 369-376. 10.1016/j.biopsych.2007.05.033.
Article
PubMed
Google Scholar
Janocha A, Pilecki W, Bolanowski M, Malyszczak K, Salomon E, Laszki-Szczachor K, Kalka D, Sebzda T, Sobieszczanska M: Interhemispheric cerebral asymmetry detected by VEPS in diabetic patients with recognized depression. Neuro Endocrinol Lett. 2009, 30: 119-124.
PubMed
Google Scholar
Murray EA, Wise SP, Drevets WC: Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol Psychiatry. 2011, 69: e43-e54. 10.1016/j.biopsych.2010.09.041.
Article
PubMed
Google Scholar
Bigos KL, Pollock BG, Aizenstein HJ, Fisher PM, Bies RR, Hariri AR: Acute 5-HT reuptake blockade potentiates human amygdala reactivity. Neuropsychopharmacology. 2008, 33: 3221-3225. 10.1038/npp.2008.52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drevets WC: Neuroimaging abnormalities in the amygdala in mood disorders. Ann N Y Acad Sci. 2003, 985: 420-444.
Article
PubMed
Google Scholar
Applegate CD, Kapp BS, Underwood MD, McNall CL: Autonomic and somatomotor effects of amygdala central N. stimulation in awake rabbits. Physiol Behav. 1983, 31: 353-360. 10.1016/0031-9384(83)90201-9.
Article
CAS
PubMed
Google Scholar
Oliva J, Leung S, Croft RJ, O’Neill BV, O’Kane J, Stout J, Phan KL, Nathan PJ: The loudness dependence auditory evoked potential is insensitive to acute changes in serotonergic and noradrenergic neurotransmission. Hum Psychopharmacol. 2010, 25: 423-427. 10.1002/hup.1133.
Article
CAS
PubMed
Google Scholar
Scarpidis U, Madnani D, Shoemaker C, Fletcher CH, Kojima K, Eshraghi AA, Staecker H, Lefebvre P, Malgrange B, Balkany TJ, Van De Water TR: Arrest of apoptosis in auditory neurons: implications for sensorineural preservation in cochlear implantation. Otol Neurotol. 2003, 24: 409-417. 10.1097/00129492-200305000-00011.
Article
PubMed
Google Scholar
Baxter LR, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE, Sumida RM: Cerebral metabolic rates for glucose in mood disorders: studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry. 1985, 42: 441-447. 10.1001/archpsyc.1985.01790280019002.
Article
PubMed
Google Scholar
Lesser IM, Mena I, Boone KB, Miller BL, Mehringer CM, Wohl M: Reduction of cerebral blood flow in older depressed patients. Arch Gen Psychiatry. 1994, 51: 677-686. 10.1001/archpsyc.1994.03950090009002.
Article
CAS
PubMed
Google Scholar
Curran SM, Murray CM, Van Beck M, Dougall N, O’Carroll RE, Austin MP, Ebmeier KP, Goodwin GM: A single photon emission computerised tomography study of regional brain function in elderly patients with major depression and with alzheimer-type dementia. Br J Psychiatry. 1993, 163: 155-165. 10.1192/bjp.163.2.155.
Article
CAS
PubMed
Google Scholar