Ali T, Yun L, Rubin DT. Risk of post-operative complications associated with anti-TNF therapy in inflammatory bowel disease. World J Gastroentero. 2012;18(3):197–204.
Article
CAS
Google Scholar
de Chambrun GP, Blanc P, Peyrin-Biroulet L. Current evidence supporting mucosal healing and deep remission as important treatment goals for inflammatory bowel disease. Expert Rev Gastroent. 2016;10(8):915–27.
Google Scholar
Jiang WY. Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol Sci. 2005;26(11):558–63.
Article
CAS
PubMed
Google Scholar
Xiong XJ, Yang XC, Liu YM, Zhang Y, Wang PQ, Wang J. Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res. 2013;36(7):570–9.
Article
PubMed
PubMed Central
Google Scholar
Zhang AH, Sun H, Qiu S, Wang XJ. Advancing Drug Discovery and Development from Active Constituents of Yinchenhao Tang, a Famous Traditional Chinese Medicine Formula. Evid-Based Compl Alt. 2013;2013:257909.
Google Scholar
Wan P, Chen H, Guo Y, Bai AP. Advances in treatment of ulcerative colitis with herbs: from bench to bedside. World J Gastroentero. 2014;20(39):14099–104.
Article
Google Scholar
Chen Q, Zhang H. Clinical study on 118 cases of ulcerative colitis treated by integration of traditional Chinese and Western medicine. J Tradit Chin Med. 1999;19(3):163–5.
CAS
PubMed
Google Scholar
Wang X, Cui DN, Dai XM, Wang J, Zhang W, Zhang ZJ, Xu FG. HuangQin decoction attenuates CPT-11-induced gastrointestinal toxicity by regulating bile acids metabolism homeostasis. Front Pharmacol. 2017;8.
Dai XM, Cui DN, Wang J, Zhang W, Zhang ZJ, Xu FG. Systems pharmacology based strategy for Q-markers discovery of HuangQin decoction to attenuate intestinal damage. Front Pharmacol. 2018;9:236.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tilton R, Paiva AA, Guan JQ, Marathe R, Jiang Z, van Eyndhoven W, Bjoraker J, Prusoff Z, Wang H, Liu SH, et al. A comprehensive platform for quality control of botanical drugs (PhytomicsQC): a case study of Huangqin Tang (HQT) and PHY906. Chin Med. 2010;5:30.
Article
PubMed
PubMed Central
Google Scholar
Jiang WY, Seo GS, Kim YC, Sohn DH, Lee SH. PF2405, standardized fraction of Scutellaria baicalensis, ameliorates colitis in vitro and in vivo. Arch Pharm Res. 2015;38(6):1127–37.
Article
CAS
PubMed
Google Scholar
Fajardo AM, Piazza GA. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention. Am J Physiol-Gastr L. 2015;309(2):G59–70.
CAS
Google Scholar
Dou W, Mukherjee S, Li H, Venkatesh M, Wang HW, Kortagere S, Peleg A, Chilimuri SS, Wang ZT, Feng Y, et al. Alleviation of Gut Inflammation by Cdx2/Pxr Pathway in a Mouse Model of Chemical Colitis. PLoS One. 2012;7:7.
Google Scholar
Luo XP, Yu ZL, Deng C, Zhang JJ, Ren GY, Sun AN, Mani S, Wang ZT, Dou W. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci Rep-Uk. 2017;7.
Zhang JJ, Dou W, Zhang EY, Sun A, Ding LL, Wei XH, Chou GX, Mani S, Wang ZT. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. Am J Physiol-Gastr L. 2014;306(1):G27–36.
CAS
Google Scholar
Gu PQ, Zhu L, Liu YJ, Zhang L, Liu JL, Shen H. Protective, effects of paeoniflorin on TNBS-induced ulcerative colitis through inhibiting NF-kappaB pathway and apoptosis in mice. Int Immunopharmacol. 2017;50:152–60.
Article
CAS
PubMed
Google Scholar
Huang JH, Tang HT, Cao SM, He YC, Feng YB, Wang K, Zheng QS. Molecular Targets and Associated Potential Pathways of Danlu Capsules in Hyperplasia of Mammary Glands Based on Systems Pharmacology. Evid-Based Compl Alt. 2017;2017:1930598.
Google Scholar
Yue SJ, Xin LT, Fan YC, Li SJ, Tang YP, Duan JA, Guan HS, Wang CY. Herb pair Danggui-Honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep-Uk. 2017;7:40318.
Article
CAS
Google Scholar
Zhong JL, Liu ZH, Zhou XX, Xu J. Synergic Anti-Pruritus Mechanisms of Action for the Radix Sophorae Flavescentis and Fructus Cnidii Herbal Pair. Molecules. 2017;22:9.
Google Scholar
Pei TL, Zheng CL, Huang C, Chen XT, Guo ZH, Fu YX, Liu JL, Wang YH. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. J Ethnopharmacol. 2016;190:272–87.
Article
CAS
PubMed
Google Scholar
Liu JL, Pei TL, Mu JX, Zheng CL, Chen XT, Huang C, Fu YX, Liang ZS, Wang YH. Systems Pharmacology Uncovers the Multiple Mechanisms of Xijiao Dihuang Decoction for the Treatment of Viral Hemorrhagic Fever. Evid-Based Compl Alt. 2016;2016:9025036.
Google Scholar
Wang C, Ren Q, Chen XT, Song ZQ, Ning ZC, Gan JH, Ma XL, Liang DR, Guan DG, Liu ZL, et al. System pharmacology-based strategy to decode the synergistic mechanism of Zhi-zhu Wan for functional dyspepsia. Front Pharmacol. 2018;9:841.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Guo G, Yang BR, Xin QQ, Liao QW, Lee SMY, Hu YJ, Chen KJ, Cong WH. Synergistic effects of Chuanxiong-Chishao herb-pair on promoting angiogenesis at network pharmacological and pharmacodynamic levels. Chin J Integr Med. 2017;23(9):654–62.
Article
CAS
PubMed
Google Scholar
Ru JL, Li P, Wang JN, Zhou W, Li BH, Huang C, Li PD, Guo ZH, Tao WY, Yang YF, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminformatics. 2014;6.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.
Article
CAS
PubMed
Google Scholar
Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang QX, Fu TT, Zhang XY, Cui XJ, Tu G, et al. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res. 2018;46(D1):D1121–7.
Article
CAS
PubMed
Google Scholar
Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ. The comparative Toxicogenomics database: update 2019. Nucleic Acids Res. 2019;47(D1):D948–54.
Article
CAS
PubMed
Google Scholar
Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–7.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–61.
Article
CAS
PubMed
Google Scholar
UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15.
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Ye H, Ye L, Kang H, Zhang DF, Tao L, Tang KL, Liu XP, Zhu RX, Liu Q, Chen YZ, et al. HIT: linking herbal active ingredients to targets. Nucleic Acids Res. 2011;39:D1055–9.
Article
CAS
PubMed
Google Scholar
Yu H, Chen JX, Xu X, Li Y, Zhao HH, Fang YP, Li XX, Zhou W, Wang W, Wang YH. A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data. PLoS One. 2012;7:5.
Article
Google Scholar
Li S, Zhang ZQ, Wu LJ, Zhang XG, Li YD, Wang YY. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol. 2007;1(1):51–60.
Article
PubMed
Google Scholar
Zhu W, Jin ZS, Yu JB, Liang J, Yang QD, Li FJ, Shi XK, Zhu XD, Zhang XL. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int Immunopharmacol. 2016;35:119–26.
Article
CAS
PubMed
Google Scholar
Feng JS, Guo CC, Zhu YZ, Pang LP, Yang Z, Zou Y, Zheng XB. Baicalin down regulates the expression of TLR4 and NFkB-p65 in colon tissue in mice with colitis induced by dextran sulfate sodium. Int J Clin Exp Med. 2014;7(11):4063–72.
PubMed
PubMed Central
Google Scholar
Zhang CL, Zhang S, He WX, Lu JL, Xu YJ, Yang JY, Liu D. Baicalin may alleviate inflammatory infiltration in dextran sodium sulfate-induced chronic ulcerative colitis via inhibiting IL-33 expression. Life Sci. 2017;186:125–32.
Article
CAS
PubMed
Google Scholar
Yu FY, Huang SG, Zhang HY, Ye H, Chi HG, Zou Y, Lv RX, Zheng XB. Effects of baicalin in CD4+CD29+T cell subsets of ulcerative colitis patients. World J Gastroentero. 2014;20(41):15299–309.
Article
CAS
Google Scholar
Yao J, Cao X, Zhang R, Li YX, Xu ZL, Zhang DG, Wang LS, Wang JY. Protective effect of Baicalin against experimental colitis via suppression of oxidant stress and apoptosis. Pharmacogn Mag. 2016;12(47):225–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang ZH, Wu LQ, Deng AJ, Yu JQ, Li ZH, Zhang HJ, Wang WJ, Qin HL. New synthetic method of 8-oxocoptisine starting from natural quaternary coptisine as anti-ulcerative colitis agent. J Asian Nat Prod Res. 2014;16(8):841–6.
Article
CAS
PubMed
Google Scholar
Xie M, Zhang HJ, Deng AJ, Wu LQ, Zhang ZH, Li ZH, Wang WJ, Qin HL. Synthesis and structure-activity relationships of N-Dihydrocoptisine-8-ylidene aromatic amines and N-Dihydrocoptisine-8-ylidene aliphatic amides as Antiulcerative colitis agents targeting XBP1. J Nat Prod. 2016;79(4):775–83.
Article
CAS
PubMed
Google Scholar
Montrose DC, Nakanishi M, Murphy RC, Zarini S, McAleer JP, Vella AT, Rosenberg DW. The role of PGE (2) in intestinal inflammation and tumorigenesis. Prostag Oth Lipid M. 2015;116:26–36.
Google Scholar
Arai Y, Matsuura T, Matsuura M, Fujiwarad M, Okayasu I, Ito S, Arihiro S. Prostaglandin E-major urinary metabolite as a biomarker for inflammation in ulcerative colitis: prostaglandins revisited. Digestion. 2016;93(1):32–9.
Article
CAS
PubMed
Google Scholar
Arai Y, Arihiro S, Matsuura T, Kato T, Matsuoka M, Saruta M, Mitsunaga M, Matsuura M, Fujiwara M, Okayasu I, et al. Prostaglandin E-major urinary metabolite as a reliable surrogate marker for mucosal inflammation in ulcerative colitis. Inflamm Bowel Dis. 2014;20(7):1208–16.
Article
PubMed
Google Scholar
Zhu L, Gu PQ, Shen H. Protective effects of berberine hydrochloride on DSS-induced ulcerative colitis in rats. Int Immunopharmacol. 2019;68:242–51.
Article
CAS
PubMed
Google Scholar
de Oliveira GAL, de la Lastra CA, Rosillo MA, Martinez MLC, Sanchez-Hidalgo M, Medeiros JVR, Villegas I. Preventive effect of bergenin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chem Biol Interact. 2019;297:25–33.
Article
CAS
Google Scholar
Sun BY, Yuan JY, Wang SY, Lin J, Zhang WJ, Shao JD, Wang RQ, Shi B, Hu HY. Qingchang suppository ameliorates colonic vascular permeability in dextran-sulfate-sodium-induced colitis. Front Pharmacol. 2018;9.
Yang Y, Guan JY, Shaikh AS, Liang YR, Sun LC, Wang M, Li DY, Qiu CH, Li XZ. Histone Acetyltransferase Mof affects the progression of DSS-induced colitis. Cell Physiol Biochem. 2018;47(5):2159–69.
Article
CAS
PubMed
Google Scholar
Hunter T, Schroeder K, Sandoval D, Deodhar A. Persistence, discontinuation, and switching patterns of newly initiated TNF inhibitor therapy in Ankylosing spondylitis patients in the United States. Rheumatol Ther. 2019.
Vukelic I, Detel D, Pucar LB, Potocnjak I, Buljevic S, Domitrovic R. Chlorogenic acid ameliorates experimental colitis in mice by suppressing signaling pathways involved in inflammatory response and apoptosis. Food Chem Toxicol. 2018;121:140–50.
Article
CAS
PubMed
Google Scholar
Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology. 2004;113(4):427–37.
Article
CAS
PubMed
PubMed Central
Google Scholar