Selvi VS, Bhaskar A. Characterization of anti-inflammatory activities and antinociceptive effects of papaverine from Sauropus androgynus (L.) Merr. Glob J Pharmacol. 2012;6:186–92.
Google Scholar
Bitra MJ, Fulmali S, Kataria M, Shraddha A, Harsha K. Anti-inflammatory activity of the fruits of Piper longum Linn. Asian J Chem. 2008;20:4357–62.
Google Scholar
Szliszka E, Skaba D, Czuba ZP, Krol W. Inhibition of inflammatory mediators by neobavaisoflavone in activated RAW264.7 macrophages. Molecules. 2011;16:3701–12.
Article
CAS
Google Scholar
Kim AR, Cho JY, Zou Y, Choi JS, Chung HY. Flavonoids differentially modulate nitric oxide production pathways in lipopolysaccharide-activated RAW264.7 cells. Arch Pharm Res. 2005;28:297–304.
Article
CAS
Google Scholar
Yoon SB, Lee YJ, Park SK, Kim HC, Bae H, Kim HM, Ko SG, Choi HY, Oh MS, Park W. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J Ethnopharmacol. 2009;125:286–90.
Article
Google Scholar
Bjarnason I, Hayllar J, MacPherson A, Russell AS. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology. 1993;104:1832–47.
Article
CAS
Google Scholar
Chandra S, Chatterjee P, Dey P, Bhattacharya S. Evaluation of anti-inflammatory effect of Ashwagandha: a preliminary study in vitro. Phcog J. 2012;4:47–9.
Article
Google Scholar
Singh G, Triadafilopoulos G. Epidemiology of NSAID induced gastrointestinal complications. J Rheumatol. 1999;56:18–24.
CAS
Google Scholar
Liu CF, Pan TM. Beneficial effects of bioactive peptides derived from soybean on human health and their production by genetic engineering, Soybean and Health. Prof. Hany El-Shemy (Ed.) 2011. ISBN: 978–953–307-535-8, InTech, Available from: http://www.intechopen.com/books/soybean-andhealth/beneficial-effects-of-bioactivepeptides-derived-from-soybean-on-human-health-and-their-production-b. Accessed 1 Oct 2017.
Yang HJ, Park S, Pak V, Chung KR, Kwon DY. Fermented soybean products and their bioactive compounds, Soybean and Health. Prof. Hany El-Shemy (Ed.), 2011. ISBN: 978–953–307-535-8, InTech, Available from: http://www.intechopen.com/books/soybean-and-health/fermentedsoybean- products-and-their-bioactive-compounds. Accessed 1 Oct 2017.
Liao CL, Huang H, Sheen L, Chou CC. Anti-inflammatory activity of soymilk and fermented soymilk prepared with lactic acid bacterium and bifidobacterium. J Food Drug Anal. 2010;18:202–10.
CAS
Google Scholar
Haron H, Ismail A, Shahar S, Azlan A, Peng LS. Apparent bioavailability of isoflavones in urinary excretions of postmenopausal Malay women consuming tempeh compared with milk. Int J Food Sci Nutr. 2011;62:642–50.
Article
CAS
Google Scholar
Nout MJR, Kiers JL. Tempe fermentation, innovation and functionality: update into the third millennium. J Appl Microbiol. 2005;98:789–805.
Article
CAS
Google Scholar
Ali NM, Yeap SK, Yusof HM, Beh BK, Ho WY, Koh SP, Abdullah MP, Alitheen NB, Long K. Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean. J Sci Food Agric. 2016;96:1648–58.
Article
CAS
Google Scholar
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.
Article
CAS
Google Scholar
Huang WC, Lin YS, Wang CY, Tsai CC, Tseng HC, Chen CL, Lu PJ, Chen PS, Qian L, Hong JS, Lin CF. Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology. 2009;128:e275–86.
Article
Google Scholar
OECD. Test Guideline for Testing of Chemicals, Section 4, No. 423. Acute oral toxicity acute toxic class method. Organization for Economic Cooperation and Development Section 4, 2001;no. 423.
Luna LG. Manual of histologic staining methods of the armed forces Institute of Pathology, vol. 121. New York: McGraw-Hill; 1968.
Google Scholar
Tapondjou LA, Lontsi D, Sondengam BL, Choi J, Lee KT, Jung HJ, Park HJ. In vivo anti-nociceptive and anti-inflammatory effect of the two triterpenes, ursolic acid and 23-hydroxyursolic acid, from Cussonia bancoensis. Arch Pharm Res. 2003;26:143–6.
Article
CAS
Google Scholar
He H, Li W, Chen SY, Zhang S, Chen YT, Hayashida Y, Zhu YT, Tseng SC. Suppression of activation and induction of apoptosis in RAW264.7 cells by amniotic membrane extract. Invest Ophthalmol Vis Sci. 2008;49:4468–75.
Article
Google Scholar
Kole L, Giri B, Manna SK, Pai B, Ghosh S. Biochanin-a, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmacol. 2011;653:8–15.
Article
CAS
Google Scholar
Wu CH, Chen TL, Chen TG, Ho WP, Chiu WT, Chen RM. Nitric oxide modulates pro- and anti-inflammatory cytokines in lipopolysaccharide-activated macrophages. J Trauma. 2003;55:540–5.
Article
CAS
Google Scholar
Yusof HM, Ali NM, Yeap SK, Ho WY, Beh BK, Koh SP, Long K, Aziz SA, Alitheen NB. Hepatoprotective effect of fermented soybean (nutrient enriched soybean tempeh) against alcohol-induced liver damage in mice. Evid Based Complement Alternat Med. 2013;2013:274274.
Google Scholar
Nout MJR. Fermented foods and food safety. Food Res Int. 1994;27:291–8.
Article
CAS
Google Scholar
Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.
Article
Google Scholar
Nakajima N, Nozaki N, Ishihara K, Ishikawa A, Tsuji H. Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isolavone-enriched tempeh. J Biosci Bioeng. 2005;100:685–7.
Article
CAS
Google Scholar
Zhu S, Li W, Li J, Jundoria A, Sama AE, Wang H. It is not just folklore: the aqueous extract of mung bean coat is protective against sepsis. Evid Based Complement Alternat Med. 2012;2012:498467.
PubMed
PubMed Central
Google Scholar
Prud'homme G, Glinka Y, Wang Q. GABA exerts anti-inflammatory and immunosuppressive effects (P5175). J Immunol. 2013;190(Meeting Abstracts 1):68.15.
Google Scholar
Hasegawa S, Ichiyama T, Sonaka I, Ohsaki A, Okada S, Wakiguchi H, Kudo K, Kittaka S, Hara M, Furukawa S. Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin Exp Immunol. 2012;167(2):269–74.
Article
CAS
Google Scholar
Choi J, Kwon SH, Park KY, Yu BP, Kim ND, Jung JH, Chung HY. The anti-inflammatory action of fermented soybean products in kidney of high-fat-fed rats. J Med Food. 2011;14(3):232–9.
Article
CAS
Google Scholar
Lee JY, Jang YW, Kang HS, Moon H, Sim SS, Kim CJ. Anti-inflammatory action of phenolic compounds from Gastrodia elata root. Arch Pharm Res. 2006;29(10):849–58.
Article
CAS
Google Scholar
Mirza NR, Munro G. The role of GABA(a) receptor subtypes as analgesic targets. Drug News Perspect. 2010;23(6):351–60.
Article
CAS
Google Scholar
Ninomiya Y, Kawamura H, Nomura T, Uebayashi H, Sabashi K, Funakoshi M. Analgesic effects of D-amino acids in four inbred strains of mice. Comp Biochem Physiol C. 1990;97(2):341–3.
Article
CAS
Google Scholar
Mothana RA, Al-Said MS, Al-Rehaily AJ, Thabet TM, Awad NA, Lalk M, Lindequist U. Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. Ex Sprague. Food Chem. 2012;130(2):344–9.
Article
CAS
Google Scholar