Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3:136. https://doi.org/10.3978/j.issn.2305-5839.2015.03.49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Torraca V, Masud S, Spaink HP, Meijer AH. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech. 2014;7:785–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20:87–103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garlanda C, Dinarello CA, Mantovani A. The Interleukin-1 family: back to the future. Immunity. 2013;39:1003–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. BBA- Molecular Cell Research. 2014;1843:2563–82.
PubMed
CAS
Google Scholar
Schiff MH. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis. 2000;59:103–8.
Article
Google Scholar
Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williams RO, Paleolog E, Feldmann M. Cytokine inhibitors in rheumatoid arthritis and other autoimmune diseases. Curr Opin Pharmacol. 2007;7:412–7.
Article
PubMed
CAS
Google Scholar
Henry D, McGettigan P. Epidemiology overview of gastrointestinal and renal toxicity of NSAIDs. Int J Clin Pract. 2003;135:43–9.
Google Scholar
Kim EJ, Lee YJ, Shin HK, Park JH. Induction of apoptosis by the aqueous extract of Rubus coreanum in HT-29 human colon cancer cells. Nutrition. 2005;21:1141–8.
Article
PubMed
Google Scholar
Melliou E, Chinou I. Chemistry and bioactivity of Royal Jelly from Greece. J Agric Food Chem. 2006;53:8987–92.
Article
CAS
Google Scholar
Honda Y, Araki Y, Hata T, Ichihara K, Ito M, Tanaka M, Honda S. 10-Hydroxy-2-decenoic acid, the major lipid component of royal jelly, extends the lifespan of Caenorhabditis elegans through dietary restriction and target of rapamycin signaling. J Aging Res. 2015;2015:425261. https://doi.org/10.1155/2015/425261.
Article
PubMed
PubMed Central
Google Scholar
Honda Y, Fujita Y, Maruyama H, Araki Y, Ichihara K, Sato A, Kojima T, Tanaka M, Nozawa Y, Ito M, Honda S. Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. PLoS One. 2011;6(6):e23527. https://doi.org/10.1371/journal.pone.0023527.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hiroshi I, Masamitsu S, Kazuhiro T, Yoko A, Satoshi M, Hideaki H. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells. BMC Complement Altern Med. 2009;9:1–10.
Article
Google Scholar
Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxidative Med Cell Longev. 2017;2017:1259510. https://doi.org/10.1155/2017/1259510.
Article
Google Scholar
Fujii A, Kobayashi S, Kuboyama N, Kuboyama N, Furukawa Y, Kaneko Y, Ishihama S, Yamamoto H, Tamura T. Augmentation of wound healing by royal jelly (RJ) in streptozotocin-diabetic rats. Jpn J Pharmacol. 1990;53:331–7.
Article
PubMed
CAS
Google Scholar
Genc M, Aslan A. Determination of trans-10-hydroxy-2-decenoic acid content in pure royal jelly and royal jelly products by column liquid chromatography. J Chromatogr. 1999;839:265–8.
Article
CAS
Google Scholar
Kitahara T, Sato N, Ohya Y, Shinta H, Hori K. The inhibitory effect of ω-hydroxy acids in royal jelly extract on sebaceous gland lipogenesis. J Dermatol Sci. 1995;10:75–9.
Article
Google Scholar
Tseng JM, Huang JR, Huang HC, Tzen JTC, Chou WM, Peng CC. Facilitative production of an antimicrobial peptide royalisin and its antibody via an artificial oil-body system. Biotechnol Prog. 2010;27:153–61.
Article
PubMed
CAS
Google Scholar
Liu JR, Yang YC, Shi LS, Peng CC. Antioxidant properties of royal jelly associated with larval age and time of harvest. J Agric Food Chem. 2008;56:11447–52.
Article
PubMed
CAS
Google Scholar
Eshraghi S, Seifollahi F. Antibacterial effect of royal jelly on different strains of bacteria. Iran J Public Health. 2003;32:25–30.
Google Scholar
Izuta H, Chikaraishi Y, Shimazawa M, Mishima S, Hara H. 10-Hydroxy-2-decenoic Acid, a major fatty acid from Royal Jelly, inhibits VEGF induced angiogenesis in human umbilical vein endothelial cells. Evid Based Complement Alternat Med. 2009;6:489–94.
Article
PubMed
Google Scholar
Satomi KM, Okamoto I, Ushio S, Iwaki K, Ikeda M, Kurimoto M. Identification of a collagen production-promoting factor from an extract of royal jelly and its possible mechanism. Biosci Biotechnol Biochem. 2004;68:767–73.
Article
CAS
Google Scholar
Dzopalic T, Vucevic D, Tomic S, Djokic J, Chinou I, Colic M. 3,10-Dihydroxy-decanoic acid, isolated from royal jelly, stimulates Th1 polarising capability of human monocyte-derived dendritic cells. Food Chem. 2011;126:1211–7.
Article
CAS
Google Scholar
Peng CC, Sun HT, Lin IP, Kuo PC, Li JC. The functional property of royal jelly 10-hydroxy-2-decenoic acid as a melanogenesis inhibitor. BMC Complement Altern Med. 2017;17:392.
Article
PubMed
PubMed Central
Google Scholar
Bílikova K, Huang SC, Lin IP, Simuth J, Peng CC. Structure and antimicrobial activity relationship of royalisin, anantimicrobial peptide from royal jelly of Apis mellifera. Peptides. 2015;68:190–6.
Article
PubMed
CAS
Google Scholar
Townsend GF, Morgan JF, Hazlett B. Activity of 10-hydroxydecenoic acid from royal jelly against experimental leukaemia and ascitic tumours. Nature. 1959;183:1270–1.
Article
PubMed
CAS
Google Scholar
Townsend GF, Morgan JF, Tolnai S, Hazlett B, Morton HJ, Shuel RW. Studies on the in vitro antitumor activity of fatty acids. I. 10-Hydroxy-2-decenoic acid from royal jelly. Cancer Res. 1960;20:503–10.
PubMed
CAS
Google Scholar
Townsend GF, Brown WH, Felauer EE, Hazlett B. Studies on the in vitro antitumor activity of fatty acids. IV. The esters of acids closely related to 10-hydroxy-2-decenoic acids from royal jelly against transplantable mouse leukemia. Can J Biochem Physiol. 1961;39:1765–70.
Article
PubMed
CAS
Google Scholar
Yang XY, Yang DS, Wei Z, Wang JM, Li CY, Hui Y, Lei KF, Chen XF, Shen NH, Jin LQ, Wang JG. 10-Hydroxy-2-decenoic acid from royal jelly: a potential medicine for RA. J Ethnopharmacol. 2010;128:314–21.
Article
PubMed
CAS
Google Scholar
Sugiyama T, Takahashi K, Mori H. Royal jelly acid, 10-hydroxy-trans 2-decenoic acid, as modulator of the innate immune response. Endocrine, Metabolic & Immune Disorders - drug. Targets. 2012;12:368–76.
CAS
Google Scholar
Mukaida N, Ketlinsky SA, Matsushima K. Interleukin-8 and other CXC chemokines. In: Thomson AW, Lotze MT, editors. The cytokine handbook. 4th ed. London: Elsevier Science Ltd; 2003. p. 1049–81.
Chapter
Google Scholar
Ito H, Miki C. Profile of circulating levels of interleukin-1 receptor antagonist and interleukin-6 in colorectal cancer patients. Scand J Gastroenterol. 1999;34:1139–43.
Article
PubMed
CAS
Google Scholar
Cooper MA, Caligiuri MA. Cytokines and cancer. In: Thomson AW, Lotze MT, editors. The cytokine handbook. 4th ed. London: Elsevier Science Ltd; 2003. p. 1213–32.
Chapter
Google Scholar
Alreshoodi FM, Sultanbawa Y. Antimicrobial activity of royal jelly. Anti-Infective Agents. 2015;13:50–9.
Article
CAS
Google Scholar