Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.
Article
PubMed
Google Scholar
Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis. 2010;38(3):376–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez de la Ossa N, Davalos A. Neuroprotection in cerebral infarction: the opportunity of new studies. Cerebrovascular Dis. 2007;24(Suppl 1):153–6.
Article
Google Scholar
Toni D, Fiorelli M, Gentile M, Bastianello S, Sacchetti ML, Argentino C, Pozzilli C, Fieschi C. Progressing neurological deficit secondary to acute ischemic stroke. A study on predictability, pathogenesis, and prognosis. Arch Neurol. 1995;52(7):670–5.
Article
CAS
PubMed
Google Scholar
Wang Z, Leng Y, Tsai LK, Leeds P, Chuang DM. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2011;31(1):52–7.
Article
Google Scholar
Spatz M. Past and recent BBB studies with particular emphasis on changes in ischemic brain edema: dedicated to the memory of Dr. Igor Klatzo. Acta Neurochir Suppl. 2010;106:21–7.
Article
PubMed
Google Scholar
Ding J, Guo Y. Effects of bloodletting puncture at hand twelve Jing-well points on state of consciousness in the patient of early stroke. Zhongguo Zhenjiu. 2004;24(10):673–6.
Google Scholar
Guo Y, Wang XY, Xu TP, Dai ZH, Li YC. Clinical observation of the influence of bloodletting puncture at hand twelve Jing-well points on consciousness and heart rate in patients with wind stroke. Tianjin Zhongyiyao. 2003;20(2):35–7.
Google Scholar
Gao L, Chen Z, Tian L, Li Z, Guo Y. Effects of bloodletting puncture at Jing-well points in distal ends of finger and toe on survival rate and brain edema in cerebral ischemic rats. J Tradit Chin Med. 2012;32(3):471–6.
Article
PubMed
Google Scholar
Lu X, Chen Z, Guo Y, Gao L, Jiang L, Li Z, Fang J. Blood-letting punctures at twelve Jing-well points of the hand can treat cerebral ischemia in a similar manner to mannitol. Neural Regen Res. 2013;8(6):532–9.
CAS
PubMed
PubMed Central
Google Scholar
Prakash R, Carmichael ST. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol. 2015;28(6):556–64.
Article
PubMed
PubMed Central
Google Scholar
Tu Y, Miao XM, Yi TL, Chen XY, Sun HT, Cheng SX, Zhang S. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury. Neural Regen Res. 2016;11(6):931–6.
PubMed
PubMed Central
Google Scholar
Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91.
Article
CAS
PubMed
Google Scholar
Li SY, Yang D, Fu ZJ, Woo T, Wong D, Lo AC. Lutein enhances survival and reduces neuronal damage in a mouse model of ischemic stroke. Neurobiol Dis. 2012;45(1):624–32.
Article
CAS
PubMed
Google Scholar
Kimelberg HK. Current concepts of brain edema. Review of laboratory investigations. J Neurosurg. 1995;83(6):1051–9.
Article
CAS
PubMed
Google Scholar
He SQ, Guo Y, Ma YF, Miao WF, Wang XY. Experimental study about the influence of bloodletting puncture at hand twelve Jing-well points on H+ concentration of ischemic brain tissue in rats with experimental cerebral ischemia. Zhenjiu Lin Chuang Za Zhi. 2002;18(2):43–4.
Google Scholar
Guo Y, Hu LM, Zhang YJ, Wang XY, Miao WF, Xu TP. Dynamic observation of the influence of bloodletting puncture of hand twelve Jing-well points on extracellular calcium ion concentration in rats with experimental cerebral ischemia. Zhenjiu Linchuang Zazhi. 1999;15(6):48–50.
CAS
Google Scholar
Ma YF, Guo Y, Zhang YJ, Xu TP, Bao JZ. Dynamic observation about the influence of bloodletting puncture at hand twelve Jing-well points on K+, Na+ concentration of ischemic brain tissue in rats with experimental cerebral ischemia. Zhongguo Zhenjiu. 1997;17(9):562–4.
Google Scholar
Guo Y, Zhang YJ, Wang XY, Xu TP, Ren SS, Ren HZ, Wang X. Effects of bloodletting puncture at hand twelve Jing-well points on the intracranial haemodynamics of stroke patients. Zhenjiu Linchuang Zazhi. 1995;11(6):21–3.
Google Scholar
Xu TP, Wang ZT. Experimental research on the effects of bloodletting puncture at hand twelve Jing-well points on brain blood flow in rabbits. Hunan Zhongyiyao Daobao. 1995;2(1):39–41.
Google Scholar
Zhou GP, Xu TP, Wang ZT. Preliminary study of bloodletting puncture at hand twelve Jing-well points on brain blood flow in rabbits of cerebral ischemia. Tianjin Zhongyi. 1989;5:22–4.
Google Scholar
Zhou GP, Xu TP. Comparison of effects of the twelve Jing points of hands and Quchi (LI 11) bloodletting on rheoencephalogram in rabbits of cerebral ischemia. Zhenci Yanjiu. 1998;4:268–70.
Google Scholar
Dewar D, Underhill SM, Goldberg MP. Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab. 2003;23(3):263–74.
Article
PubMed
Google Scholar
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.
Article
CAS
PubMed
Google Scholar
Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem. 2009;111(2):291–314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gotoh O, Asano T, Koide T, Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: The time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke. 1985;16(1):101–9.
Article
CAS
PubMed
Google Scholar
Hatashita S, Hoff JT. Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke. 1990;21(4):582–8.
Article
CAS
PubMed
Google Scholar
Petty MA, Wettstein JG. Elements of cerebral microvascular ischaemia. Brain Res Brain Res Rev. 2001;36(1):23–34.
Article
CAS
PubMed
Google Scholar
Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 Pt 2):1777–88.
Article
CAS
PubMed
Google Scholar
Balda MS, Flores-Maldonado C, Cereijido M, Matter K. Multiple domains of occludin are involved in the regulation of paracellular permeability. J Cell Biochem. 2000;78(1):85–96.
Article
CAS
PubMed
Google Scholar
Huber D, Balda MS, Matter K. Occludin modulates transepithelial migration of neutrophils. J Biol Chem. 2000;275(8):5773–8.
Article
CAS
PubMed
Google Scholar
Lacaz-Vieira F, Jaeger MM, Farshori P, Kachar B. Small synthetic peptides homologous to segments of the first external loop of occludin impair tight junction resealing. J Membr Biol. 1999;168(3):289–97.
Article
CAS
PubMed
Google Scholar
Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol. 1999;147(1):185–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100(3):323–31.
Article
CAS
PubMed
Google Scholar
Liebner S, Kniesel U, Kalbacher H, Wolburg H. Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol. 2000;79(10):707–17.
Article
CAS
PubMed
Google Scholar
Lippoldt A, Kniesel U, Liebner S, Kalbacher H, Kirsch T, Wolburg H, Haller H. Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood-brain barrier endothelial cells. Brain Res. 2000;885(2):251–61.
Article
CAS
PubMed
Google Scholar
Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 2014;82(3):603–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovacs Z, Ikezaki K, Samoto K, Inamura T, Fukui M: VEGF and flt. Expression time kinetics in rat brain infarct. Stroke 1996, 27(10):1865–1872; discussion 1872-1863.
Hayashi T, Abe K, Suzuki H, Itoyama Y. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke. 1997;28(10):2039–44.
Article
CAS
PubMed
Google Scholar
Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol. 1998;57(9):874–82.
Article
CAS
PubMed
Google Scholar
Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146(5):1029–39.
CAS
PubMed
PubMed Central
Google Scholar
Dietrich JB. The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J Neuroimmunol. 2002;128(1–2):58–68.
Article
CAS
PubMed
Google Scholar