Carter GT, Duong V, Ho S, Ngo KC, Greer CL, Weeks DL: Side effects of commonly prescribed analgesic medications. Phys Med Rehabil Clin N Am. 2014, 25: 457-470.
Article
PubMed
Google Scholar
Han JS: Acupuncture analgesia: areas of consensus and controversy. Pain. 2011, 152: S41-S48.
Article
PubMed
Google Scholar
Zhao ZQ: Neural mechanism underlying acupuncture analgesia. Prog Neurobiol. 2008, 85: 355-375.
Article
PubMed
Google Scholar
Zhang R, Lao L, Ren K, Berman BM: Mechanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology. 2014, 120: 482-503.
Article
PubMed
PubMed Central
Google Scholar
Liang Y, Fang JQ, Du JY, Fang JF: Effect of electroacupuncture on activation of p38MAPK in spinal dorsal horn in rats with complete Freund’s adjuvant-induced inflammatory pain. Evid Based Complement Alternat Med. 2012, 2012: 568273-
PubMed
Google Scholar
Suarez-Almazor ME, Looney C, Liu Y, Cox V, Pietz K, Marcus DM, Street RL: A randomized controlled trial of acupuncture for osteoarthritis of the knee: effects of patient-provider communication. Arthritis Care Res (Hoboken). 2010, 62: 1229-1236.
Article
Google Scholar
Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ: p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron. 2002, 36: 57-68.
Article
CAS
PubMed
Google Scholar
Doya H, Ohtori S, Fujitani M, Saito T, Hata K, Ino H, Takahashi K, Moriya H, Yamashita T: c-Jun N-terminal kinase activation in dorsal root ganglion contributes to pain hypersensitivity. Biochem Biophys Res Commun. 2005, 335: 132-138.
Article
CAS
PubMed
Google Scholar
Ji RR, Woolf CJ: Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis. 2001, 8: 1-10.
Article
CAS
PubMed
Google Scholar
Lee KM, Kang BS, Lee HL, Son SJ, Hwang SH, Kim DS, Park JS, Cho HJ: Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci. 2004, 19: 3375-3381.
Article
PubMed
Google Scholar
Ji RR, Baba H, Brenner GJ, Woolf CJ: Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci. 1999, 2: 1114-1119.
Article
CAS
PubMed
Google Scholar
Ji RR, Befort K, Brenner GJ, Woolf CJ: ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci. 2002, 22: 478-485.
CAS
PubMed
Google Scholar
Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002, 35: 605-623.
Article
CAS
PubMed
Google Scholar
Malmberg AB, Yaksh TL: Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science. 1992, 257: 1276-1279.
Article
CAS
PubMed
Google Scholar
Traub RJ: The spinal contribution of substance P to the generation and maintenance of inflammatory hyperalgesia in the rat. Pain. 1996, 67: 151-161.
Article
CAS
PubMed
Google Scholar
Uht R, Amos S, Martin P, Riggan A, Hussaini I: The protein kinase C-η isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway. Oncogene. 2006, 26: 2885-2893.
Article
PubMed
Google Scholar
Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR: Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci. 2004, 24: 8310-8321.
Article
CAS
PubMed
Google Scholar
Fang JF, Liang Y, Du JY, Fang JQ: Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats. BMC Complement Altern Med. 2013, 13: 134-
Article
PubMed
PubMed Central
Google Scholar
Jian-qiao F, Jun-fan F, Yi L, Jun-ying D, Yu-jie Q, Jing L: Immediately analgesic effect of electroacupuncture and its mechanism via spinal p-ERK1/2. Chin Acupunct Moxibustion. 2012, 32: 1007-1011.
Google Scholar
Cheng CY, Lin JG, Su SY, Tang NY, Te Kao S, Hsieh CL: Electroacupuncture-like stimulation at baihui and dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemia in rats. BMC Complement Altern Med. 2014, 14: 92-
Article
PubMed
PubMed Central
Google Scholar
Fang JQ, Du JY, Liang Y, Fang JF: Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats. Mol Pain. 2013, 9: 13-
Article
PubMed
PubMed Central
Google Scholar
Yamamoto T, Sakashita Y: The role of the spinal opioid receptor like1 receptor, the NK-1 receptor, and cyclooxygenase-2 in maintaining postoperative pain in the rat. Anesth Analg. 1999, 89: 1203-
Article
CAS
PubMed
Google Scholar
Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ: Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001, 410: 471-475.
Article
CAS
PubMed
Google Scholar
Widmann C, Gibson S, Jarpe MB, Johnson GL: Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999, 79: 143-180.
CAS
PubMed
Google Scholar
Ji RR, Gereau RW, Malcangio M, Strichartz GR: MAP kinase and pain. Brain Res Rev. 2009, 60: 135-148.
Article
CAS
PubMed
Google Scholar
Adwanikar H, Karim F, Gereau RW: Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain. 2004, 111: 125-135.
Article
CAS
PubMed
Google Scholar
Cruz CD, Avelino A, McMahon SB, Cruz F: Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation. Eur J Neurosci. 2005, 21: 773-781.
Article
PubMed
Google Scholar
Karim F, Wang CC, Gereau RW: Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci. 2001, 21: 3771-3779.
CAS
PubMed
Google Scholar
Pang XY, Liu T, Jiang F, Ji YH: Activation of spinal ERK signaling pathway contributes to pain-related responses induced by scorpion Buthus martensi Karch venom. Toxicon. 2008, 51: 994-1007.
Article
CAS
PubMed
Google Scholar
Yaksh TL, Dirig DM, Conway CM, Svensson C, Luo ZD, Isakson PC: The acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1. J Neurosci. 2001, 21: 5847-5853.
CAS
PubMed
Google Scholar
Vardeh D, Wang D, Costigan M, Lazarus M, Saper CB, Woolf CJ, Fitzgerald GA, Samad TA: COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J Clin Invest. 2009, 119: 287-294.
CAS
PubMed
PubMed Central
Google Scholar
Honoré P, Menning PM, Rogers SD, Nichols ML, Basbaum AI, Besson JM, Mantyh PW: Spinal substance P receptor expression and internalization in acute, short-term, and long-term inflammatory pain states. J Neurosci. 1999, 19: 7670-7678.
Google Scholar
Abbadie C, Trafton J, Liu H, Mantyh PW, Basbaum AI: Inflammation increases the distribution of dorsal horn neurons that internalize the neurokinin-1 receptor in response to noxious and non-noxious stimulation. J Neurosci. 1997, 17: 8049-8060.
CAS
PubMed
Google Scholar
Trafton JA, Basbaum AI: The contribution of spinal cord neurokinin-1 receptor signaling to pain. J Pain. 2000, 1: 57-65.
Article
CAS
PubMed
Google Scholar
Woolf CJ, Mannion RJ, Neumann S: Null mutations lacking substance: elucidating pain mechanisms by genetic pharmacology. Neuron. 1998, 20: 1063-1066.
Article
CAS
PubMed
Google Scholar
McCarson KE, Krause JE: NK-1 and NK-3 type tachykinin receptor mRNA expression in the rat spinal cord dorsal horn is increased during adjuvant or formalin-induced nociception. J Neurosci. 1994, 14: 712-720.
CAS
PubMed
Google Scholar
Kim SK, Park JH, Bae SJ, Kim JH, Hwang BG, Min BI, Park DS, Na HS: Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp Neurol. 2005, 195: 430-436.
Article
CAS
PubMed
Google Scholar
Xing GG, Liu FY, Qu XX, Han JS, Wan Y: Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp Neurol. 2007, 208: 323-332.
Article
PubMed
Google Scholar
Baek YH, Choi DY, Yang HI, Park DS: Analgesic effect of electroacupuncture on inflammatory pain in the rat model of collagen-induced arthritis: mediation by cholinergic and serotonergic receptors. Brain Res. 2005, 1057: 181-185.
Article
CAS
PubMed
Google Scholar
Huang C, Hu ZP, Long H, Shi YS, Han JS, Wan Y: Attenuation of mechanical but not thermal hyperalgesia by electroacupuncture with the involvement of opioids in rat model of chronic inflammatory pain. Brain Res Bull. 2004, 63: 99-103.
Article
CAS
PubMed
Google Scholar
Sekido R, Ishimaru K, Sakita M: Corticotropin-releasing factor and interleukin-1beta are involved in the electroacupuncture-induced analgesic effect on inflammatory pain elicited by carrageenan. Am J Chin Med. 2004, 32: 269-280.
Article
CAS
PubMed
Google Scholar
Zhang RX, Liu B, Qiao JT, Wang L, Ren K, Berman BM, Lao L: Electroacupuncture suppresses spinal expression of neurokinin-1 receptors induced by persistent inflammation in rats. Neurosci Lett. 2005, 384: 339-343.
Article
CAS
PubMed
Google Scholar
Fang J, Aoki E, Yu Y, Sohma T, Kasahara T, Hisamitsu T: Inhibitory effect of electroacupuncture on murine collagen arthritis and its possible mechanisms. In Vivo. 1999, 13: 311-
CAS
PubMed
Google Scholar
Lee JH, Jang KJ, Lee YT, Choi YH, Choi BT: Electroacupuncture inhibits inflammatory edema and hyperalgesia through regulation of cyclooxygenase synthesis in both peripheral and central nociceptive sites. Am J Chin Med. 2006, 34: 981-988.
Article
CAS
PubMed
Google Scholar
Hsieh HL, Wu CY, Yang CM: Bradykinin induces matrix metalloproteinase‐9 expression and cell migration through a PKC‐δ‐dependent ERK/Elk‐1 pathway in astrocytes. Glia. 2008, 56: 619-632.
Article
PubMed
Google Scholar
Davis S, Vanhoutte P, Pagès C, Caboche J, Laroche S: The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci. 2000, 20: 4563-4572.
CAS
PubMed
Google Scholar
Messersmith DJ, Kim DJ, Iadarola MJ: Transcription factor regulation of prodynorphin gene expression following rat hindpaw inflammation. Mol Brain Res. 1998, 53: 259-269.
Article
CAS
Google Scholar
Eliopoulos AG, Dumitru CD, Wang CC, Cho J, Tsichlis PN: Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J. 2002, 21: 4831-4840.
Article
CAS
PubMed
Google Scholar
Duric V, McCarson KE: Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Mol Pain. 2007, 3: 32-
Article
PubMed
PubMed Central
Google Scholar