Medeiros AI, Serezani CH, Lee SP, Peters-Golden M. Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J Exp Med. 2009;206(1):61–8. https://doi.org/10.1084/jem.20082058.
Article
CAS
Google Scholar
Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol. 2020;180:114147. https://doi.org/10.1016/j.bcp.2020.114147.
Article
CAS
Google Scholar
Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457–65. https://doi.org/10.1517/14740338.2016.1140743.
Article
CAS
Google Scholar
Msheik Z, El Massry M, Rovini A, Billet F, Desmouliere A. The macrophage: a key player in the pathophysiology of peripheral neuropathies. J Neuroinflammation. 2022;19:97. https://doi.org/10.1186/s12974-022-02454-6.
Article
Google Scholar
Zhang Y, Li X, Luo Z, et al. ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation. Proc Natl Acad Sci U S A. 2020;117(6):3083–92. https://doi.org/10.1073/pnas.1912774117.
Article
CAS
Google Scholar
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40. https://doi.org/10.1002/jcp.26429.
Article
CAS
Google Scholar
Schultze JL, Schmidt SV. Molecular features of macrophage activation. Semin Immunol. 2015;27(6):416–23. https://doi.org/10.1016/j.smim.2016.03.009.
Article
CAS
Google Scholar
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37. https://doi.org/10.1038/nri3073.
Article
CAS
Google Scholar
Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage polarization and osteoporosis: A review. Nutrients. 2020;12(10):E2999. https://doi.org/10.3390/nu12102999.
Article
CAS
Google Scholar
Li Y, Juan CH, Chang HJ, Qin WX. Clinical study of Jiawei Huangqi Guizhi Wuwu decoction in preventing and treating peripheral neuro-sensory toxicity caused by oxaliplatin. Chin J Integr Med. 2006;12(1):19–23. https://doi.org/10.1007/BF02857424.
Article
Google Scholar
Weiru X, Mingwei Y, Qi F. Retrospective study on modified Huangqi Guizhi Wuwu decoction inTreating Oxaliplatin-induced peripheral neuropathy [inChinese]. Journal of Guangzhou University of Traditional Chinese Medicine. 2022;39(1):24–30. https://doi.org/10.13359/j.cnki.gzxbtcm.2022.01.005.
Article
Google Scholar
Jingyi Z, Guobing S, Bo X, Wei Z. Meta-analysis of randomized comparative study on Huangqi Guizhi Wuwu Tang in the treatment of diabetic peripheral neuropathy. J Shenyang Pharm Univ. 2014;31(8). https://doi.org/10.14066/j.cnki.cn21-1349/r.2014.08.011.
Min T, Yunfei S, Xin L. Meta-analysis of clinical efficacy and safety of Huangqi Guizhi Wuwu decoction combined with chemical drugs in the treatment of rheumatoid arthritis [inChinese]. Chinese Journal of Immunology. 2021;37(16):1964–6. https://doi.org/10.3969/j.issn.1000-484X.2021.16.009.
Article
Google Scholar
Guangxun Y, Min C, Wencheng S, Lijun Y, Xiao F. Observation of effect of Huangqi Guizhi Wuwu decoction on rheumatoid arthritis [inChinese]. Chinese Journal of Clinical Healthcare. 2019;22(4):549–52. https://doi.org/10.3969/J.issn.1672-6790.2019.04.031.
Article
CAS
Google Scholar
Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015;130(5):605–18. https://doi.org/10.1007/s00401-015-1482-4.
Article
CAS
Google Scholar
Fukui S, Iwamoto N, Takatani A, et al. M1 and M2 monocytes in rheumatoid arthritis: A contribution of imbalance of M1/M2 monocytes to Osteoclastogenesis. Front Immunol. 2018;8:1958. https://doi.org/10.3389/fimmu.2017.01958.
Article
CAS
Google Scholar
Huang TC, Wu HL, Chen SH, Wang YT, Wu CC. Thrombomodulin facilitates peripheral nerve regeneration through regulating M1/M2 switching. J Neuroinflammation. 2020;17(1):240. https://doi.org/10.1186/s12974-020-01897-z.
Article
CAS
Google Scholar
Zhou F, Mei J, Han X, et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm Sin B. 2019;9(5):973–85. https://doi.org/10.1016/j.apsb.2019.01.015.
Article
Google Scholar
Zhou X, Huang D, Wang R, et al. Targeted therapy of rheumatoid arthritis via macrophage repolarization. Drug Deliv. 2021;28(1):2447–59. https://doi.org/10.1080/10717544.2021.2000679.
Article
CAS
Google Scholar
Yang Y, Guo L, Wang Z, et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials. 2021;264:120390. https://doi.org/10.1016/j.biomaterials.2020.120390.
Article
CAS
Google Scholar
Li M, Li Z, Ma X, et al. Huangqi Guizhi Wuwu decoction can prevent and treat oxaliplatin-induced neuropathic pain by TNFα/IL-1β/IL-6/MAPK/NF-kB pathway. Aging (Albany NY). 2022;14(12):5013–22. https://doi.org/10.18632/aging.203794.
Article
CAS
Google Scholar
Jiawei L, Yonghui W, Yanyan L, Yonggang Z, Le Z, Ruonan Z. Effect of Huangqi Guizhi Wuwutang on joint synovial cell apoptosis in CIA rat models [inChinese]. Chin J Exp Tradit Med Formulae. 2017;23(14):171–6. https://doi.org/10.13422/j.cnki.syfjx.2017140171.
Article
Google Scholar
Li Z, Ma D, Wang Y, et al. Astragali Radix-Coptis Rhizoma herb pair attenuates atherosclerosis in ApoE−/− mice by regulating the M1/M2 and Th1/Th2 immune balance and activating the STAT6 signaling pathway. Evid Based Complement Alternat Med. 2022;2022:7421265. https://doi.org/10.1155/2022/7421265.
Article
Google Scholar
Tian L, Zhao JL, Kang JQ, et al. Astragaloside IV alleviates the experimental DSS-induced colitis by remodeling macrophage polarization through STAT signaling. Front Immunol. 2021;12:740565. https://doi.org/10.3389/fimmu.2021.740565.
Article
CAS
Google Scholar
Li L, Gan H, Jin H, et al. Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats. Int Immunopharmacol. 2021;92:107335. https://doi.org/10.1016/j.intimp.2020.107335.
Article
CAS
Google Scholar
Liang CL, Jiang H, Feng W, et al. Total glucosides of Paeony ameliorate Pristane-induced lupus nephritis by inducing PD-1 ligands+ macrophages via activating IL-4/STAT6/PD-L2 signaling. Front Immunol. 2021;12:683249. https://doi.org/10.3389/fimmu.2021.683249.
Article
CAS
Google Scholar
Jiang P, Ma D, Wang X, et al. Astragaloside IV prevents obesity-associated hypertension by improving pro-inflammatory reaction and leptin resistance. Mol Cells. 2018;41(3):244–55. https://doi.org/10.14348/molcells.2018.2156.
Article
CAS
Google Scholar
Chen J, Zhang Y, Wang Y, et al. Potential mechanisms of Guizhi decoction against hypertension based on network pharmacology and dahl salt-sensitive rat model. Chin Med. 2021;16(1):34. https://doi.org/10.1186/s13020-021-00446-x.
Article
CAS
Google Scholar
Jiye C, Guofeng Z, Yongcheng W, et al. Effect of Guizhitang with different proportions of Cinnamomi Ramulus andPaeoniae Alba Radix in regulating TGF-β1/ Smads signaling pathway andChronic inflammation and alleviating myocardial fibrosis inSalt-sensitive hypertensive rats [inChinese]. Chin J Exp Tradit Med Formulae. 2020;26(1):50–8. https://doi.org/10.13422/j.cnki.syfjx.20200101.
Article
Google Scholar
Ping J, Lingling D, Xue W, Xiao L. Study on effect difference between Guizhi decoction and HuanglianjieduDecoction on Immuno-inflammatory factors and myocardial BasementMembrane in spontaneous diabetic rats [inChinese]. World Journal of Integrated Traditional and Western Medicine. 2015;10(7):999–1002. https://doi.org/10.13935/j.cnki.sjzx.150736.
Article
Google Scholar
Ma’ayan A. Complex systems biology. J R Soc Interface. 2017;14(134):20170391. https://doi.org/10.1098/rsif.2017.0391.
Article
Google Scholar
Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–20. https://doi.org/10.1016/S1875-5364(13)60037-0.
Article
Google Scholar
Lu WW, Qiu YJ, Fan XF, Yu GY, Wu GL. Mechanism of Huangqi Guizhi Wuwu decoction in treatment of rheumatoid arthritis based on UPLC-LTQ-Orbitrap-MS, network pharmacology, and cell experiment. Zhongguo Zhong Yao Za Zhi. 2021;46(24):6454–64. https://doi.org/10.19540/j.cnki.cjcmm.20210902.703.
Article
CAS
Google Scholar
Chen T, Shi Y, Shi W. Huangqi Guizhi Wuwu decoction in peripheral neurotoxicity treatment using network pharmacology and molecular docking. Medicine (Baltimore). 2022;101(42):e31281. https://doi.org/10.1097/MD.0000000000031281.
Article
CAS
Google Scholar
Pan B, Xia Y, Fang S, et al. Integrated network pharmacology and serum metabolomics approach deciphers the anti-colon cancer mechanisms of Huangqi Guizhi Wuwu decoction. Front Pharmacol. 2022;13:1043252. https://doi.org/10.3389/fphar.2022.1043252.
Article
CAS
Google Scholar
Becker R. The new S language: CRC Press; 2018. https://doi.org/10.1201/9781351074988.
Book
Google Scholar
Wu T, Hu E, Xu S, et al. A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51. https://doi.org/10.1002/pro.3715.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51. https://doi.org/10.1093/nar/gkaa970.
Article
CAS
Google Scholar
Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–8. https://doi.org/10.1093/nar/gkw937.
Article
CAS
Google Scholar
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11.
Article
Google Scholar
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334.
Article
CAS
Google Scholar
Han J, Kim HJ, Lee SC, et al. Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein. PLoS ONE. 2012;7(2):e30929. https://doi.org/10.1371/journal.pone.0030929.
Article
CAS
Google Scholar
Fischmann TO, Hruza A, Niu XD, et al. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol. 1999;6(3):233–42. https://doi.org/10.1038/6675.
Article
CAS
Google Scholar
Hinck AP, Archer SJ, Qian SW, et al. Transforming growth factor beta 1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor beta 2. Biochemistry. 1996;35(26):8517–34. https://doi.org/10.1021/bi9604946.
Article
CAS
Google Scholar
Ghosh G, van Duyne G, Ghosh S, Sigler PB. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature. 1995;373(6512):303–10. https://doi.org/10.1038/373303a0.
Article
CAS
Google Scholar
Basse N, Kaar JL, Settanni G, Joerger AC, Rutherford TJ, Fersht AR. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Chem Biol. 2010;17(1):46–56. https://doi.org/10.1016/j.chembiol.2009.12.011.
Article
CAS
Google Scholar
Lubetsky JB, Dios A, Han J, et al. The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. J Biol Chem. 2002;277(28):24976–82. https://doi.org/10.1074/jbc.M203220200.
Article
CAS
Google Scholar
Liddle J, Atkinson FL, Barker MD, Carter PS, Curtis NR, Davis RP, et al. Discovery of GSK143, a highly potent, selective and orally efficacious spleen tyrosine kinase inhibitor. Bioorg Med Chem Lett. 2011;21(20):6188–94. https://doi.org/10.1016/j.bmcl.2011.07.082.
Article
CAS
Google Scholar
Nuti E, Cantelmo AR, Gallo C, et al. N-O-isopropyl Sulfonamido-based Hydroxamates as matrix metalloproteinase inhibitors: hit selection and in vivo antiangiogenic activity. J med Chem. 2015;58(18):7224–40. https://doi.org/10.1021/acs.jmedchem.5b00367.
Article
CAS
Google Scholar
Gampe RT, Montana VG, Lambert MH, et al. Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell. 2000;5(3):545–55. https://doi.org/10.1016/s1097-2765(00)80448-7.
Article
CAS
Google Scholar
Tamanini E, Buck IM, Chessari G, et al. Discovery of a potent Nonpeptidomimetic, small-molecule antagonist of cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). J Med Chem. 2017;60(11):4611–25. https://doi.org/10.1021/acs.jmedchem.6b01877.
Article
CAS
Google Scholar
Rowlinson SW, Kiefer JR, Prusakiewicz JJ, et al. A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. J Biol Chem. 2003;278(46):45763–9. https://doi.org/10.1074/jbc.M305481200.
Article
CAS
Google Scholar
Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy K, McEachern D, et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell. 2019;36(5). https://doi.org/10.1016/j.ccell.2019.10.002.
He MM, Smith AS, Oslob JD, et al. Small-molecule inhibition of TNF-alpha. Science. 2005;310(5750):1022–5. https://doi.org/10.1126/science.1116304.
Article
CAS
Google Scholar
Li SX, Huang S, Bren N, et al. Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Nat Neurosci. 2011;14(10):1253–9. https://doi.org/10.1038/nn.2908.
Article
CAS
Google Scholar
Camps M, Rückle T, Ji H, et al. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med. 2005;11(9):936–43. https://doi.org/10.1038/nm1284.
Article
CAS
Google Scholar
Thanos CD, DeLano WL, Wells JA. Hot-spot mimicry of a cytokine receptor by a small molecule. Proc Natl Acad Sci U S A. 2006;103(42):15422–7. https://doi.org/10.1073/pnas.0607058103.
Article
CAS
Google Scholar
Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GPA, Brandhuber BJ. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One. 2010;5(9):e12913. https://doi.org/10.1371/journal.pone.0012913.
Article
CAS
Google Scholar
Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Article
CAS
Google Scholar
Ho KV, Schreiber KL, Vu DC, et al. Black walnut (Juglans nigra) extracts inhibit Proinflammatory cytokine production from lipopolysaccharide-stimulated human Promonocytic cell line U-937. Front Pharmacol. 2019;10:1059. https://doi.org/10.3389/fphar.2019.01059.
Article
CAS
Google Scholar
De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L. Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation. 2005;2(1):4. https://doi.org/10.1186/1742-2094-2-4.
Article
CAS
Google Scholar
Zhang Q, Lu Y, Bian H, Guo L, Zhu H. Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res. 2017;9(3):971–85.
CAS
Google Scholar
Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol. 2015;97(4):463–72. https://doi.org/10.1016/j.bcp.2015.07.032.
Article
CAS
Google Scholar
Fu S, Zhou Y, Hu C, Xu Z, Hou J. Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy. BMC Complementary Medicine and Therapies. 2022;22(1):210. https://doi.org/10.1186/s12906-022-03662-6.
Article
CAS
Google Scholar
Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62. https://doi.org/10.1038/35013070.
Article
CAS
Google Scholar
Kalkman HO, Feuerbach D. Antidepressant therapies inhibit inflammation and microglial M1-polarization. Pharmacol Ther. 2016;163:82–93. https://doi.org/10.1016/j.pharmthera.2016.04.001.
Article
CAS
Google Scholar
Li X, Hua JY, Jiang P, Long YJ, Fang MD, Hua YC. Effect of Guizhi decoction ([symbols; see text]) on heart rate variability and regulation of cardiac autonomic nervous imbalance in diabetes mellitus rats. Chin J Integr Med. 2014;20(7):524–33. https://doi.org/10.1007/s11655-014-1861-z.
Article
Google Scholar
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69. https://doi.org/10.1038/nri2448.
Article
CAS
Google Scholar
Malyshev I, Malyshev Y. Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage “switch” phenotype. Biomed Res Int. 2015;2015:341308. https://doi.org/10.1155/2015/341308.
Article
CAS
Google Scholar
Arranz A, Doxaki C, Vergadi E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A. 2012;109(24):9517–22. https://doi.org/10.1073/pnas.1119038109.
Article
Google Scholar
Wu J, Zhang L, Shi J, et al. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. EBioMedicine. 2020;58:102920. https://doi.org/10.1016/j.ebiom.2020.102920.
Article
Google Scholar
Chen L, Zhang J, Zou Y, et al. Kdm2a deficiency in macrophages enhances thermogenesis to protect mice against HFD-induced obesity by enhancing H3K36me2 at the Pparg locus. Cell Death Differ. 2021;28(6):1880–99. https://doi.org/10.1038/s41418-020-00714-7.
Article
CAS
Google Scholar
Tong Y, Yu Z, Chen Z, et al. The HIV protease inhibitor Saquinavir attenuates sepsis-induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase-9. Cell Death Dis. 2021;12(1):67. https://doi.org/10.1038/s41419-020-03320-0.
Article
CAS
Google Scholar
Zheng Q, Hou J, Zhou Y, Yang Y, Cao X. Type I IFN-inducible downregulation of MicroRNA-27a feedback inhibits antiviral innate response by upregulating Siglec1/TRIM27. J Immunol. 2016;196(3):1317–26. https://doi.org/10.4049/jimmunol.1502134.
Article
CAS
Google Scholar
Jiang B, Zhu SJ, Xiao SS, Xue M. MiR-217 inhibits M2-like macrophage polarization by suppressing secretion of Interleukin-6 in ovarian Cancer. Inflammation. 2019;42(5):1517–29. https://doi.org/10.1007/s10753-019-01004-2.
Article
CAS
Google Scholar
Bao L, Li X. MicroRNA-32 targeting PTEN enhances M2 macrophage polarization in the glioma microenvironment and further promotes the progression of glioma. Mol Cell Biochem. 2019;460(1–2):67–79. https://doi.org/10.1007/s11010-019-03571-2.
Article
CAS
Google Scholar
Liu S, Lu C, Liu Y, et al. Hyperbaric oxygen alleviates the inflammatory response induced by LPS through inhibition of NF-κB/MAPKs-CCL2/CXCL1 signaling pathway in cultured astrocytes. Inflammation. 2018;41(6):2003–11. https://doi.org/10.1007/s10753-018-0843-2.
Article
CAS
Google Scholar
Wazea SA, Wadie W, Bahgat AK, El-Abhar HS. Galantamine anti-colitic effect: role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways. Sci Rep. 2018;8(1):5110. https://doi.org/10.1038/s41598-018-23359-6.
Article
CAS
Google Scholar
Liu C, Liu S, Xiong L, et al. Genistein-3′-sodium sulfonate attenuates Neuroinflammation in stroke rats by Down-regulating microglial M1 polarization through α7nAChR-NF-κB signaling pathway. Int J Biol Sci. 2021;17(4):1088–100. https://doi.org/10.7150/ijbs.56800.
Article
CAS
Google Scholar
Chang NC, Yeh CT, Lin YK, et al. Garcinol attenuates lipoprotein(a)-induced oxidative stress and inflammatory cytokine production in ventricular Cardiomyocyte through α7-nicotinic acetylcholine receptor-mediated inhibition of the p38 MAPK and NF-κB signaling pathways. Antioxidants (Basel). 2021;10(3):461. https://doi.org/10.3390/antiox10030461.
Article
CAS
Google Scholar
Han Z, Shen F, He Y, et al. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS One. 2014;9(8):e105711. https://doi.org/10.1371/journal.pone.0105711.
Article
CAS
Google Scholar
Aripova N, Duryee MJ, Hunter CD, et al. Peptidyl arginine deiminase expression and macrophage polarization following stimulation with citrullinated and malondialdehyde-acetaldehyde modified fibrinogen. Int Immunopharmacol. 2022;110:109010. https://doi.org/10.1016/j.intimp.2022.109010.
Article
CAS
Google Scholar
Liu X, Su J, Zhou H, et al. Collagen VI antibody reduces atherossclerosis by activating monocyte/macrophage polarization in ApoE−/− mice. Int Immunopharmacol. 2022;111:109100. https://doi.org/10.1016/j.intimp.2022.109100.
Article
CAS
Google Scholar
Lee JH, Lee SH, Lee EH, et al. SCAP deficiency facilitates obesity and insulin resistance through shifting adipose tissue macrophage polarization. J Adv Res. 2022;S2090-1232(22):00124-2. https://doi.org/10.1016/j.jare.2022.05.013.
Mo Y, Kang H, Bang JY, et al. Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Sci Rep. 2022;12(1):11728. https://doi.org/10.1038/s41598-022-14846-y.
Article
CAS
Google Scholar
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72. https://doi.org/10.1038/s41582-020-00435-y.
Article
Google Scholar
Wanna L, Huilin S, Huimin L, et al. Therapeutic mechanism of Huangqi Guizhi Wuwutang on rheumatoid arthritis [inChinese]. Chin J Exp Tradit Med Formulae. 2022;28(9):9–15. https://doi.org/10.13422/j.cnki.syfjx.20220607.
Article
Google Scholar
Yin G, Dingguo Y. Effects of modified huangqi guizhi wuwu decoction on hemodynamics and levels of Lp-PLA2 and Hcy in patients with Type 2 diabetes mellitus complicated with lower extremity atherosclerotic disease [inChinese]. Journal of Guizhou Medical University. 2021;46(9):1059-1064+1069. https://doi.org/10.19367/j.cnki.2096-8388.2021.09.012.
Wang Y, Chen T, Yang C, et al. Huangqi Guizhi Wuwu decoction improves arthritis and pathological damage of heart and lung in TNF-Tg mice. Front Pharmacol. 2022;13:871481. https://doi.org/10.3389/fphar.2022.871481.
Article
CAS
Google Scholar
Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):167. https://doi.org/10.3390/nu8030167.
Article
CAS
Google Scholar
Pérez-Cano FJ, Castell M. Flavonoids, inflammation and immune system. Nutrients. 2016;8(10):E659. https://doi.org/10.3390/nu8100659.
Article
Google Scholar
Yang JH, Kim SC, Shin BY, et al. O-methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation. Food Chem Toxicol. 2013;59:362–72. https://doi.org/10.1016/j.fct.2013.05.049.
Article
CAS
Google Scholar
Kim KA, Lee IA, Gu W, Hyam SR, Kim DH. β-Sitosterol attenuates high-fat diet-induced intestinal inflammation in mice by inhibiting the binding of lipopolysaccharide to toll-like receptor 4 in the NF-κB pathway. Mol Nutr Food Res. 2014;58(5):963–72. https://doi.org/10.1002/mnfr.201300433.
Article
CAS
Google Scholar
Dong J, Zhang X, Zhang L, et al. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res. 2014;55(3):363–74. https://doi.org/10.1194/jlr.M038786.
Article
CAS
Google Scholar
Tian H, Lin S, Wu J, et al. Kaempferol alleviates corneal transplantation rejection by inhibiting NLRP3 inflammasome activation and macrophage M1 polarization via promoting autophagy. Exp Eye Res. 2021;208:108627. https://doi.org/10.1016/j.exer.2021.108627.
Article
CAS
Google Scholar
Chen F, Hu M, Shen Y, et al. Isorhamnetin promotes functional recovery in rats with spinal cord injury by abating oxidative stress and modulating M2 macrophages/microglia polarization. Eur J Pharmacol. 2021;895:173878. https://doi.org/10.1016/j.ejphar.2021.173878.
Article
CAS
Google Scholar
Liu R, Hao D, Xu W, et al. β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharm Biol. 2019;57(1):161–8. https://doi.org/10.1080/13880209.2019.1577461.
Article
CAS
Google Scholar