Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019;124(8):1160–2.
Article
CAS
Google Scholar
Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–8.
Article
CAS
Google Scholar
Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):809–24.
Lu S, Liao Z, Lu X, Katschinski DM, Mercola M, Chen J, et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circ Res. 2020;126(10):e80–96.
Article
CAS
Google Scholar
Sun HJ, Xiong SP, Wu ZY, Cao L, Zhu MY, Moore PK, et al. Induction of caveolin-3/eNOS complex by nitroxyl (HNO) ameliorates diabetic cardiomyopathy. Redox Biol. 2020;32:101493.
Article
CAS
Google Scholar
Sangweni NF, Mosa RA, Dludla PV, Kappo AP, Opoku AR, Muller CJF, et al. The triterpene, methyl-3beta-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. Phytomedicine. 2021;85:153546.
Article
CAS
Google Scholar
Luo J, Yan D, Li S, Liu S, Zeng F, Cheung CW, et al. Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. J Cell Mol Med. 2020;24(2):1760–73.
Article
CAS
Google Scholar
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The role of microRNAs in metabolic syndrome-related oxidative stress. Int J Mol Sci. 2020;21(18):6902.
Article
Google Scholar
Shen Z-Y, Sun Q, Xia Z-Y, Meng Q-T, Lei S-Q, Zhao B, et al. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose. Int J Mol Med. 2016;38(3):729–36.
Article
CAS
Google Scholar
Ma W, Guo W, Shang F, Li Y, Li W, Liu J, et al. Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway. Oxidative Med Cell Longev. 2020;2020:3732718.
Article
Google Scholar
Huang Y, Zhang J, Wang G, Chen X, Zhang R, Liu H, et al. Oxymatrine exhibits anti-tumor activity in gastric cancer through inhibition of IL-21R-mediated JAK2/STAT3 pathway. Int J Immunopathol Pharmacol. 2018;32:2058738418781634.
Article
Google Scholar
Young Yun Jung, Muthu K. Shanmugam, Acharan S. Narula, Chulwon Kim, Jong Hyun Lee, Ojas A. Namjoshi, Bruce E. Blough,Gautam Sethi,Kwang Seok Ahn. Oxymatrine attenuates tumor growth and deactivates STAT5 signaling in a lung Cancer xenograft model. Cancers (Basel) 2019; 11(1): 49.
Article
CAS
Google Scholar
Huang Y, Li X, Zhang X, Tang J. Oxymatrine ameliorates memory impairment in diabetic rats by regulating oxidative stress and apoptosis: involvement of NOX2/NOX4. Oxidative Med Cell Longev. 2020;2020:3912173.
Article
Google Scholar
Lan X, Zhao J, Zhang Y, Chen Y, Liu Y, Xu F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: from bench to bedside. Pharmacol Res. 2020;151:104541.
Article
CAS
Google Scholar
Xiang X, Tu C, Li Q, Wang W, Huang X, Zhao Z, et al. Oxymatrine ameliorates imiquimod-induced psoriasis pruritus and inflammation through inhibiting heat shock protein 90 and heat shock protein 60 expression in keratinocytes. Toxicol Appl Pharmacol. 2020;405:115209.
Article
CAS
Google Scholar
Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, et al. Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front Pharmacol. 2019;10:715.
Article
CAS
Google Scholar
Wang L, Li X, Zhang Y, Huang Y, Zhang Y, Ma Q. Oxymatrine ameliorates diabetes-induced aortic endothelial dysfunction via the regulation of eNOS and NOX4. J Cell Biochem. 2019;120(5):7323–32.
Article
CAS
Google Scholar
Santilli F, Lapenna D, La Barba S, Davì G. Oxidative stress- related mechanisms affecting response to aspirin in diabetes mellitus. Free Radic Biol Med. 2015;80:101–10.
Article
CAS
Google Scholar
King AJF. The use of animal models in diabetes research. Br J Pharmacol. 2012;166(3):877–94.
Article
CAS
Google Scholar
Zhan L, Zhang Y, Wating S, Zhang Q, Chen R, Zhao B, et al. The roles of autophagy in acute lung injury induced by myocardial ischemia reperfusion in diabetic rats. J Diabetes Res. 2018;2018:5047526.
Article
Google Scholar
Lei Q, Yi T, Chen C. NF-κB-Gasdermin D (GSDMD) Axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) Inflammasome-mediated cardiomyocyte Pyroptosis following myocardial infarction. Med Sci Monit. 2018;24:6044–52.
Article
CAS
Google Scholar
Khdhiri E, Mnafgui K, Ncir M, Feriani A, Ghazouani L, Hajji R, et al. Cardiopreventive capacity of a novel (E)-N'-(1-(7-methoxy-2-oxo-2H-chromen-3-yl) ethylidene)-4-methylbenzenesulfonohydrazide against isoproterenol-induced myocardial infarction by moderating biochemical, oxidative stress, and histological parameters. J Biochem Mol Toxicol. 2021;35(6):e22747.
Article
CAS
Google Scholar
Shujun X, Bingxin W, Zhong B, Lin L, Ding Y, Jin X, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /system xc−/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12(2):10924–34.
Article
Google Scholar
Jiang G, Liu X, Wang M, Chen H, Chen Z, Qiu T. Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta Cir Bras. 2015;30(6):422–9.
Article
CAS
Google Scholar
Livak and Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDct method. Methods. 2001;25:402–8.
Article
Google Scholar
Zhao D, Yang J, Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxidative Med Cell Longev. 2017;2017:6437467.
Article
Google Scholar
Yu S, Guo H, Luo Y, Chen H. Ozone protects cardiomyocytes against ischemia/reperfusion injury: regulating the heat shock protein 70 (HPS70) expression through activating the JAK2/STAT3 pathway. Bioengineered. 2021;12(1):6606–16.
Article
CAS
Google Scholar
Boengler K, Hilfifiker-Kleiner D, Drexler H, Heusch G, Schulz R. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther. 2008;120:172–85.
Article
CAS
Google Scholar
Costantino S, Paneni F, Mitchell K, Mohammed SA, Hussain S, Gkolfos C, et al. Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66(Shc). Int J Cardiol. 2018;268:179–86.
Article
Google Scholar
Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, et al. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol. 2016;91:11–22.
Article
CAS
Google Scholar
Chien CY, Wen TJ, Cheng YH, Tsai YT, Chiang CY, Chien CT. Diabetes upregulates oxidative stress and downregulates cardiac protection to exacerbate myocardial ischemia/reperfusion injury in rats. Antioxidants (Basel). 2020;9(8):679.
Article
CAS
Google Scholar
Barakat BM, Ahmed HI, Bahr HI, Elbahaie AM. Protective effect of Boswellic acids against doxorubicin-induced hepatotoxicity: impact on Nrf2/HO-1 defense pathway. Oxidative Med Cell Longev. 2018;2018:8296451.
Article
Google Scholar
Ayer A, Zarjou A, Agarwal A, Stocker R. Heme Oxygenases in cardiovascular health and disease. Physiol Rev. 2016;96(4):1449–508.
Article
CAS
Google Scholar
Negi G, Nakkina V, Kamble P, Sharma SS. Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy. Pharmacol Res. 2015;102:158–67.
Article
CAS
Google Scholar
Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, de Haan JB. Oxidative stress and NLRP3-Inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol. 2018;9:114.
Article
Google Scholar
Abdelsamia EM, Khaleel SA, Balah A, Abdel Baky NA. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed Pharmacother. 2019;109:2136–44.
Article
CAS
Google Scholar
Feng Y, Cui R, Li Z, Zhang X, Jia Y, Zhang X, et al. Methane alleviates acetaminophen-induced liver injury by inhibiting inflammation, oxidative stress, endoplasmic reticulum stress, and apoptosis through the Nrf2/HO-1/NQO1 signaling pathway. Oxidative Med Cell Longev. 2019;2019:7067619.
Article
Google Scholar
Zhang B, Zhai M, Li B, Liu Z, Li K, Jiang L, et al. Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through Activating the SIRT1-Nrf2 signaling pathway. Oxid Med Cell Longev. 2018;2018:3159801.
Google Scholar
Al-Damry NT, Attia HA, Al-Rasheed NM, Al-Rasheed NM, Mohamad RA, Al-Amin MA, et al. Sitagliptin attenuates myocardial apoptosis via activating LKB-1/AMPK/Akt pathway and suppressing the activity of GSK-3β and p38α/MAPK in a rat model of diabetic cardiomyopathy. Biomed Pharmacother. 2018;107:347–58.
Article
CAS
Google Scholar
Ming X, Li XY, Song L. Baicalin regulates macrophages polarization and alleviates myocardial ischaemia/reperfusion injury via inhibiting JAK/STAT pathway. Pharm Biol. 2020;58(1):655–63.
Article
Google Scholar
Tang G, Li S, Zhang C, Chen H, Wang N, Feng Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm Sin B. 2021;11(9):2749–67.
Article
CAS
Google Scholar
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, et al. Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 2021;9:696542.
Article
Google Scholar
Xinhua W, Tao Y, Ji N, Huang Y, Gao L, Shi W, et al. IL6R inhibits viability and apoptosis of pancreatic beta-cells in type 2 diabetes mellitus via regulation by miR-22 of the JAK/STAT signaling pathway. Diabetes Metab Syndr Obes. 2019;12:1645–57.
Article
Google Scholar
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, et al. Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 2021;9:696542.
Article
Google Scholar
Junren C, Xiaofang X, Huiqiong Z, Gangmin L, Yanpeng Y, Xiaoyu C, et al. Pharmacological activities and mechanisms of Hirudin and its derivatives - a review. Front Pharmacol. 2021;12:660757.
Article
Google Scholar
Jiang Y, Sang W, Wang C, Haiming L, Zhang T, Zhuoying Wang Y, et al. Oxymatrine exerts protective effects on osteoarthritis via modulating chondrocyte homoeostasis and suppressing osteoclastogenesis. J Cell Mol Med. 2018;22(8):3941–54.
Article
CAS
Google Scholar
2019 CIS Annual Meeting. Immune Deficiency & Dysregulation North American Conference. J Clin Immunol. 2019;39(Suppl 1):1–151.
Google Scholar
Luo Y, Yin S, Jia L, Zhou S, Shao Y, Bao X, et al. Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment. Cancer Cell Int. 2021;21:386.
Article
Google Scholar