Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70(4):631–59. https://doi.org/10.1007/s00018-012-1070-x.
Article
CAS
PubMed
Google Scholar
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809. https://doi.org/10.1038/nri2653.
Article
CAS
PubMed
Google Scholar
Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol. 2017;8:598. https://doi.org/10.3389/fimmu.2017.00598.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol. 2007;23(4):379–83. https://doi.org/10.1097/MOG.0b013e32816aa392.
Article
CAS
PubMed
Google Scholar
Salim SY, Soderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):362–81. https://doi.org/10.1002/ibd.21403.
Article
PubMed
Google Scholar
Barbara G, Zecchi L, Barbaro R, Cremon C, Bellacosa L, Marcellini M, et al. Mucosal permeability and immune activation as potential therapeutic targets of probiotics in irritable bowel syndrome. J Clin Gastroenterol. 2012;46:S52–5.
Article
Google Scholar
Khaleghi S, Ju JM, Lamba A, Murray JA. The potential utility of tight junction regulation in celiac disease: focus on larazotide acetate. Therap Adv Gastroenterol. 2016;9(1):37–49. https://doi.org/10.1177/1756283X15616576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eichner M, Protze J, Piontek A, Krause G, Piontek J. Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflügers Archiv-European Journal of Physiology. 2017;469(1):77–90.
Article
CAS
Google Scholar
Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci (Landmark Ed). 2009;14:2765–78. https://doi.org/10.2741/3413.
Article
CAS
Google Scholar
Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. 2005;166(2):409–19. https://doi.org/10.1016/s0002-9440(10)62264-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Sadi R, Ye D, Dokladny K, Ma TY. Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. J Immunol. 2008;180(8):5653–61. https://doi.org/10.4049/jimmunol.180.8.5653.
Article
CAS
PubMed
Google Scholar
Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem. 2011;286(36):31263–71. https://doi.org/10.1074/jbc.M111.238147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosen MJ, Frey MR, Washington MK, Chaturvedi R, Kuhnhein LA, Matta P, et al. STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis. 2011;17(11):2224–34. https://doi.org/10.1002/ibd.21628.
Article
PubMed
Google Scholar
Rao R. Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front Biosci. 2008;13:7210–26. https://doi.org/10.2741/3223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiesler P, Fuss IJ, Strober W. Experimental Models of Inflammatory Bowel Diseases. Cell Mol Gastroenterol Hepatol. 2015;1(2):154–70. https://doi.org/10.1016/j.jcmgh.2015.01.006.
Article
PubMed
PubMed Central
Google Scholar
Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira M. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res. 2018;32(12):2323–39. https://doi.org/10.1002/ptr.6178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma V, Katiyar A, Agrawal R. Glycyrrhiza glabra: chemistry and pharmacological activity. Sweeteners. 2018:87.
Chandrasekaran CV, Sundarajan K, Gupta A, Srikanth HS, Edwin J, Agarwal A. Evaluation of the genotoxic potential of standardized extract of Glycyrrhiza glabra (GutGard). Regul Toxicol Pharmacol. 2011;61(3):373–80. https://doi.org/10.1016/j.yrtph.2011.10.002.
Article
CAS
PubMed
Google Scholar
Raveendra KR, Jayachandra, Srinivasa V, Sushma KR, Allan JJ, Goudar KS, et al. An Extract of Glycyrrhiza glabra (GutGard) Alleviates Symptoms of Functional Dyspepsia: A Randomized, Double-Blind, Placebo-Controlled Study. Evid Based Complement Alternat Med. 2012;2012:216970. doi:https://doi.org/10.1155/2012/216970.
Puram S, Suh HC, Kim SU, Bethapudi B, Joseph JA, Agarwal A, et al. Effect of GutGard in the Management of Helicobacter pylori: A Randomized Double Blind Placebo Controlled Study. Evid Based Complement Alternat Med. 2013;2013: 263805. https://doi.org/10.1155/2013/263805.
Article
PubMed
PubMed Central
Google Scholar
Chandrasekaran CV, Deepak HB, Thiyagarajan P, Kathiresan S, Sangli GK, Deepak M, et al. Dual inhibitory effect of Glycyrrhiza glabra (GutGard) on COX and LOX products. Phytomedicine. 2011;18(4):278–84. https://doi.org/10.1016/j.phymed.2010.08.001.
Article
CAS
PubMed
Google Scholar
Mukherjee M, Bhaskaran N, Srinath R, Shivaprasad H, Allan JJ, Shekhar D, et al. Anti-ulcer and antioxidant activity of GutGard. Indian J Exp Biol. 2010;48(3):269–74.
PubMed
Google Scholar
Thiyagarajan P, Chandrasekaran CV, Deepak HB, Agarwal A. Modulation of lipopolysaccharide-induced pro-inflammatory mediators by an extract of Glycyrrhiza glabra and its phytoconstituents. Inflammopharmacology. 2011;19(4):235–41. https://doi.org/10.1007/s10787-011-0080-x.
Article
CAS
PubMed
Google Scholar
Alizadeh A, Akbari P, Varasteh S, Braber S, Malekinejad H, Fink-Gremmels J. Ochratoxin A challenges the intestinal epithelial cell integrity: Results obtained in model experiments with Caco-2 cells. World Mycotoxin Journal. 2019;12(4):399–407.
Article
CAS
Google Scholar
Cao M, Wang P, Sun C, He W, Wang F. Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One. 2013;8(5):e61944.
Article
CAS
Google Scholar
Liu T, Shi Y, Du J, Ge X, Teng X, Liu L, et al. Vitamin D treatment attenuates 2, 4, 6-trinitrobenzene sulphonic acid (TNBS)-induced colitis but not oxazolone-induced colitis. Sci Rep. 2016;6(1):1–10.
Article
Google Scholar
Guo G, Shi F, Zhu J, Shao Y, Gong W, Zhou G, et al. Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS-induced colitis via the inhibition of IκB-α/NF-κB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice. Hum Exp Toxicol. 2020;39(4):477–91.
Article
CAS
Google Scholar
Kwak DS, Lee OY, Lee KN, Jun DW, Lee HL, Yoon BC, et al. The Effect of DA-6034 on Intestinal Permeability in an Indomethacin-Induced Small Intestinal Injury Model. Gut Liver. 2016;10(3):406–11. https://doi.org/10.5009/gnl15251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96(3):795–803.
Article
CAS
Google Scholar
Maheshwari RA, Balaraman R, Sailor GU, Sen DB. Protective effect of simvastatin and rosuvastatin on trinitrobenzene sulfonic acid-induced colitis in rats. Indian J Pharmacol. 2015;47(1):17–21. https://doi.org/10.4103/0253-7613.150311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter MM, Wang A, Hirota CL, McKay DM. Neutralizing anti-IL-10 antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. J Immunol. 2005;174(11):7368–75. https://doi.org/10.4049/jimmunol.174.11.7368.
Article
CAS
PubMed
Google Scholar
Alam R, Schultz CR, Golembieski WA, Poisson LM, Rempel SA. PTEN suppresses SPARC-induced pMAPKAPK2 and inhibits SPARC-induced Ser78 HSP27 phosphorylation in glioma. Neuro Oncol. 2013;15(4):451–61. https://doi.org/10.1093/neuonc/nos326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3–20. https://doi.org/10.1016/j.jaci.2009.05.038 quiz 1-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1–9. https://doi.org/10.1038/s12276-018-0126-x.
Article
CAS
PubMed
Google Scholar
Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14(1):189. https://doi.org/10.1186/s12876-014-0189-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopetuso LR, Scaldaferri F, Bruno G, Petito V, Franceschi F, Gasbarrini A. The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. Eur Rev Med Pharmacol Sci. 2015;19(6):1068–76.
CAS
PubMed
Google Scholar
Liu H, Li M, Wang P, Wang F. Blockade of hypoxia-inducible factor-1alpha by YC-1 attenuates interferon-gamma and tumor necrosis factor-alpha-induced intestinal epithelial barrier dysfunction. Cytokine. 2011;56(3):581–8. https://doi.org/10.1016/j.cyto.2011.08.023.
Article
CAS
PubMed
Google Scholar
Liu H, Wang P, Cao M, Li M, Wang F. Protective role of oligomycin against intestinal epithelial barrier dysfunction caused by IFN-gamma and TNF-alpha. Cell Physiol Biochem. 2012;29(5–6):799–808. https://doi.org/10.1159/000188076.
Article
CAS
PubMed
Google Scholar
Gil-Cardoso K, Gines I, Pinent M, Ardevol A, Blay M, Terra X. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev. 2016;29(2):234–48. https://doi.org/10.1017/S0954422416000159.
Article
CAS
PubMed
Google Scholar
Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, et al. The TNBS-induced colitis animal model: An overview. Ann Med Surg (Lond). 2016;11:9–15. https://doi.org/10.1016/j.amsu.2016.07.019.
Article
Google Scholar
Michielan A, D’Inca R. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators Inflamm. 2015;2015: 628157. https://doi.org/10.1155/2015/628157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azuma T, Shigeshiro M, Kodama M, Tanabe S, Suzuki T. Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J Nutr. 2013;143(6):827–34. https://doi.org/10.3945/jn.113.174508.
Article
CAS
PubMed
Google Scholar
Carrasco-Pozo C, Morales P, Gotteland M. Polyphenols protect the epithelial barrier function of Caco-2 cells exposed to indomethacin through the modulation of occludin and zonula occludens-1 expression. J Agric Food Chem. 2013;61(22):5291–7.
Article
CAS
Google Scholar
Celinski K, Dworzanski T, Korolczuk A, Piasecki R, Slomka M, Madro A, et al. Effects of peroxisome proliferator-activated receptors-gamma ligands on dextran sodium sulphate-induced colitis in rats. J Physiol Pharmacol. 2011;62(3):347–56.
CAS
PubMed
Google Scholar
Kim HG, Han EH, Jang W-S, Choi JH, Khanal T, Park BH, et al. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem Toxicol. 2012;50(7):2342–8.
Article
CAS
Google Scholar
Kwon HS, Oh SM, Kim JK. Glabridin, a functional compound of liquorice, attenuates colonic inflammation in mice with dextran sulphate sodium-induced colitis. Clin Exp Immunol. 2008;151(1):165–73. https://doi.org/10.1111/j.1365-2249.2007.03539.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am J Gastroenterol. 1997;92(12 Suppl):5S-11S.
CAS
PubMed
Google Scholar
Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391(6665):393–7. https://doi.org/10.1038/34923.
Article
CAS
PubMed
Google Scholar
Boullier S, Tanguy M, Kadaoui KA, Caubet C, Sansonetti P, Corthesy B, et al. Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits. J Immunol. 2009;183(9):5879–85. https://doi.org/10.4049/jimmunol.0901838.
Article
CAS
PubMed
Google Scholar
Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol. 2010;177(2):512–24. https://doi.org/10.2353/ajpath.2010.100168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh-oka K, Kono H, Ishimaru K, Miyake K, Kubota T, Ogawa H, et al. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis. PLoS One. 2014;9(5):e98016.
Article
Google Scholar
Xu B, Li YL, Xu M, Yu CC, Lian MQ, Tang ZY, et al. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function. Acta Pharmacol Sin. 2017;38(5):688–98. https://doi.org/10.1038/aps.2016.168.
Article
CAS
PubMed
PubMed Central
Google Scholar