Global Asthma Network. The Global Asthma Report 2018. Auckland, New Zealand: Global Asthma Network, 2018. Accessed 12th July, 2020. http://www.globalasthmareport.org/resources/global_asthma_report_2018.pdf
Murphy DM, O'Byrne PM. Recent advances in the pathophysiology of asthma. Chest. 2010;137(6):1417–26. https://doi.org/10.1378/chest.09-1895.
Article
CAS
PubMed
Google Scholar
Mims JW. Asthma: definitions and pathophysiology. Int Forum Allergy & Rhinol. 2015;5(S1):S2–6. https://doi.org/10.1002/alr.21609.
Article
Google Scholar
Romanet-Manent S, Charpin D, Magnan A, Lanteaume A, Vervloet D. EGEA cooperative group. Allergic vs nonallergic asthma: what makes the difference? Allergy. 2002;57(7):607–13. https://doi.org/10.1034/j.1398-9995.2002.23504.x.
Article
PubMed
Google Scholar
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017 Sep 16; 390 (10100):1211–1259. doi: https://doi.org/10.1016/S0140-6736(17)32154-2. Erratum in: Lancet. 2017; 28; 390 (10106): e38.
Bousquet J, Clark TJ, Hurd S, Khaltaev N, Lenfant C, O'byrne P, et al. GINA guidelines on asthma and beyond. Allergy. 2007;62(2):102–12. https://doi.org/10.1111/j.1398-9995.2006.01305.x.
Article
CAS
PubMed
Google Scholar
Adeloye D, Chan KY, Rudan I, Campbell H. An estimate of asthma prevalence in Africa: a systematic analysis. Croat Med J. 2013;54(6):519–31. https://doi.org/10.3325/cmj.2013.54.519.
Article
PubMed
PubMed Central
Google Scholar
Ait-Khaled N, Pearce N, Anderson HR. Global map of the prevalences of symptomsof rhinoconjuctivitis on children in Africa: the international study of asthma and allergies in Africa. Allergy. 2009;6(64):476–83.
Google Scholar
Jakubzick C, Tacke F, Llodra J, van Rooijen N, Randolph GJ. Modulation of dendritic cell trafficking to and from the airways. J Immunol. 2006;6(176):578–84.
Google Scholar
Kim H, Mazza J. Asthma. Allergy, Asthma Clin Immunol. 2011;7:1–9.
Article
CAS
Google Scholar
Chedevergne F, Bourgeois M, Blic J, Scheinmann P. The role of inflammation in childhood asthma. Arch Dis Child 2000; 82(II):ii6–ii9.
Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutation Res. 2010;690(1-2):24–39. https://doi.org/10.1016/j.mrfmmm.2009.09.005.
Article
CAS
PubMed
Google Scholar
Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8(3):205–17. https://doi.org/10.1038/nri2273.
Article
CAS
PubMed
Google Scholar
Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei KI, et al. IL-13 induces eosinophil recruitment into the lung by an IL-5–and eotaxin-dependent mechanism. J Allergy Clin Immunol. 2001;108(4):594–601. https://doi.org/10.1067/mai.2001.118600.
Article
CAS
PubMed
Google Scholar
Menzies-Gow AN, Flood-Page PT, Robinson DS, Kay AB. Effect of inhaled interleukin-5 on eosinophil progenitors in the bronchi and bone marrow of asthmatic and non-asthmatic volunteers. Clin Exp Allergy. 2007;37(7):1023–32. https://doi.org/10.1111/j.1365-2222.2007.02735.x.
Article
CAS
PubMed
Google Scholar
Chibana K, Trudeau JB, Mustovitch AT, Hu H, Zhao J, Balzar S, et al. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin Exp Allergy. 2008;38(6):936–46. https://doi.org/10.1111/j.1365-2222.2008.02969.x.
Article
CAS
PubMed
Google Scholar
Kasaian MT, Miller DK. IL-13 as a therapeutic target for respiratory disease. Biochem Pharmacol. 2008;76(2):147–55. https://doi.org/10.1016/j.bcp.2008.04.002.
Article
CAS
PubMed
Google Scholar
Brightling C, Berry M, Amrani Y. Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol. 2008;121(1):5–10. https://doi.org/10.1016/j.jaci.2007.10.02.
Article
CAS
PubMed
Google Scholar
Fernhoff NB, Derbyshire ER, Marletta MA. A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Nat Aca Sci USA. 2009;106(51):21602–7. https://doi.org/10.1073/pnas.0911083106.
Article
Google Scholar
Shankar PS. Airway pathology in bronchial asthma. J Med Sci. 2017;7(4):133–7.
Google Scholar
Urbankowski O, Przybyłowski T. Methods of airway resistance assessment. Pneumonol Alergol Pol. 2016;84(2):134–41. https://doi.org/10.5603/PiAP.2016.0014.
Article
PubMed
Google Scholar
Arora P, Ansari SH, Anjum V, Mathur R, Ahmad S. Investigation of anti-asthmatic potential of Kanakasava in ovalbumin-induced bronchial asthma and airway inflammation in rats. J Ethnopharmacol. 2017;197:242–9. https://doi.org/10.1016/j.jep.2016.07.082.
Article
PubMed
Google Scholar
Mukherjee AA, Kandhare AD, Rojatkar SR, Bodhankar SL. Ameliorative effects of Artemisia pallens in a murine model of ovalbumin-induced allergic asthma via modulation of biochemical perturbations. Biomed Pharmacother. 2017;94:880–9. https://doi.org/10.1016/j.biopha.2017.08.017.
Article
CAS
PubMed
Google Scholar
Warren KJ, Dickinson JD, Nelson AJ, Wyatt TA, Romberger DJ, Poole JA. Ovalbumin-sensitized mice have altered airway inflammation to agriculture organic dust. Respir Res. 2019;20(1):1–10.
Article
Google Scholar
Riedl MA, Nel AE. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opinion allergy Clin Immunol. 2008;8(1):49–56. https://doi.org/10.1097/ACI.0b013e3282f3d913.
Article
CAS
Google Scholar
Cho YS, Moon H-B. The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol Res. 2010;2(3):183–7. https://doi.org/10.4168/aair.2010.2.3.183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci O. Oxidative stress in asthma. World Allergy Organization (WAO) J. 2011;4(10):151–8. https://doi.org/10.1097/WOX.0b013e318232389e.
Article
CAS
Google Scholar
Andrianjafimasy M, Zerimech F, Akiki Z, Huyvaert H, Le Moual N, Siroux V, et al. Nadif R. Eur Respir J. 2017;50(6):1701193. https://doi.org/10.1183/13993003.01193-2017.
Article
CAS
PubMed
Google Scholar
Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy. 2016;71(6):741–57. https://doi.org/10.1111/all.12865.
Article
CAS
PubMed
Google Scholar
Omenaas E, Fluge Ø, Buist AS, Vollmer WM, Gulsvik A. Dietary vitamin C intake is inversely related to cough and wheeze in young smokers. Respiratory Med. 2003;97(2): :134–142.
Comhair SA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2010;12(1):93–124. https://doi.org/10.1089/ars.2008.2425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripathi KD. Essentials of medical pharmacology. New Delhi: Jaypee Brothers Medical Publishers Ltd. 2013;7:213–30.
Google Scholar
Kling S, Zar HJ, Levin ME, Green RJ, Jeena PM, Risenga SM, et al. Guideline for the management of acute asthma in children: 2013 update. S Afr Med J. 2013;103(3):199–207. https://doi.org/10.7196/SAMJ.6658.
Article
CAS
PubMed
Google Scholar
York T, De Wet H, Van Vuuren SF. Plants used for treating respiratory infections inrural Maputaland,KwaZulu-Natal,SouthAfrica J Ethnopharmacol 2011;135:696–710, Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa, 3, DOI: https://doi.org/10.1016/j.jep.2011.03.072.
Maroyi, A., 2017. Lippia javanica (Burm. F.) Spreng.: traditional and commercial uses and phytochemical and pharmacological significance in the african and indian subcontinent. Evidence-based complementary and alternative medicine, 2017.
Matthew M, Chingono F, Mangezi S, Mare A, Mbazangi S. Hidden variables to Covid 19: Zimbabwe. Cambridge Open Engage. 2020. doi:https://doi.org/10.33774/coe-2020-1mqnz
Shikanga EA, Combrinck S, Regnier T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. S Afr J Bot. 2010;76(3):567–71. https://doi.org/10.1016/j.sajb.2010.04.010.
Article
Google Scholar
Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opinion Food Sci. 2016;8:33–42. https://doi.org/10.1016/j.cofs.2016.02.002.
Article
Google Scholar
Suleman Z. Comparing the antioxidant properties of Lippia javanica with Aspalathus linearis (rooibos). South Africa (Unpublished): BSc III research assignment Walter Sisulu University; 2015.
Google Scholar
Rautenbach M, Vlok NM, Eyéghé-Bickong HA, van der Merwe MJ, Stander MA. An electrospray ionization mass spectrometry study on the “In Vacuo” hetero-oligomers formed by the antimicrobial peptides, surfactin and gramicidin S J Am Soc Mass Spectrometry 2017; 28(8):1623–1637.
Joubert E, Gelderblom WCA, Louw A. deBeer D. south African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia pylicoides- a review. J Ethnopharmacol. 2008;119(3):376–412. https://doi.org/10.1016/j.jep.2008.06.014.
Article
CAS
PubMed
Google Scholar
Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 2020; 18(7): e3000411.
SANS. The care and use of animals for scientific purposes. South African National Standard (SANS) 2008, SANS10386: 2008.
Chapman RW, House A, Jones H, Richard J, Celly C, Prelusky D, et al. Anti-asmatic potential of chrysinon ovalbumin-induced bronchoalveolar hyperresponsiveness in rats. Eur J Pharmacol. 2007;571(2-3):215–21. https://doi.org/10.1016/j.ejphar.2007.05.074.
Article
CAS
PubMed
Google Scholar
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659–61. https://doi.org/10.1096/fj.07-9574LSF.
Article
CAS
PubMed
Google Scholar
Walker HK, Hall WD, Hurst JW. (eds). Clinical methods: the history, physical, and laboratory examinations. Chapter 153 - The White Blood Cell and Differential Count Butterworth-Heinemann. 1990.
Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5(1):62–71. https://doi.org/10.1006/niox.2000.0319.
Article
CAS
PubMed
Google Scholar
Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001;73(2):239–44. https://doi.org/10.1016/S0308-8146(00)00324-1.
Article
CAS
Google Scholar
Todorova I, Simeonova G, Kyuchukova G, Dinev D, Gadjeva V. Reference values of oxidative stress parameters (MDA, SOD, CAT) in dogs and cats. Comparative Clin Pathol. 2005;13(4):190–4. https://doi.org/10.1007/s00580-005-0547-5.
Article
CAS
Google Scholar
Owens CWI, Belcher RV. A colorimetric micro-method for the determination of glutathione. Biochem J. 1965;94(3):705–11. https://doi.org/10.1042/bj0940705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiya S, Sewani-Rusike CR, Shauli M. Effects of treatment with Hypoxis hemerocallidea extract on sexual behaviour and reproductive parameters in male rats. Andrologia. 2017;49(8):e12742. https://doi.org/10.1111/and.12742.
Article
CAS
Google Scholar
He J, Lv L, Wang Z, Huo C, Zheng Z, Yin B, et al. Pulvis Fellis Suis extract attenuates ovalbumin-induced airway inflammation in murine model of asthma. J Ethnopharmacol. 2017;207:34–41. https://doi.org/10.1016/j.jep.2017.06.016.
Article
PubMed
Google Scholar
Makoto K, Ishigatsubo Y, Ichiro A. Pathology of asthma. Fontiers Microbiol. 2013;4(263):1–16.
Google Scholar
Barnes BJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Investigation. 2008;118(11):3546–56.
Article
CAS
Google Scholar
So JY, Mamary AJ, Shenoy K. Asthma: diagnosis and treatment. Eur Med J. 2018;3(4):111–21.
Google Scholar
Bradding P. The role of the mast cell in asthma: a reassessment. Curr Opinion in Allergy Clin Immunol. 2003;3(1):45–50. https://doi.org/10.1097/00130832-200302000-00008.
Article
CAS
Google Scholar
Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008;8:116–24.
Article
Google Scholar
Bush A, Kleinert S, Pavord ID. The asthmas in 2015 and beyond: a lancet commission. Lancet. 2015;385(9975):1273–5. https://doi.org/10.1016/S0140-6736(15)60654-7.
Article
PubMed
Google Scholar
Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci Ö. Oxidative stress in asthma: part of the puzzle. Paediatric Arllergy Immunol. 2018;29(8):789–800. https://doi.org/10.1111/pai.12965.
Article
Google Scholar
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxidants Redox Signaling. 2014;20(7):1126–67. https://doi.org/10.1089/ars.2012.5149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neil L, Misso A, Thompson PJ. Oxidative stress and antioxidant deficiencies in asthma: potential modification by diet. Redox Rep. 2005;10(5):247–55.
Article
Google Scholar
Fitzpatrick AM, Jones DP, Brown LA. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012;15;17(2):375–408.
Asowata-Ayodele AM, Otunola GA, Afolayan AJ. Assessment of the polyphenolic content, free radical scavenging, anti-inflammatory, and antimicrobial activities of acetone and aqueous extracts of Lippia javanica (Burm.F.) spreng. Pharmacog Mag. 2016;3:353–62.
Google Scholar
Endris A, Asfaw N, Bisrat D. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Lippia javanica leaves from Ethiopia. J Essential Oil Res. 2016;28(3):221–6. https://doi.org/10.1080/10412905.2015.1108880.
Article
CAS
Google Scholar
Ramamoorthy S, Cidlowski JA. Corticosteroids-mechanisms of action in health and disease. Rheumatic Dis Clin North America. 2016;42(1):15–31. https://doi.org/10.1016/j.rdc.2015.08.002.
Article
Google Scholar
Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA)–a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018;108:547–57. https://doi.org/10.1016/j.biopha.2018.09.069.
Article
CAS
PubMed
Google Scholar
Pei K, Ou J, Huang J, Ou S. P-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agriculture. 2016;96(9):2952–62. https://doi.org/10.1002/jsfa.7578.
Article
CAS
Google Scholar
Pragasam SJ, Venkatesan V, Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation. 2013;36(1):169–76. https://doi.org/10.1007/s10753-012-9532-8.
Article
CAS
PubMed
Google Scholar
Paciello F, Di Pino A, Rolesi R, Troiani D, Paludetti G, Grassi C, et al. Anti-oxidant and anti-inflammatory effects of caffeic acid: in vivo evidences in a model of noise-induced hearing loss. Food ChemToxicol. 2020;143:111555. https://doi.org/10.1016/j.fct.2020.111555.
Article
CAS
Google Scholar
Calixto-Campos C, Carvalho TT, Hohmann MS, Pinho-Ribeiro FA, Fattori V, Manchope MF, Zarpelon AC, Baracat MM, Georgetti SR, Casagrande et al. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. 2015; J Natural Products, 78(8): 1799-1808.
Tanaka T, Takahashi R. Flavonoids and asthma. Nutrients. 2013;5(6):2128–43. https://doi.org/10.3390/nu5062128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Topalovic M, Derom E, Osadnik CR, Troosters T, Decramer M, Janssens W. Airways resistance and specific conductance for the diagnosis of obstructive airways diseases. Respir Res. 2015;16(1):88. https://doi.org/10.1186/s12931-015-0252-0.
Article
PubMed
PubMed Central
Google Scholar
Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol. 2010;10(12):838–48. https://doi.org/10.1038/nri2870.
Article
CAS
PubMed
Google Scholar
Arakawa K, Arakawa H, Hueston C, M, Deak T. Effects of the Estrous Cycle and Ovarian Hormones on Central Expression of Interleukin-1 Evoked by Stress in Female Rats. Neuroendocrinol. 2014; 100: 162–177.