Amin ARMR, Karpowicz PA, Carey TE, Arbiser J, Nahta R, Chen ZG, et al. Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol. 2015;35:S55-S77.
Article
PubMed
CAS
Google Scholar
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.
Article
CAS
PubMed
Google Scholar
Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers. 2011;3:3279–330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16:3–10.
Article
CAS
PubMed
Google Scholar
Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci. 2017;18:2574.
Article
PubMed Central
CAS
Google Scholar
Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34:732–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torquato HF, Goettert MI, Justo GZ, Paredes-Gamero EJ. Anti-cancer Phytometabolites targeting cancer stem cells. Curr Genomics. 2017;18:156–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bachmeier BE, Killian PH, Melchart D. The role of curcumin in prevention and management of metastatic disease. Int J Mol Sci. 2018;19:1716.
Article
PubMed Central
CAS
Google Scholar
Gandalovičová A, Rosel D, Fernandes M, Veselý P, Heneberg P, Čermák V, et al. Migrastatics—anti-metastatic and anti-invasion drugs: promises and challenges. Trends Cancer. 2017;3:391–406.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng Y, Verron E, Rohanizadeh R. Molecular mechanisms of anti-metastatic activity of curcumin. Anticancer Res. 2016;36:5639–47.
Article
CAS
PubMed
Google Scholar
Gupta AP, Khan S, Manzoor MM, Yadav AK, Sharma G, Anand R, et al. Anticancer curcumin: natural analogues and structure-activity relationship. In: Studies in natural products chemistry, vol. 54; 2017. p. 355–401.
Google Scholar
Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med. 2017;7:339–46.
Article
PubMed
Google Scholar
Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, et al. Biological and therapeutic activities, and anticancer properties of curcumin (review). Exp Ther Med. 2015;10:1615–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–4.
Article
CAS
PubMed
Google Scholar
Xu YX, Pindolia KR, Janakiraman N, Noth CJ, Chapman RA, Gautam SC. Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down-regulates chemokine expression in bone marrow stromal cells. Exp Hematol. 1997;25:413–22.
CAS
PubMed
Google Scholar
Li Y, Zhang T. Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett. 2014;346:197–205.
Article
CAS
PubMed
Google Scholar
Zang S, Liu T, Shi J, Qiao L. Curcumin: a promising agent targeting cancer stem cells. Curr Med Chem Anticancer Agents. 2014;14:787–92.
Article
CAS
Google Scholar
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin : problems and promises. Mol Pharm. 2007;4:807–18.
Article
CAS
PubMed
Google Scholar
Kálai T, Kuppusamy ML, Balog M, Selvendiran K, Rivera BK, Kuppusamy P, et al. Synthesis of N-substituted 3,5-bis (arylidene)-4-piperidones with high antitumor and antioxidant activity. J Med Chem. 2011;54:5414–21.
Article
PubMed
CAS
Google Scholar
Selvendiran K, Ahmed S, Dayton A, Kuppusamy ML, Tazi M, Bratasz A, et al. Safe and targeted anticancer efficacy of a novel class of antioxidant-conjugated difluorodiarylidenyl piperidones: differential cytotoxicity in healthy and cancer cells. Free Radic Biol Med. 2010;48:1228–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terlikowska KM, Witkowska AM, Zujko ME, Dobrzycka B, Terlikowski SJ. Potential application of curcumin and its analogues in the treatment strategy of patients with primary epithelial ovarian cancer. Int J Mol Sci. 2014;15:21703–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, et al. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem. 2004;12:3871–83.
Article
CAS
PubMed
Google Scholar
Adams BK, Cai J, Armstrong J, Herold M, Lu YJ, Sun A, et al. EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs. 2005;16:263–75.
Article
CAS
PubMed
Google Scholar
Kearns PR, Hall AG. Glutathione and the response of malignant cells to chemotherapy. Drug Discov Today. 1998;3:113–21.
Article
CAS
Google Scholar
Espinoza-Fonseca LM. The benefits of the multi-target approach in drug design and discovery. Bioorg Med Chem. 2006;14:896–7.
Article
CAS
PubMed
Google Scholar
Frantz S. Playing dirty. Nature. 2005;437:942–3.
Article
CAS
PubMed
Google Scholar
Block KI, Gyllenhaal C, Lowe L, Amedei A, Ruhul Amin ARM, Amin A, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol. 2015;35(Suppl):S276–304.
Article
PubMed
PubMed Central
CAS
Google Scholar
Das S, Das U, Varela-Ramírez A, Lema C, Aguilera RJ, Balzarini J, et al. Bis [3,5-bis (benzylidene)-4-oxo-1-piperidinyl]amides: a novel class of potent Cytotoxins. ChemMedChem. 2011;6:1892–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das S, Das U, Sakagami H, Umemura N, Iwamoto S, Matsuta T, et al. Dimeric 3,5-bis (benzylidene)-4-piperidones: a novel cluster of tumour-selective cytotoxins possessing multidrug-resistant properties. Eur J Med Chem. 2012;51:193–9.
Article
CAS
PubMed
Google Scholar
Santiago-Vazquez Y, Das S, Das U, Robles-Escajeda E, Ortega NM, Lema C, et al. Novel 3,5-bis (arylidene)-4-oxo-1-piperidinyl dimers: structure-activity relationships and potent antileukemic and antilymphoma cytotoxicity. Eur J Med Chem. 2014;77:315–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das S, Das U, Michel D, Gorecki DKJ, Dimmock JR. Novel 3,5-bis (arylidene)-4-piperidone dimers: potent cytotoxins against colon cancer cells. Eur J Med Chem. 2013;64:321–8.
Article
CAS
PubMed
Google Scholar
Edlich RF, Winters KL, Lin KY. Breast cancer and ovarian cancer genetics. J Long Term Eff Med Implants. 2005;15:533–45.
Article
CAS
PubMed
Google Scholar
Kavitha CV, Nambiar M, Ananda Kumar CS, Choudhary B, Muniyappa K, Rangappa KS, et al. Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem Pharmacol. 2009;77:348–63.
Article
CAS
PubMed
Google Scholar
Allen M, Millett P, Dawes E, Rushton N. Lactate dehydrogenase activity as a rapid and sensitive test for the quantification of cell numbers in vitro. Clin Mater. 1994;16:189–94.
Article
CAS
PubMed
Google Scholar
Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer. 2005;103:1551–60.
Article
CAS
PubMed
Google Scholar
Boersma HH, Kietselaer BLJH, Stolk LML, Bennaghmouch A, Hofstra L, Narula J, et al. Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med. 2005;46:2035–50.
CAS
PubMed
Google Scholar
Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.
Article
CAS
PubMed
Google Scholar
McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:1–28.
Article
CAS
Google Scholar
Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.
Article
CAS
PubMed
Google Scholar
Al-Akhras MAH, Aljarrah K, Al-Khateeb H, Jaradat A, Al-Omari A, Al-Nasser A, et al. Introducing cichorium pumilum as a potential therapeutical agent against drug-induced benign breast tumor in rats. Electromagn Biol Med. 2012;31:299–309.
Article
PubMed
Google Scholar
Hamza AA, Heeba GH, Elwy HM, Murali C, El-Awady R, Amin A. Molecular characterization of the grape seeds extract’s effect against chemically induced liver cancer: in vivo and in vitro analyses. Sci Rep. 2018;8:1270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lotempio MM, Veena MS, Steele HL, Ramamurthy B, Ramalingam TS, Cohen AN, et al. Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res. 2005;11:6994–7002.
Article
CAS
PubMed
Google Scholar
Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene. 2001;20:7597–609.
Article
CAS
PubMed
Google Scholar
Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and nuclear factor κB activity and are independent of the B-Raf/mitogen-activated/ extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer. 2005;104:879–90.
Article
CAS
PubMed
Google Scholar
Mehta K, Pantazis P, McQueen T, Aggarwal BB. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs. 1997;8:470–81.
Article
CAS
PubMed
Google Scholar
Elattar TMA, Virji AS. The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res. 2000;20:1733–8.
CAS
PubMed
Google Scholar
Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway. Clin Cancer Res. 2007;13:3423–30.
Article
CAS
PubMed
Google Scholar
Ye C, Wang W, Xia G, Yu C, Yi Y, Hua C, et al. A novel curcumin derivative CL-6 exerts antitumor effect in human gastric cancer cells by inducing apoptosis through hippo-YAP signaling pathway. OncoTargets Therapy. 2019;12:2259–69.
Article
PubMed
PubMed Central
Google Scholar
Vyas A, Dandawate P, Padhye S, Ahmad A, Fazlul S. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des. 2013;19:2047–69.
CAS
PubMed
PubMed Central
Google Scholar
Shi M, Cai Q, Yao L, Mao Y, Ming Y, Ouyang G. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int. 2006;30:221–6.
Article
CAS
PubMed
Google Scholar
Zeuthen J. Human teratocarcinoma cell lines. A review. Int J Androl. 1981;4:61–77.
Article
CAS
PubMed
Google Scholar
Zeuthen J, Norgaard JO, Avner P, Fellous M, Wartiovaara J, Vaheri A, et al. Characterization of a human ovarian teratocarcinoma-derived cell line. Int J Cancer. 1980;25:19–32.
Article
CAS
PubMed
Google Scholar
Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526:131–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morata-Tarifa C, Jiménez G, García MA, Entrena JM, Griñán-Lisón C, Aguilera M, et al. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. Sci Rep. 2016;6:18772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang QH, Dou HT, Xu P, Zhuang SC, Liu PS. Tumor recurrence and drug resistance properties of side population cells in high grade ovary cancer. Drug Res. 2015;65:153–7.
CAS
Google Scholar
Li SS, Ma J, Wong AST. Chemoresistance in ovarian cancer: exploiting cancer stem cell metabolism. J Gynecol Oncol. 2018;29:e32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.
Article
CAS
PubMed
Google Scholar
Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29:4741–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto M, Suzuki S, Togashi K, Sanomachi T, Seino S, Kitanaka C, et al. AS602801, an anticancer stem cell candidate drug, reduces survivin expression and sensitizes A2780 ovarian cancer stem cells to carboplatin and paclitaxel. Anticancer Res. 2018;38:6699–706.
Article
PubMed
Google Scholar
Raghavan S, Mehta P, Ward MR, Bregenzer ME, Fleck EMA, Tan L, et al. Personalized medicine–based approach to model patterns of chemoresistance and tumor recurrence using ovarian cancer stem cell spheroids. Clin Cancer Res. 2017;23:6934–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen PB, Christensen IJ, Sehested M, Hansen HH, Vindeløv L. Differential cytotoxicity of 19 anticancer agents in wild type and etoposide resistant small cell lung cancer cell lines. Br J Cancer. 1993;67:311–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
ATCC. Triple negative breast cancer panels- MDA-MB-231 WwwAtccOrg; 2004.
Google Scholar
Pal SK, Childs BH, Pegram M. Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat. 2011;125:627–36.
Article
CAS
PubMed
Google Scholar
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cailleau R, Olivé M, Cruciger QVJ. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro. 1978;14:911–5.
Article
CAS
PubMed
Google Scholar
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215.
Article
PubMed
PubMed Central
Google Scholar
Ahmed Wahba H, Ahmed E-HH. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015;12:106–16.
Google Scholar
Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6:449–58.
Article
CAS
PubMed
Google Scholar
Kuttan G, Hari Kumar KB, Guruvayoorappan C, Kuttan R. Antitumor, anti-invasion, and antimetastatic effects of curcumin. Adv Exp Med Biol. 2007;595:173–84.
Article
PubMed
Google Scholar
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.
Article
CAS
PubMed
Google Scholar
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.
Article
CAS
PubMed
Google Scholar
Herreros-Villanueva M, Zhang JS, Koenig A, Abel EV, Smyrk TC, Bamlet WR, et al. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis. 2013;2:e61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian Y, Palmieri D, et al. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer. 2012;12:583.
Article
CAS
PubMed
PubMed Central
Google Scholar
Negroni A, Cucchiara S, Stronati L. Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators Inflamm. 2015;2015:250762.
Article
PubMed
PubMed Central
CAS
Google Scholar
Friesen C, Fulda S, Debatin KM. Cytotoxic drugs and the CD95 pathway. Leukemia. 1999;13:1854–8.
Article
CAS
PubMed
Google Scholar
Tameire F, Verginadis II, Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: mechanisms and targets for therapy. Semin Cancer Biol. 2015;33:3–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25:4798–811.
Article
CAS
PubMed
Google Scholar
COHEN GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326:1–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.
Article
CAS
PubMed
PubMed Central
Google Scholar