Lee CM, Afshari NA. The global state of cataract blindness. Curr Opin Ophthalmol. 2017;28(1):98–103.
Article
Google Scholar
Fukuoka H, Afshari NA. The impact of age-related cataract on measures of frailty in an aging global population. Curr Opin Ophthalmol. 2017;28(1):93–7.
Article
Google Scholar
Lofgren S. Solar ultraviolet radiation cataract. Exp Eye Res. 2016.
Smith AJ, Ball SS, Manzar K, Bowater RP, Wormstone IM. Ku80 counters oxidative stress-induced DNA damage and cataract formation in the human Lens. Invest Ophthalmol Vis Sci. 2015;56(13):7868–74.
Article
CAS
Google Scholar
Kruk J, Kubasik-Kladna K, Aboul-Enein HY. The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity. Mini Rev Med Chem. 2015;16(3):241–57.
Article
Google Scholar
Ji Y, Cai L, Zheng T, Ye H, Rong X, Rao J, Lu Y. The mechanism of UVB irradiation induced-apoptosis in cataract. Mol Cell Biochem. 2015;401(1–2):87–95.
Article
CAS
Google Scholar
Sunkireddy P, Jha SN, Kanwar JR, Yadav SC. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf B Biointerfaces. 2013;112:554–62.
Article
CAS
Google Scholar
Dubey S, Saha S, Kaithwas G, Saraf SA. Effect of standardized fruit extract of Luffa cylindrica on oxidative stress markers in hydrogen peroxide induced cataract. Indian J Pharmacol. 2015;47(6):644–8.
Article
CAS
Google Scholar
Varma SD, Hegde KR. Kynurenine-induced photo oxidative damage to lens in vitro: protective effect of caffeine. Mol Cell Biochem. 2010;340(1–2):49–54.
Article
CAS
Google Scholar
Grover AK, Samson SE. Antioxidants and vision health: facts and fiction. Mol Cell Biochem. 2014;388(1–2):173–83.
Article
CAS
Google Scholar
Kou X, Li B, Olayanju JB, Drake JM, Chen N. Nutraceutical or pharmacological potential of Moringa oleifera lam. Nutrients. 2018;10(3).
Article
Google Scholar
Saini RK, Sivanesan I, Keum YS: Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech. 2016; 6(2):203.
Stohs SJ, Hartman MJ. Review of the safety and efficacy of Moringa oleifera. Phytother Res. 2015;29(6):796–804.
Article
CAS
Google Scholar
Sreelatha S, Padma PR. Modulatory effects of Moringa oleifera extracts against hydrogen peroxide-induced cytotoxicity and oxidative damage. Hum Exp Toxicol. 2011;30(9):1359–68.
Article
CAS
Google Scholar
Vongsak B, Mangmool S, Gritsanapan W. Antioxidant activity and induction of mRNA expressions of antioxidant enzymes in HEK-293 cells of Moringa oleifera leaf extract. Planta Med. 2015;81(12–13):1084–9.
CAS
PubMed
Google Scholar
Kerdsomboon K, Tatip S, Kosasih S, Auesukaree C. Soluble Moringa oleifera leaf extract reduces intracellular cadmium accumulation and oxidative stress in Saccharomyces cerevisiae. J Biosci Bioeng. 2016;121(5):543–9.
Article
CAS
Google Scholar
Jaiswal D, Rai PK, Mehta S, Chatterji S, Shukla S, Rai DK, Sharma G, Sharma B, Khair S, Watal G. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac J Trop Med. 2013;6(6):426–32.
Article
CAS
Google Scholar
Das N, Ganguli D, Dey S. Moringa oleifera lam. Seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage. Indian J Exp Biol. 2015;53(12):794–802.
PubMed
Google Scholar
Agrawal ND, Nirala SK, Shukla S, Mathur R. Co-administration of adjuvants along with Moringa oleifera attenuates beryllium-induced oxidative stress and histopathological alterations in rats. Pharm Biol. 2015;53(10):1465–73.
Article
Google Scholar
Kurmi R, Ganeshpurkar A, Bansal D, Agnihotri A, Dubey N. Ethanol extract of Moringa oliefera prevents in vitro glucose induced cataract on isolated goat eye lens. Indian J Ophthalmol. 2014;62(2):154–7.
Article
Google Scholar
Sasikala V, Rooban BN, Priya SG, Sahasranamam V, Abraham A. Moringa oleifera prevents selenite-induced cataractogenesis in rat pups. J Ocul Pharmacol Ther. 2010;26(5):441–7.
Article
CAS
Google Scholar
Moran E, Ding L, Wang Z, Cheng R, Chen Q, Moore R, Takahashi Y, Ma JX. Protective and antioxidant effects of PPARalpha in the ischemic retina. Invest Ophthalmol Vis Sci. 2014;55(7):4568–76.
Article
CAS
Google Scholar
Khatol P, Saraf S, Jain A. Peroxisome proliferated activated receptors (PPARs): opportunities and challenges for ocular therapy. Crit Rev Ther Drug Carrier Syst. 2018;35(1):65–97.
Article
Google Scholar
Chen Q, Qiu F, Zhou K, Matlock HG, Takahashi Y, Rajala RVS, Yang Y, Moran E, Ma JX. Pathogenic role of microRNA-21 in diabetic retinopathy through downregulation of PPARalpha. Diabetes. 2017;66(6):1671–82.
Article
CAS
Google Scholar
Qi HP, Wei SQ, Zhang LQ, Gao XC, Yu NN, Bi S, Cui H. Preventive effect of danshensu on selenite-induced cataractogenesis in cultured rat lens. Clin Exp Ophthalmol. 2013;41(2):172–9.
Article
Google Scholar
Sampath S, McLean LA, Buono C, Moulin P, Wolf A, Chibout SD, Pognan F, Busch S, Shangari N, Cruz E, et al. The use of rat lens explant cultures to study the mechanism of drug-induced cataractogenesis. Toxicol Sci. 2012;126(1):128–39.
Article
CAS
Google Scholar
Basu S, Rajakaruna S, Dickinson BC, Chang CJ, Menko AS. Endogenous hydrogen peroxide production in the epithelium of the developing embryonic lens. Mol Vis. 2014;20:458–67.
PubMed
PubMed Central
Google Scholar
Cornish KM, Williamson G, Sanderson J. Quercetin metabolism in the lens: role in inhibition of hydrogen peroxide induced cataract. Free Radic Biol Med. 2002;33(1):63–70.
Article
CAS
Google Scholar
Sreelakshmi V, Sasikala V, Abraham A. Luteolin supplementation prevents selenite-induced Cataractogenesis in Sprague Dawley rat pups. Chem Biodivers. 2015;12(12):1881–90.
Article
CAS
Google Scholar
Rooban BN, Sasikala V, Gayathri Devi V, Sahasranamam V, Abraham A. Prevention of selenite induced oxidative stress and cataractogenesis by luteolin isolated from Vitex negundo. Chem Biol Interact. 2012;196(1–2):30–8.
Article
CAS
Google Scholar
Chen Y, Sun XB, Lu HE, Wang F, Fan XH. Effect of luteoin in delaying cataract in STZ-induced diabetic rats. Arch Pharm Res. 2017;40(1):88–95.
Article
CAS
Google Scholar
Bao YF, Li JY, Zheng LF, Li HY. Antioxidant activities of cold-nature Tibetan herbs are signifcantly greater than hot-nature ones and are associated with their levels of total phenolic components. Chin J Nat Med. 2015;13(8):609–17.
CAS
PubMed
Google Scholar
Yamaguchi T, Takamura H, Matoba T, Terao J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem. 1998;62(6):1201–4.
Article
CAS
Google Scholar
Devi VG, Rooban BN, Sasikala V, Sahasranamam V, Abraham A. Isorhamnetin-3-glucoside alleviates oxidative stress and opacification in selenite cataract in vitro. Toxicol in Vitro. 2010;24(6):1662–9.
Article
Google Scholar
Biju PG, Rooban BN, Lija Y, Devi VG, Sahasranamam V, Abraham A. Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens. Mol Vis. 2007;13:1121–9.
CAS
PubMed
PubMed Central
Google Scholar
Lu Q, Yang T, Zhang M, Du L, Liu L, Zhang N, Guo H, Zhang F, Hu G, Yin X. Preventative effects of Ginkgo biloba extract (EGb761) on high glucose-cultured opacity of rat lens. Phytother Res. 2014;28(5):767–73.
Article
CAS
Google Scholar
Shukla R, Banerjee S, Tripathi YB. Antioxidant and Antiapoptotic effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) DC. On streptozotocin-induced diabetic nephropathy in rats. BMC Complement Altern Med. 2018;18(1):156.
Article
Google Scholar
Asha R, Gayathri Devi V, Abraham A. Lupeol, a pentacyclic triterpenoid isolated from Vernonia cinerea attenuate selenite induced cataract formation in Sprague Dawley rat pups. Chem Biol Interact. 2016;245:20–9.
Article
CAS
Google Scholar
Rooban BN, Sasikala V, Sahasranamam V, Abraham A. Amelioration of selenite toxicity and cataractogenesis in cultured rat lenses by Vitex negundo. Graefes Arch Clin Exp Ophthalmol. 2011;249(5):685–92.
Article
CAS
Google Scholar
Kim MS, Lee DY, Lee J, Kim HW, Sung SH, Han JS, Jeon WK. Terminalia chebula extract prevents scopolamine-induced amnesia via cholinergic modulation and anti-oxidative effects in mice. BMC Complement Altern Med. 2018;18(1):136.
Article
Google Scholar
Aleshin S, Reiser G. Role of the peroxisome proliferator-activated receptors (PPAR)-alpha, beta/delta and gamma triad in regulation of reactive oxygen species signaling in brain. Biol Chem. 2013;394(12):1553–70.
Article
CAS
Google Scholar
Gao S, Qin T, Liu Z, Caceres MA, Ronchi CF, Chen CY, Yeum KJ, Taylor A, Blumberg JB, Liu Y, et al. Lutein and zeaxanthin supplementation reduces H2O2-induced oxidative damage in human lens epithelial cells. Mol Vis. 2011;17:3180–90.
CAS
PubMed
PubMed Central
Google Scholar
Smith AJ, Ball SS, Bowater RP, Wormstone IM. PARP-1 inhibition influences the oxidative stress response of the human lens. Redox Biol. 2016;8:354–62.
Article
CAS
Google Scholar
Harding JJ. Free and protein-bound glutathione in normal and cataractous human lenses. Biochem J. 1970;117(5):957–60.
Article
CAS
Google Scholar
Nye-Wood MG, Spraggins JM, Caprioli RM, Schey KL, Donaldson PJ, Grey AC. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging. Exp Eye Res. 2017;154:70–8.
Article
CAS
Google Scholar
Giblin FJ. Glutathione: a vital lens antioxidant. J Ocul Pharmacol Ther. 2000;16(2):121–35.
Article
CAS
Google Scholar
Sweeney MH, Truscott RJ. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Exp Eye Res. 1998;67(5):587–95.
Article
CAS
Google Scholar
Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol. 2015;33:8–13.
Article
CAS
Google Scholar
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62.
Article
CAS
Google Scholar
Randriamboavonjy JI, Loirand G, Vaillant N, Lauzier B, Derbre S, Michalet S, Pacaud P, Tesse A. Cardiac protective effects of Moringa oleifera seeds in spontaneous hypertensive rats. Am J Hypertens. 2016;29(7):873–81.
Article
CAS
Google Scholar
Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, Simionescu M. High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated PPARalpha and PPARbeta/delta. Cell Tissue Res. 2015;361(2):593–604.
Article
CAS
Google Scholar
Abdelmegeed MA, Moon KH, Hardwick JP, Gonzalez FJ, Song BJ. Role of peroxisome proliferator-activated receptor-alpha in fasting-mediated oxidative stress. Free Radic Biol Med. 2009;47(6):767–78.
Article
CAS
Google Scholar
Yoo HY, Chang MS, Rho HM. Induction of the rat cu/Zn superoxide dismutase gene through the peroxisome proliferator-responsive element by arachidonic acid. Gene. 1999;234(1):87–91.
Article
CAS
Google Scholar
Girnun GD, Domann FE, Moore SA, Robbins ME. Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol Endocrinol. 2002;16(12):2793–801.
Article
CAS
Google Scholar
Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPARalpha. Acta Pharm Sin B. 2017;7(4):427–38.
Article
Google Scholar