WHO. Obesity and overweight. 2012.
Google Scholar
Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet (London, England). 2011;377:557–67.
Article
Google Scholar
Must A, McKeown NM. The Disease Burden Associated with Overweight and Obesity. Endotext. 2000.
Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.
Article
PubMed
Google Scholar
Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005;111:1999–2012.
Article
PubMed
Google Scholar
Garrow JS, Webster J. Quetelet’s index (W/H2) as a measure of fatness. Int J Obes. 1985;9:147–53.
CAS
PubMed
Google Scholar
Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat Rev Genet. 2005;6:221–34.
Article
CAS
PubMed
Google Scholar
McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49:868–913.
Article
PubMed
PubMed Central
Google Scholar
Madrigano J, Baccarelli A, Wright RO, Suh H, Sparrow D, Vokonas PS, et al. Air pollution, obesity, genes and cellular adhesion molecules. Occup Environ Med. 2010;67:312–7.
Article
CAS
PubMed
Google Scholar
Cummings DE, Schwartz MW. Genetics and pathophysiology of human obesity. Annu Rev Med. 2003;54:453–71.
Article
CAS
PubMed
Google Scholar
Wardle J, Carnell S, Haworth CM, Plomin R. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87:398–404.
CAS
PubMed
Google Scholar
Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev. 2017;18:603–34.
Article
CAS
PubMed
Google Scholar
Gerken T, Girard CA, Tung Y-CL, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318:1469–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi Q, Kilpelainen TO, Downer MK, Tanaka T, Smith CE, Sluijs I, et al. FTO genetic variants, dietary intake and body mass index: insights from 177 330 individuals. Hum Mol Genet. 2014;23:6961–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science NIH Public Access. 2007;316:889–94.
CAS
Google Scholar
Qi L, Corella D, Sorlí JV, Portolés O, Shen H, Coltell O, et al. Genetic variation at the perilipin (PLIN) locus is associated with obesity-related phenotypes in white women. Clin Genet. 2004;66:299–310.
Article
CAS
PubMed
Google Scholar
Mottagui-Tabar S, Rydén M, Löfgren P, Faulds G, Hoffstedt J, Brookes AJ, et al. Evidence for an important role of perilipin in the regulation of human adipocyte lipolysis. Diabetologia. 2003;46:789–97.
Article
CAS
PubMed
Google Scholar
Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C. Perilipin a increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem. 2000;275:38486–93.
Article
CAS
PubMed
Google Scholar
Clément K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, et al. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med. 1995;333:352–4.
Article
PubMed
Google Scholar
MacLean PS, Wing RR, Davidson T, Epstein L, Goodpaster B, Hall KD, et al. NIH working group report: innovative research to improve maintenance of weight loss. Obesity. 2015;23:7–15.
Article
PubMed
Google Scholar
Preuss HG, Bagchi D, Bagchi M, Rao CVS, Dey DK, Satyanarayana S. Effects of a natural extract of (−)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema Sylvestre extract on weight loss. Diabetes, Obes. Metab. 2004;6:171–80.
CAS
Google Scholar
Ramos R, Sanz S, Aguilar S. Extract of Garcinia cambogia in the control of obesity. Invest Med Int. 1995;22:97–100.
Google Scholar
Toromanyan E, Aslanyan G, Amroyan E, Gabrielyan E, Panossian A. Efficacy of Slim339 in reducing body weight of overweight and obese human subjects. Phytother Res. 2007;21:1177–81.
Article
PubMed
Google Scholar
Girola M, De Bernardi M, Contos S. Dose effect in lipidlowering activity of a new dietary integrator (Chitosan, Garcinia cambogia extract, and chrome). Acta Toxicol Ther. 1996;17:25–40.
Birketvedt G, Shimshi M, Thom E, Florholmen J. Experiences with three different fiber supplements in weight reduction. Med Sci Monit. 2005;11:5–8.
Google Scholar
Márquez F, Babio N, Bulló M, Salas-Salvadó J. Evaluation of the safety and efficacy of hydroxycitric acid or Garcinia cambogia extracts in humans. Crit Rev Food Sci Nutr. 2012;52:585–94.
Article
PubMed
Google Scholar
Lyon MR, Reichert RG. The effect of a novel viscous polysaccharide along with lifestyle changes on short-term weight loss and associated risk factors in overweight and obese adults: an observational retrospective clinical program analysis. Altern Med Rev. 2010;15:68–75.
PubMed
Google Scholar
Cairella M, Marchini G. [evaluation of the action of glucomannan on metabolic parameters and on the sensation of satiation in overweight and obese patients]. Clin. Ter. 1995;146:269–74.
CAS
Google Scholar
Deurenberg P, van der Kooy K, Leenen R, Weststrate JA, Seidell JC. Sex and age specific prediction formulas for estimating body composition from bioelectrical impedance: a cross-validation study. Int J Obes. 1991;15:17–25.
CAS
PubMed
Google Scholar
WEIR JBDB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949;109:1–9.
Vasques CAR, Rossetto S, Halmenschlager G, Linden R, Heckler E, Fernandez MSP, et al. Evaluation of the pharmacotherapeutic efficacy of Garcinia cambogia plus Amorphophallus konjac for the treatment of obesity. Phyther Res. 2008;22:1135–40.
Article
CAS
Google Scholar
Eynon N, Nasibulina ES, Banting LK, Cieszczyk P, Maciejewska-Karlowska A, Sawczuk M, et al. The FTO A/T polymorphism and elite athletic performance: a study involving three groups of European athletes. PLoS One. 2013;8:e60570.
Article
CAS
PubMed
PubMed Central
Google Scholar
Widén E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC. Association of a Polymorphism in the β 3 -adrenergic–receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med. 1995;333:348–52.
Article
PubMed
Google Scholar
Sun N-N, Wu T-Y, Chau C-F. Natural dietary and herbal products in anti-obesity treatment. Molecules. 2016;21:1351.
Article
Google Scholar
Semwal RB, Semwal DK, Vermaak I, Viljoen A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia. 2015;102:134–48.
Article
CAS
PubMed
Google Scholar
Heymsfield SB, Allison DB, Vasselli JR, Pietrobelli A, Greenfield D, Nunez C. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA. 1998;280:1596–600.
Article
CAS
PubMed
Google Scholar
Chuah LO, Ho WY, Beh BK, Yeap SK. Updates on Antiobesity effect of Garcinia origin (−)-HCA. Evid Based Complement Alternat Med. 2013;2013:751658.
Article
PubMed
PubMed Central
Google Scholar
Sood N, Baker WL, Coleman CI. Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr. 2008;88:1167–75.
CAS
PubMed
Google Scholar
Onakpoya I, Posadzki P, Ernst E. The efficacy of glucomannan supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. J Am Coll Nutr. 2014;33:70–8.
Article
CAS
PubMed
Google Scholar
Bray GA, Wadden TA. Improving long-term weight loss maintenance: can we do it? Obesity (Silver Spring). 2015;23:2–3.
Article
Google Scholar
Luglio HF, Sulistyoningrum DC, Susilowati R. The role of genes involved in lipolysis on weight loss program in overweight and obese individuals. J Clin Biochem Nutr. 2015;57:91–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sethi A. A review on “Garciniacambogia – a weight controll in gagent”. IJPRD. 2011;3:13–24.
Google Scholar
Smith CE. Ordov?S JM. Update on perilipin polymorphisms and obesity. Nutr. Rev. 2012;70:611–21.
Google Scholar
Corella D, Qi L, Sorlí JV, Godoy D, Portolés O, Coltell O, et al. Obese subjects carrying the 11482G>a polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction. J Clin Endocrinol Metab. 2005;90:5121–6.
Article
CAS
PubMed
Google Scholar
Candelore MR, Deng L, Tota LM, Kelly LJ, Cascieri MA, Strader CD. Pharmacological characterization of a recently described human beta 3-adrenergic receptor mutant. Endocrinology. 1996;137:2638–41.
Article
CAS
PubMed
Google Scholar