Van Vuuren S, Viljoen A. Plant-based antimicrobial studies – methods and approaches to study the interaction between natural products. Planta Med. 2011;77:1168–82.
Article
PubMed
Google Scholar
Bergmann JS, Woods GL. In vitro activity of antimicrobial combinations against clinical isolates of susceptible and resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 1998;2(8):621–6.
CAS
PubMed
Google Scholar
Bapela NB, Lall N, Fourie PB, Franzblau SG, Van Rensburg CEJ. Activity of 7-methyljuglone in combination with antituberculous drugs against Mycobacterium tuberculosis. Phytomedicine. 2006;13(9-10):630–5.
Article
CAS
PubMed
Google Scholar
Dye C. Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat Rev Microbiol. 2009;7:81–7.
Article
CAS
PubMed
Google Scholar
Sommer C. Inflammation and healing. In: Mattson CP, editor. Pathophysiology. seventhth ed. London: Lippincott Williams & Wilkins; 2005. p. 387–98.
Google Scholar
Reljic R, Stylianou E, Balu S, Ma JK. Cytokine interactions that determine the outcome of mycobacterial infection of macrophages. Cytokine. 2010;51:42–6.
Article
CAS
PubMed
Google Scholar
Dzoyem JP, Eloff JN. Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. J Ethnopharmacol. 2015;160:194–201.
Article
CAS
PubMed
Google Scholar
Costantino L, Albasini A, Rastelli G, Benvenuti S. Activity of polyphenolic crude extracts as scavengers of superoxide radicals and inhibitors of xanthine oxidase. Planta Med. 1992;58:342–4.
Article
CAS
PubMed
Google Scholar
Bogdan C, Rollinghoff M, Diefenbach A. The role of nitric oxide in innate immunity. Immunol Rev. 2000;173:17–26.
Article
CAS
PubMed
Google Scholar
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.
CAS
PubMed
Google Scholar
Nathan CF, Hibbs Jr JB. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991;3:65–78.
Article
CAS
PubMed
Google Scholar
Taira J, Nanbu H, Ueda K. Nitric oxide-scavenging compounds in Agrimonia pilosa Ledeb on LPS-induced RAW264.7 macrophages. Food Chem. 2009;115:1221–7.
Article
CAS
Google Scholar
Lee MH, Lee JM, Jun SH, Lee SH, Kim NW, Lee JH, et al. The anti- inflammatory effects of Pyrolae herba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J Ethnopharmacol. 2007;112:49–54.
Article
PubMed
Google Scholar
Lee CJ, Chen LG, Liang WL, Wanga CC. Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem. 2010;118:315–22.
Article
CAS
Google Scholar
Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol. 2007;179:7121–7.
Article
CAS
PubMed
Google Scholar
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raza M, Shaheen F, Choudhary MI, Suria A, Rahman UA, Sompong S, Delorenzo RJ. Anticonvulsant activities of the FS-1 subfraction isolated from roots of Delphinium denudatum. Phytother Res. 2001;15:426–30.
Article
CAS
PubMed
Google Scholar
Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem. 2007;42:125–37.
Article
CAS
PubMed
Google Scholar
Martins D, Nunez CV. Secondary metabolites from Rubiaceae species. Molecules. 2015;20(7):13422–95.
Article
CAS
PubMed
Google Scholar
Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. “Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae),”. Phytochemistry. 2005;66(1):5–29.
Article
CAS
PubMed
Google Scholar
Martins D, Carrion LL, Ramos DF, Salome KS, da Silva Almeida PE, Barison A, Nunez CV. Triterpenes and the antimycobacterial activity of Duroia macrophylla Huber (Rubiaceae). BioMed Res Int. 2013;2013:605831.
Article
PubMed
PubMed Central
Google Scholar
Aro AO, Dzoyem JP, Hlokwe TM, Madoroba E, Eloff JN, McGaw LJ. Some South African Rubiaceae tree leaf extracts have antimycobacterial activity against pathogenic and non-pathogenic Mycobacterium species. Phytother Res. 2015;29:1004–10.
Article
PubMed
Google Scholar
Eloff JN. Which extractant should be used for screening and isolation of antimicrobial components from plants? J Ethnopharmacol. 1998;60:1–8.
Article
CAS
PubMed
Google Scholar
Hlokwe TM, van Helden P, Michel A. Evaluation of the discriminatory power of variable number of tandem repeat typing of Mycobacterium bovis isolates from southern Africa. Transbound Emerg Dis. 2013;60:111–20.
Article
PubMed
Google Scholar
Schelz Z, Molnar J, Hohmann J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia. 2006;77:279–85.
Article
CAS
PubMed
Google Scholar
Omisore NOA, Adewunmi CO, Iwalewa EO, Ngadjui BT, Adenowo TK, Abegaz BM, Ojewole JA, Watchueng J. Antitrichomonal and antioxi- dant activities of Dorstenia barteri and Dorstenia convexa. Braz J Med Biol Res. 2005;38:1087–94.
Article
CAS
PubMed
Google Scholar
Kuete V, Efferth T. Cameroonian medicinal plants: pharmacology and derived natural products. Front Pharmacol. 2010;1:1–19.
Article
Google Scholar
Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis. 1998;2:10–5.
CAS
PubMed
Google Scholar
Wagner H, Ulrich-merzenich G. Synergy research : approaching a new generation of Phytopharmaceuticals. Phytomedicine. 2009;16:97–110.
Article
CAS
PubMed
Google Scholar
Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 1998;46:4113–7.
Article
CAS
Google Scholar
Salomão K, Pereira PR, Campos LC, Borba CM, Cabello PH, Marcucci MC, de Castro SL. Brazilian propolis: correlation between chemical composition and antimicrobial activity. Evid Based Complement Alternat Med. 2008;5(3):317–24.
Article
PubMed
Google Scholar
Cushnie TP, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. 2011;38(2):99–107.
Article
CAS
PubMed
Google Scholar
Chinsamy M, Finnie JF, Van Staden J. Anti-inflammatory, antioxidant, anti- cholinesterase activity and mutagenicity of South African medicinal orchids. S Afr J Bot. 2014;91:88–98.
Article
Google Scholar
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–51.
Article
CAS
PubMed
Google Scholar
Ryu JH, Ahn H, Kim JY, Kim YK. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages. Phytother Res. 2003;17:485–9.
Article
PubMed
Google Scholar
Son HJ, Lee HJ, Yun-Choi HS, Ryu JH. Inhibitors of nitric oxide synthesis and TNF-α expression from Magnolia obovata in activated macrophages. Planta Med. 2000;66:469–71.
Article
CAS
PubMed
Google Scholar
Ge F, Zeng F, Liu S, Guo N, Ye H, Song Y, et al. In vitro synergistic activity between 8-methoxypsoralen and ethambutol, isoniazid, and rifampin when used in combination against Mycobacterium tuberculosis. World J Microbiol Biotechnol. 2010;26(4):623–8.
Article
CAS
Google Scholar
Lopes MA, Ferracioli KRC, Siqueira VLD, de Lima Scodro RB, Cortez DAG, da Silva RZ, Cardoso RF. In vitro interaction of eupomatenoid-5 from Piper solmsianum C. DC. var. solmsianum and anti-tuberculosis drugs. Int J Tuberc Lung Dis. 2014;18(12):1513–5.
Article
CAS
PubMed
Google Scholar