Mecocci P, Fanó G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF: Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med. 1999, 26: 303-308. 10.1016/S0891-5849(98)00208-1.
Article
CAS
PubMed
Google Scholar
Pansarasa O, Bertorelli L, Vecchiet J, Felzani G, Marzatico F: Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic Biol Med. 1999, 27: 617-622. 10.1016/S0891-5849(99)00108-2.
Article
CAS
PubMed
Google Scholar
Lim PS, Cheng YM, Wei YH: Increase in oxidative damage to lipids and proteins in skeletal muscle of uremic patients. Free Radic Biol Med. 2002, 36: 295-301.
Article
CAS
Google Scholar
Gianni P, Jan KJ, Douglas MJ, Stuart PM, Tarnopolsky MA: Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Gerontol. 2004, 39: 1391-1400. 10.1016/j.exger.2004.06.002.
Article
CAS
PubMed
Google Scholar
Hamilton ML, van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A: Does oxidative damage to DNA increase with age?. Proc Natl Acad Sci U S A. 2001, 98: 10469-10474. 10.1073/pnas.171202698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Çakatay U, Telci A, Kayali R, Tekeli F, Akçay T, Sivas A: Relation of aging with oxidative protein damage parameters in the rat skeletal muscle. Clin Biochem. 2003, 36: 51-55. 10.1016/S0009-9120(02)00407-1.
Article
PubMed
Google Scholar
Ohsawa I, Nishimaki K, Murakami Y, Suzuki Y, Ishikawa M, Ohta S: Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J Neurosci. 2008, 28: 6239-6249. 10.1523/JNEUROSCI.4956-07.2008.
Article
CAS
PubMed
Google Scholar
Endo J, Sano M, Katayama T, Hishiki T, Shinmura K, Morizane S, Matsuhashi T, Katsumata Y, Zhang Y, Ito H, Nagahata Y, Marchitti S, Nishimaki K, Wolf AM, Nakanishi H, Hattori F, Vasiliou V, Adachi T, Ohsawa I, Taguchi R, Hirabayashi Y, Ohta S, Suematsu M, Ogawa S, Fukuda K: Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ Res. 2009, 105: 1118-1127. 10.1161/CIRCRESAHA.109.206607.
Article
CAS
PubMed
Google Scholar
Conklin D, Prough R, Bhatanagar A: Aldehyde metabolism in the cardiovascular system. Mol Biosyst. 2007, 3: 136-150. 10.1039/b612702a.
Article
CAS
PubMed
Google Scholar
Higuchi S, Matsushita S, Masaki T, Yokoyama A, Kimura M, Suzuki G, Mochizuki H: Influence of genetic variations of ethanolmetabolizing enzymes on phenotypes of alcohol-related disorders. Ann NY Acad Sci. 2004, 1025: 472-480. 10.1196/annals.1316.058.
Article
CAS
PubMed
Google Scholar
Ohsawa I, Kamino K, Nagasaka K, Ando F, Niino N, Shimokata H, Ohta S: Genetic deficiency of a mitochondrial aldehyde dehydrogenase increases serum lipid peroxides in community-dwelling females. J Hum Genet. 2003, 48: 404-409. 10.1007/s10038-003-0046-y.
Article
CAS
PubMed
Google Scholar
Kamino K, Nagasaka K, Imagawa M, Yamamoto H, Yoneda H, Ueki A, Kitamura S, Namekata K, Miki T, Ohta S: Deficiency in mitochondrial aldehyde dehydrogenase increases the risk for late-onset Alzheimer’s disease in the Japanese population. Biochem Biophys Res Commun. 2000, 273: 192-196. 10.1006/bbrc.2000.2923.
Article
CAS
PubMed
Google Scholar
Suzuki Y, Muramatsu T, Taniyama M, Atsumi Y, Suematsu M, Kawaguchi R, Higuchi S, Asahina T, Murata C, Handa M, Mastuoka K: Mitochondrial aldehyde dehydrogenase in diabetes associated with mitochondrial tRNA(Leu(UUR)) mutation at position 3243. Diabetes Care. 1996, 19: 1423-1425. 10.2337/diacare.19.12.1423.
Article
CAS
PubMed
Google Scholar
Yokoyama A, Muramatsu T, Ohmori T, Yokoyama T, Okuyama K, Takahashi H, Hasegawa Y, Higuchi S, Maruyama K, Shirakura K, Ishii H: Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis. 1998, 19: 1383-1387. 10.1093/carcin/19.8.1383.
Article
CAS
PubMed
Google Scholar
Takagi S, Baba S, Iwai N, Fukuda M, Katsuya T, Higaki J, Mannami T, Ogata J, Goto Y, Ogihara T: The aldehyde dehydrogenase 2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita study. Hypertens Res. 2001, 24: 365-370. 10.1291/hypres.24.365.
Article
CAS
PubMed
Google Scholar
Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D: Targeting aldehyde dehydrogenase2: new therapeutic opportunities. Physiol Rev. 2014, 94: 1-34. 10.1152/physrev.00017.2013.
Article
PubMed
PubMed Central
Google Scholar
Ohsawa I, Nishimaki K, Yasuda C, Kamino K, Ohta S: Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC12 cells. J Neurochem. 2003, 84: 1110-1117. 10.1046/j.1471-4159.2003.01619.x.
Article
CAS
PubMed
Google Scholar
Ohta S, Ohsawa I, Kamino K, Ando F, Shimokata H: Mitochondrial ALDH2 deficiency as an oxidative stress. Ann NY Acad Sci. 2004, 1011: 36-44. 10.1196/annals.1293.004.
Article
CAS
PubMed
Google Scholar
Rosenberg IH: Sarcopenia: origins and clinical relevance. J Nutr. 1997, 127: 990S-991S.
CAS
PubMed
Google Scholar
Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R: The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004, 52: 80-85. 10.1111/j.1532-5415.2004.52014.x.
Article
PubMed
Google Scholar
Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD: Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 2004, 147: 755-763.
Article
Google Scholar
Melton LJ, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL: Epidemiology of sarcopenia. J Am Geriatr Soc. 2000, 48: 625-630.
Article
PubMed
Google Scholar
Weindruch R: Interventions based on the possibility that oxidative stress contributes to sarcopenia. J Gerontol A Biol Sci Med Sci. 1995, 50: 157-161.
PubMed
Google Scholar
Schneider C, Tallman KA, Porter NA, Brash AR: Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem. 2001, 276: 20831-20838. 10.1074/jbc.M101821200.
Article
CAS
PubMed
Google Scholar
Uchida K: 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res. 2003, 42: 318-343. 10.1016/S0163-7827(03)00014-6.
Article
CAS
PubMed
Google Scholar
Hasegawa T, Kimura Y, Hiromastsu K, Kobayashi N, Yamada A, Makino M, Okuda M, Sano T, Nomoto K, Yoshikai Y: Effect of hot water extract of Chlorella vulgaris on cytokine expression patterns in mice with murine acquired immunodeficiency syndrome after infection with Listeria monocyto-genes. Immunopharmacology. 1997, 35: 273-282. 10.1016/S0162-3109(96)00150-6.
Article
CAS
PubMed
Google Scholar
Konishi F, Tanaka K, Himeno K, Taniguti K, Nomoto K: Antitumor effect induced by a hot water extract of Chlorella vulgaris (CE): resistance to Meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes. Cancer Immunol Immunother. 1985, 19: 73-78.
Article
CAS
PubMed
Google Scholar
Tanaka K, Koga T, Konishi F, Nakamura M, Mitsuyama M, Himeno K, Nomoto K: Augmentation of host defense by a unicellular green alga, Chlorella vulgaris, to Escherichia coli infection. Infect Immun. 1986, 53: 267-271.
CAS
PubMed
PubMed Central
Google Scholar
Lee HS, Choi CY, Cho C, Song Y: Attenuating effect of chlorella supplementation on oxidative stress and NFkappaB activation in peritoneal macrophages and liver of C57BL/6 mice fed on an atherogenic diet. Biosci Biotechnol Biochem. 2003, 67: 2083-2090. 10.1271/bbb.67.2083.
Article
CAS
PubMed
Google Scholar
Pratt R, Johnson E: Production of thiamine, riboflavin, folic acid, and biotin by Chlorella vulgaris and Chlorella pyrenoidosa. J Pharm Sci. 1965, 54: 871-874. 10.1002/jps.2600540611.
Article
CAS
PubMed
Google Scholar
Shibata S, Natori Y, Nishihara T, Tomisaka K, Matsumoto K, Sansawa H, Nguyen VC: Antioxidant and anti-cataract effects of chlorella on rats with streptozotocin induced diabetes. J Nutr Sci Vitaminol (Tokyo). 2003, 49: 334-339. 10.3177/jnsv.49.334.
Article
CAS
Google Scholar
Makpol S, Yeoh TW, Ruslam FA, Arifin KT, Yusof YA: Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts. BMC Complement Altern Med. 2013, 13 (1): 1-10. 10.1186/1472-6882-13-1.
Article
Google Scholar
Aizzat O, Yap SW, Sopiah H, Madiha MM, Hazreen M, Shailah A, Wan JW, Nur SA, Srijit D, Musalmah M, Yasmin AM: Modulation of oxidative stress by Chlorella vulgaris in streptozotocin (STZ) induced diabetic Sprague–Dawley rats. Adv Med Sci. 2010, 55 (2): 281-288. 10.2478/v10039-010-0046-z.
Article
CAS
PubMed
Google Scholar
Aliahmat NS, Noor MR, Yusof WJ, Makpol S, Ngah WZ, Yusof YA: Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice. Clinics (Sao Paulo). 2012, 67 (12): 1147-1154.
Article
Google Scholar
Peng HY, Chu YC, Chen SJ, Chou ST: Hepatoprotection of chlorella against carbon tetrachloride-induced oxidative damage in rats. In Vivo. 2009, 23 (5): 747-754.
CAS
PubMed
Google Scholar
Son YA, Shim JA, Hong S, Kim MK: Intake of Chlorella vulgaris improves antioxidative capacity in rats oxidatively stressed with dietary cadmium. Ann Nutr Metab. 2009, 54 (1): 7-14. 10.1159/000199453.
Article
CAS
PubMed
Google Scholar
Vijayavel K, Anbuselvam C, Balasubramanian MP: Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol Cell Biochem. 2007, 303 (1–2): 39-44.
Article
CAS
PubMed
Google Scholar
Kawasaki H, Sano T, Kaku E, Watanabe K, Kumamoto Y, Tanaka K: Toxicological study of chlorella. Acute and subacute toxicity in young rats by oral administration (in Japanese). Kurumeigakukaizasshi. 1977, 40 (11): 1510-1516.
Google Scholar
Nakashima Y, Ohsawa I, Konishi F, Hasegawa T, Kumamoto S, Suzuki Y, Ohta S: Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice. Neurosci Lett. 2009, 464: 193-198. 10.1016/j.neulet.2009.08.044.
Article
CAS
PubMed
Google Scholar
Hasegawa T, Ito K, Ueno S, Kumamoto S, Ando Y, Yamada A, Nomoto K, Yasunobu Y: Oral administration of hot water extracts of Chlorella vulgaris reduces IgE production against milk casein in mice. Int J Immunopharmacol. 1999, 21 (5): 311-323. 10.1016/S0192-0561(99)00013-2.
Article
CAS
PubMed
Google Scholar
Reeves PG, Nielsen FH, Fahey GC: AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J Nutr. 1993, 123: 1939-1951.
CAS
PubMed
Google Scholar
McKenzie D, Bua E, McKiernan S, Cao Z, Aiken JM: Mitochondrial DNA deletion mutations: a causal role in sarcopenia. Eur J Biochem. 2002, 269: 2010-2015. 10.1046/j.1432-1033.2002.02867.x.
Article
CAS
PubMed
Google Scholar
Semba RD, Lauretani F, Ferrucci L: Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys. 2007, 458: 141-145. 10.1016/j.abb.2006.11.025.
Article
CAS
PubMed
Google Scholar
Kruk J, Jemioła-Rzemińska M, Strzałka K: Plastoquinol and α-tocopherol quinol are more active than ubiquinol and α-tocopherol in inhibition of lipid peroxidation. Chem Phys Lipids. 1997, 87: 73-80. 10.1016/S0009-3084(97)00027-3.
Article
CAS
Google Scholar
Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB: An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta. 2009, 1787: 437-461. 10.1016/j.bbabio.2008.12.008.
Article
CAS
PubMed
Google Scholar
Hiona A, Leeuwenburgh C: The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol. 2008, 43: 24-33. 10.1016/j.exger.2007.10.001.
Article
CAS
PubMed
Google Scholar
Wanagat J, Cao Z, Pathare P, Aiken JM: Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. Faseb J. 2001, 15: 322-332. 10.1096/fj.00-0320com.
Article
CAS
PubMed
Google Scholar
Cao Z, Wanagat J, McKiernan SH, Aiken JM: Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res. 2001, 29: 4502-4508. 10.1093/nar/29.21.4502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bua EA, McKiernan SH, Wanagat J, McKenzie D, Aiken JM: Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. J Appl Physiol. 2002, 92: 2617-2624.
Article
PubMed
Google Scholar
Gokey NG, Cao Z, Pak JW, Lee D, McKiernan SH, McKenzie D, Weindruch R, Aiken JM: Molecular analyses of mtDNA deletion mutations in microdissected skeletal muscle fibers from aged rhesus monkeys. Aging Cell. 2004, 3: 319-326. 10.1111/j.1474-9728.2004.00122.x.
Article
CAS
PubMed
Google Scholar
Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM: Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006, 79: 469-480. 10.1086/507132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM: Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci. 2007, 62: 235-245. 10.1093/gerona/62.3.235.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Schenker S, Frosto TA, Henderson GI: Inhibition of cytochrome c oxidase activity by 4-hydroxynonenal (HNE). Role of HNE adduct formation with the enzyme subunits. Biochim Biophys Acta. 1998, 1380: 336-344. 10.1016/S0304-4165(98)00002-6.
Article
CAS
PubMed
Google Scholar
Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR: Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008, 87: 1562S-1566S.
CAS
PubMed
Google Scholar
Paddon-Jones D, Rasmussen BB: Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Care. 2009, 12: 86-90. 10.1097/MCO.0b013e32831cef8b.
Article
CAS
Google Scholar
Dreyer HC, Volpi E: Role of protein and amino acids in the pathophysiology and treatment of sarcopenia. J Am Coll Nutr. 2005, 24: 140S-145S. 10.1080/07315724.2005.10719455.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita S, Volpi E: Amino acids and muscle loss with aging. J Nutr. 2006, 136: 277S-280S.
CAS
PubMed
PubMed Central
Google Scholar