We aimed to determine whether IHLOC differed according to CAM appraisal and the use of different medications (only CAM, both conventional and CAM, only conventional, or none) or chosen health care professionals (only CAM, both conventional and CAM, only conventional, or none). Because the study was observational, one must keep in mind that the study population is often heterogeneous, with the CAM group including more patients with chronic illnesses. It has been shown that poor health status is a predictor for CAM use [6]. Additionally, a chronic condition might lead to lower IHLOC results because it has been shown that IHLOC scores are higher in healthier subjects [30]. Indeed, in our sample the participants suffering from chronic conditions showed lower IHLOC than participants without chronic conditions. Therefore, we controlled for possible confounding by conducting subgroup analyses of participants with and without chronic conditions.
The proportion of participants who had used at least one CAM treatment was higher than previously reported for the general German population [2, 31]. However, our study population was a student population whose social statuses might be higher than that of the general population. A higher social status has been found to be a predictor of CAM use [1, 31]. The proportion of participants with a chronic condition was comparable to that of the general German population [32].
Higher appraisal of CAM was moderately related to higher IHLOC, regardless of whether participants had a chronic condition. Focusing on the medication use of the participants, differences were found between those participants who only used CAM medications and all others; however, not for the chronically ill participants. This indicates that the presence of a chronic condition is a more important predictor of IHLOC than the type of medication used. For the type of health care professional the participants consulted, there were differences between the participants who only consulted CAM practitioners and all others. This was even true for the group with a chronic condition. The results seem to support those studies that found IHLOC to be positively related to CAM use [14–16, 20–24].
When considering CAM appraisal, medication and consultation profiles, chronic conditions as well as sex and age in one model, we found that CAM appraisal had the strongest association with IHLOC, followed by suffering from a chronic condition (negative association), not visiting any health care professionals or only visiting CAM practitioners. However, all of the variables combined only explained 9% of the variance in IHLOC. This indicates that there are other factors associated with IHLOC that were not included in our model. We only assessed whether participants had a chronic condition; however, how they manage it might be more important regarding IHLOC. This points to self-efficacy expectations [33] as one important factor.
Strengths of our study include the large, heterogeneous sample. As described in the validation publication of the BEE scale [25], this was not an ordinary student sample: the FernUniversität in Hagen is the only distance learning university in Germany. Students vary considerably in age, lifestyles, and previous knowledge and experiences. The university has no grade point enrollment cut-off, and many students have work experience or work during their course of studies (in fact, 80% do so, [34]), and many have children.
CAM use was assessed in several ways: We used an appraisal score that included positive experiences with CAM as well as positive assumptions regarding CAM modalities that have not been tried by the participants themselves. Furthermore, we looked at the types of medications the participants used and the health care professionals they visited for their health problems. Additionally, we took care to account for the role of chronic conditions as a possible confounder by running subgroup analyses for all comparisons. IHLOC was assessed using a widely used and well-validated instrument [9, 10].
For non-significant mean differences, the trends also pointed in the assumed directions. The lack of significant differences in the subgroup of participants with a chronic condition is likely due to the smaller sample size (approximately 35% of the total sample).
Several limitations of this study must be discussed. First, because of the cross-sectional study design, there is no way to determine whether a higher IHLOC is a disposition that makes people prone to using CAM, or whether it is a result of positive experiences with CAM treatments. In a study by Hoffmann et al. [35] concerning changes that occur during CAM treatment, an increase in IHLOC was observed during inpatient integrative medicine treatment of patients with chronic conditions. However, the study lacked a control group. In the interview study by Cartwright and Torr [36], the authors describe how the participants adopt concepts from CAM when they refer to “balance”, “qi”, “energy”, etc. (p. 564), i.e., ideas and theories have been communicated between them and their practitioner. Such results point out the possible change of beliefs and expectations during the course of treatment. However, it is generally assumed that people chose CAM because it is in accordance with beliefs that they already hold [7, 37]. It would be worthwhile to investigate IHLOC and CAM in a longitudinal design, i.e., assessing participants’ IHLOC before and after a CAM treatment. In that way, one could detect changes in IHLOC as well as possible differences between different CAM treatments (for example, yoga‘s very active patient role, and homeopathy’s more passive patient role).
Second, health statuses and chronic conditions were only assessed through self-reports. Analyzing samples with a confirmed diagnosis might be worthwhile to come to a final conclusion regarding whether health status is a confounder or not. Additionally, the CAM-related variables might not be optimal, as discussed elsewhere [25].
Third, although the sample was more heterogeneous than student samples generally are, whether the results can be generalized to the general population remains up for debate. Also, results may be different in countries with different reimbursement strategies of CAM treatments since the status of CAM might be different in such countries.
Methodologically, using the same sample that was used in the BEE scale validation study makes this study somewhat exploratory. Additionally, in the ANOVAs and contrast analyses, the sample sizes of the compared groups were quite different for some groups, especially for those of participants using only CAM medications or practitioners, which included very few participants. This is a serious problem and should be addressed in further studies by recruiting part of the sample in different settings, e.g., outpatient CAM departments or practices. In addition to that, an alpha of 0.05 was assumed in all statistical tests, resulting in multiple testing. The results should therefore be interpreted with caution regarding statistical significance, the more as only small to moderate effects could be found. Additionally, the proportion of explained variance in IHLOC when using CAM appraisal, medication and consultation profiles as well as other possibly confounding variables, such as chronic conditions, was very low. This is in accordance with the rather small effects found in the t-tests and ANOVAs.
In discussing the results, an important question has recently been posed by Lindeman [38]: are there predictors of CAM use that underlie the factors and beliefs commonly assumed to be related to CAM use? Her study used a regression model with factors that have been investigated with regard to CAM use in numerous studies, e.g., desire for control, health, education, gender, certain world views, etc. In addition to that, intuitive thinking, core knowledge confusions, and paranormal beliefs were added as predictors. Those three predictors explained 34% of the variance in CAM beliefs while all other predictors added no more than 4% of the explained variance.
Therefore, the question is justified as to whether focusing on constructs such as locus of control is worth further pursuit or if more general, underlying constructs should be increasingly taken into account.
While that question remains debatable, our results indicate that there are, in fact, differences in IHLOC when comparing different groups of CAM users.