Nagata M: Inflammatory cells and oxygen radicals. Curr Drug Targets Inflamm Allergy. 2005, 4 (4): 503-504.
Article
CAS
PubMed
Google Scholar
Lee YG, Lee WM, Kim JY, Lee JY, Lee IK, Yun BS, Rhee MH, Cho JY: Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells. Br J Pharm. 2008, 154 (4): 852-863.
Article
CAS
Google Scholar
Ferencik M, Stvrtinova V, Hulin I, Novak M: Inflammation–a lifelong companion. Attempt at a non-analytical holistic view. Folia Microbiologica. 2007, 52 (2): 159-173.
Article
CAS
PubMed
Google Scholar
Hogg N: Free radicals in disease. Semin Reprod Endocrinol. 1998, 16 (4): 241-248.
Article
CAS
PubMed
Google Scholar
Kim HY, Goo JH, Joo YA, Lee HY, Lee SM, Oh CT, Ahn SM, Kim NH, Hwang JS: Impact on inflammation and recovery of skin barrier by nordihydroguaiaretic Acid as a protease-activated receptor 2 antagonist. Biomol Ther. 2012, 20 (5): 463-469.
Article
CAS
Google Scholar
Mordan LJ, Burnett TS, Zhang LX, Tom J, Cooney RV: Inhibitors of endogenous nitrogen oxide formation block the promotion of neoplastic transformation in C3H 10 T1/2 fibroblasts. Carcinogenesis. 1993, 14 (8): 1555-1559.
Article
CAS
PubMed
Google Scholar
Ohshima H, Bartsch H: Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994, 305 (2): 253-264.
Article
CAS
PubMed
Google Scholar
Kroncke KD, Fehsel K, Kolb-Bachofen V: Inducible nitric oxide synthase in human diseases. Clin Exp Immunol. 1998, 113 (2): 147-156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon OK, Lee MY, Yuk JE, Oh SR, Chin YW, Lee HK, Ahn KS: Anti-inflammatory effects of methanol extracts of the root of Lilium lancifolium on LPS-stimulated Raw264.7 cells. J Ethnopharmacol. 2010, 130 (1): 28-34.
Article
PubMed
Google Scholar
Balkwill F, Mantovani A: Inflammation and cancer: back to Virchow?. Lancet. 2001, 357 (9255): 539-545.
Article
CAS
PubMed
Google Scholar
Coussens LM, Werb Z: Inflammation and cancer. Nature. 2002, 420 (6917): 860-867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siegel R, Naishadham D, Jemal A: Cancer statistics, 2013. CA-Cancer J Clin. 2013, 63 (1): 11-30.
Article
PubMed
Google Scholar
Wang S, Wu X, Tan M, Gong J, Tan W, Bian B, Chen M, Wang Y: Fighting fire with fire: poisonous Chinese herbal medicine for cancer therapy. J Ethnopharmacol. 2012, 140 (1): 33-45.
Article
PubMed
Google Scholar
Fukai T, Satoh K, Nomura T, Sakagami H: Antinephritis and radical scavenging activity of prenylflavonoids. Fitoterapia. 2003, 74 (7–8): 720-724.
Article
CAS
PubMed
Google Scholar
Bottone FG, Martinez JM, Alston-Mills B, Eling TE: Gene modulation by Cox-1 and Cox-2 specific inhibitors in human colorectal carcinoma cancer cells. Carcinogenesis. 2004, 25 (3): 349-357.
Article
CAS
PubMed
Google Scholar
Yan C, Lu D, Hai T, Boyd DD: Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 2005, 24 (13): 2425-2435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Mo P, Ren S, Yan C: Activating transcription factor 3 activates p53 by preventing E6-associated protein from binding to E6. J Biol chem. 2010, 285 (17): 13201-13210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu D, Wolfgang CD, Hai T: Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol chem. 2006, 281 (15): 10473-10481.
Article
CAS
PubMed
Google Scholar
Alao JP: The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mole Cancer. 2007, 6: 24-
Article
Google Scholar
Bahnassy AA, Zekri AR, El-Houssini S, El-Shehaby AM, Mahmoud MR, Abdallah S, El-Serafi M: Cyclin A and cyclin D1 as significant prognostic markers in colorectal cancer patients. BMC gastroenterol. 2004, 4: 22-
Article
PubMed
PubMed Central
Google Scholar
Banskota AH, Tezuka Y, Nguyen NT, Awale S, Nobukawa T, Kadota S: DPPH radical scavenging and nitric oxide inhibitory activities of the constituents from the wood of Taxus yunnanensis. Planta Med. 2003, 69 (6): 500-505.
Article
CAS
PubMed
Google Scholar
Nathan C: Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992, 6 (12): 3051-3064.
CAS
PubMed
Google Scholar
Sung MJ, Davaatseren M, Kim W, Sung Kwang P, Kim SH, Haeng Jeon H, Myung Sunny K, Kim YS, Dae Young K: Vitisin A suppresses LPS-induced NO production by inhibiting ERK, p38, and NF-kappaB activation in RAW 264.7 cells. Int Immunopharmacol. 2009, 9 (3): 319-323.
Article
Google Scholar
Jeong JB, Yang X, Clark R, Choi J, Baek SJ, Lee SH: A mechanistic study of the proapoptotic effect of tolfenamic acid: involvement of NF-kappaB activation. Carcinogenesis. 2013, 34 (10): 2350-2360.
Article
CAS
PubMed
Google Scholar
Kikuchi T, Nihei M, Nagai H, Fukushi H, Tabata K, Suzuki T, Akihisa T: Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chem Pharm Bull. 2010, 58 (4): 568-571.
Article
CAS
PubMed
Google Scholar
Nam SY, Yi HK, Lee JC, Kim JC, Song CH, Park JW, Lee DY, Kim JS, Hwang PH: Cortex mori extract induces cancer cell apoptosis through inhibition of microtubule assembly. Arch Pharm Res. 2002, 25 (2): 191-196.
Article
CAS
PubMed
Google Scholar
Wang Q, Kuang H, Su Y, Sun Y, Feng J, Guo R, Chan K: Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J Ethnopharmacol. 2013, 146 (1): 9-39.
Article
CAS
PubMed
Google Scholar
Sharma JN, Al-Omran A, Parvathy SS: Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007, 15 (6): 252-259.
Article
CAS
PubMed
Google Scholar
Anggard E: Nitric oxide: mediator, murderer, and medicine. Lancet. 1994, 343 (8907): 1199-1206.
Article
CAS
PubMed
Google Scholar
Lechner M, Lirk P, Rieder J: Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol. 2005, 15 (4): 277-289.
Article
CAS
PubMed
Google Scholar
Chang H, Tsai SY, Chang Y, Chen TL, Chen RM: Therapeutic concentrations of propofol protects mouse macrophages from nitric oxide-induced cell death and apoptosis. Can J Anaesth. 2002, 49 (5): 477-480.
Article
PubMed
Google Scholar
Hobbs AJ, Higgs A, Moncada S: Inhibition of nitric oxide synthase as a potential therapeutic target. Ann Rev Pharm Toxicol. 1999, 39: 191-220.
Article
CAS
PubMed
Google Scholar
Marletta MA: Nitric oxide synthase structure and mechanism. J Biol Chem. 1993, 268 (17): 12231-12234.
CAS
PubMed
Google Scholar
Won JH, Kim JY, Yun KJ, Lee JH, Back NI, Chung HG, Chung SA, Jeong TS, Choi MS, Lee KT: Gigantol isolated from the whole plants of Cymbidium goeringii inhibits the LPS-induced iNOS and COX-2 expression via NF-kappaB inactivation in RAW 264.7 macrophages cells. Planta Med. 2006, 72 (13): 1181-1187.
Article
CAS
PubMed
Google Scholar
Lin CM, Huang ST, Liang YC, Lin MS, Shih CM, Chang YC, Chen TY, Chen CT: Isovitexin suppresses lipopolysaccharide-mediated inducible nitric oxide synthase through inhibition of NF-kappa B in mouse macrophages. Planta Med. 2005, 71 (8): 748-753.
Article
CAS
PubMed
Google Scholar
Ko HC, Kuo YH, Wei BL, Chiou WF: Laxifolone A suppresses LPS/IFN-gamma-induced NO synthesis by attenuating NF-kappaB translocation: role of NF-kappaB p105 level. Planta Med. 2005, 71 (6): 514-519.
Article
CAS
PubMed
Google Scholar
Jin XY, Lee SH, Kim JY, Zhao YZ, Park EJ, Lee BS, Nan JX, Song KS, Ko G, Sohn DH: Polyozellin inhibits nitric oxide production by down-regulating LPS-induced activity of NF-kappaB and SAPK/JNK in RAW 264.7 cells. Planta Med. 2006, 72 (9): 857-859.
Article
CAS
PubMed
Google Scholar
Gilmore TD: Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006, 25 (51): 6680-6684.
Article
CAS
PubMed
Google Scholar
Mankan AK, Lawless MW, Gray SG, Kelleher D, McManus R: NF-kappaB regulation: the nuclear response. J Cell Mol Med. 2009, 13 (4): 631-643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar FH, Li Y, Wang Z, Kong D: NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol. 2008, 27 (5): 293-319.
Article
CAS
PubMed
Google Scholar
Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS: Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001, 480–481: 243-268.
Article
PubMed
Google Scholar
Saxena A, Baliga MS, Ponemone V, Kaur K, Larsen B, Fletcher E, Greene J, Fayad R: Mucus and adiponectin deficiency: role in chronic inflammation-induced colon cancer. Int J Colorectal Dis. 2013, 28 (9): 1267-1279.
Article
PubMed
PubMed Central
Google Scholar
Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T: ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem. 1996, 271 (3): 1695-1701.
Article
CAS
PubMed
Google Scholar
Syed V, Mukherjee K, Lyons-Weiler J, Lau KM, Mashima T, Tsuruo T, Ho SM: Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene. 2005, 24 (10): 1774-1787.
Article
CAS
PubMed
Google Scholar
Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL, Guttridge D, Prentki M, Grey ST, Ron D, Hai T: Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mole Cell Biol. 2004, 24 (13): 5721-5732.
Article
CAS
Google Scholar
Piyanuch R, Sukhthankar M, Wandee G, Baek SJ: Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett. 2007, 258 (2): 230-240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Yamaguchi K, Kim JS, Eling TE, Safe S, Park Y, Baek SJ: Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis. 2006, 27 (5): 972-981.
Article
CAS
PubMed
Google Scholar
Yan C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD: Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mole Cancer Ther. 2005, 4 (2): 233-241.
CAS
Google Scholar
Lee SH, Min KW, Zhang X, Baek SJ: 3,3′-diindolylmethane induces activating transcription factor 3 (ATF3) via ATF4 in human colorectal cancer cells. Journal Nutr Biochem. 2013, 24 (4): 664-671.
Article
CAS
Google Scholar
Kwon O, Soung NK, Thimmegowda NR, Jeong SJ, Jang JH, Moon DO, Chung JK, Lee KS, Kwon YT, Erikson RL, Ahn JS, Kim BY: Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell Signal. 2012, 24 (4): 943-950.
Article
CAS
PubMed
Google Scholar
Casanovas O, Miro F, Estanyol JM, Itarte E, Agell N, Bachs O: Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J Biol Chem. 2000, 275 (45): 35091-35097.
Article
CAS
PubMed
Google Scholar
Okabe H, Lee SH, Phuchareon J, Albertson DG, McCormick F, Tetsu O: A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PloS one. 2006, 1: e128-
Article
PubMed
PubMed Central
Google Scholar
Diehl JA, Zindy F, Sherr CJ: Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 1997, 11 (8): 957-972.
Article
CAS
PubMed
Google Scholar
Lim JH, Lee YM, Chun YS, Park JW: Reactive oxygen species-mediated cyclin D1 degradation mediates tumor growth retardation in hypoxia, independently of p21cip1 and hypoxia-inducible factor. Cancer Sci. 2008, 99 (9): 1798-1805.
CAS
PubMed
Google Scholar
Cheon BS, Kim YH, Son KS, Chang HW, Kang SS, Kim HP: Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Med. 2000, 66 (7): 596-600.
Article
CAS
PubMed
Google Scholar
Yang ZG, Matsuzaki K, Takamatsu S, Kitanaka S: Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3 T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules. 2011, 16 (7): 6010-6022.
Article
CAS
PubMed
Google Scholar
Lee JC, Won SJ, Chao CL, Wu FL, Liu HS, Ling P, Lin CN, Su CL: Morusin induces apoptosis and suppresses NF-kappaB activity in human colorectal cancer HT-29 cells. Biochem Biophys Res Co. 2008, 372 (1): 236-242.
Article
CAS
Google Scholar