Farooqui T, Farooqui AA: Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev. 2009, 130: 203-215. 10.1016/j.mad.2008.11.006.
Article
CAS
PubMed
Google Scholar
Sinclair DA, Oberdoerffer P: The ageing epigenome: damaged beyond repair?. Ageing Res Rev. 2009, 8 (3): 189-198. 10.1016/j.arr.2009.04.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava VK, Busbee DL: Replicative enzymes and ageing: importance of DNA polymerase alpha function to the events of cellular ageing. Ageing Res Rev. 2002, 1 (3): 443-463. 10.1016/S1568-1637(02)00011-9.
Article
CAS
PubMed
Google Scholar
Mammone T, Gan D, Favouzi-Youssefi R: Apoptotic cell death increases with senescence in. Cell Biol Int. 2006, 30: 909-
Article
Google Scholar
Boraldi F, Annovi G, Tiozzo R, Sommer P, Quaglino D: Comparison of ex vivo and in vitro human fibroblast ageing models. Mech Ageing Dev. 2010, 131 (10): 625-635. 10.1016/j.mad.2010.08.008.
Article
CAS
PubMed
Google Scholar
Harman D: Ageing: a theory based on free radical and radiation chemistry. J Gerontol. 1956, 11 (3): 298-300. 10.1093/geronj/11.3.298.
Article
CAS
PubMed
Google Scholar
Wickens AP: Ageing and the free radical theory. Respir Physiol. 2001, 128 (3): 379-391. 10.1016/S0034-5687(01)00313-9.
Article
CAS
PubMed
Google Scholar
Limon-Pacheco J, Gonsebatt M: The role of antioxidant-related enzyme in protective response to environmentally induced oxidative stress. Mutat Res. 2009, 674 (1–2): 137-147.
Article
CAS
PubMed
Google Scholar
Islam KM, Howlader MA, Kundu GC, Bulbul IJ, Ahsan MR: Free radical scavenging activity of chloroform and ethyl acetate extracts of leaves of Piper betle Linn. Libyan Agriculture Res Cent J Int. 2010, 1 (6): 384-387.
Google Scholar
Radak Z, Takahasi R, Kumiyama A, Nakamoto H, Ohno H, Ookawara T: Effect of aging and late onset dietary restriction on antioxidant enyzmes and proteasome activities, and protein carbonylation of fat skelatal muscle and tendon. Exp Gerontol. 2002, 37: 1421-1428.
Article
Google Scholar
Yu BP, Chung HY: Adaptive mechanisms to oxidative stress during ageing. Mech Ageing Dev. 2006, 127 (5): 436-443. 10.1016/j.mad.2006.01.023.
Article
CAS
PubMed
Google Scholar
Kim A, Murphy M, Oberley TD: Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: a proposed adaptive response to mitochondrial redox imbalance. Free Radic Biol Med. 2005, 38 (5): 644-654. 10.1016/j.freeradbiomed.2004.10.030.
Article
CAS
PubMed
Google Scholar
Nagababu E, Chrest FJ, Rifkind JM: Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta. 2003, 1620 (1–3): 211-217.
Article
CAS
PubMed
Google Scholar
Arambewala LS, Arawwawala LD, Ratnasooriya WD: Antidiabetic activities of aqueous and ethanolic extracts of Piper betle leaves in rats. J Ethnopharmacol. 2005, 102 (2): 239-245. 10.1016/j.jep.2005.06.016.
Article
Google Scholar
Orme WB: Makan sirih. Br Med J. 1914, 1 (2771): 325-326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhattacharya S, Banarjee D, Bauri A, Chattopadhyay S, Bandyopadhyay S: Healing property of the Piper betel phenol, allylpyrocatechol against indomethacin-induced stomach ulceration. World J Gastroenterol. 2007, 13 (27): 3705-3713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhattacharya S, Subramaniam M, Roychowdhury S, Bauri AK, Kamat JP, Chattopadhyay S: Radioprotective property of the ethanolic extract of Piper betle leaf. J Radiat Res. 2005, 46 (2): 135-171. 10.1269/jrr.46.135.
Article
Google Scholar
Dasgupta N, De B: Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 2004, 88: 219-224. 10.1016/j.foodchem.2004.01.036.
Article
CAS
Google Scholar
Prakash B, Shukla R, Singh P, Kumar A, Mishra PK, Dubey NK: Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity. Int J Food Microbiol. 2010, 142 (1–2): 114-119.
Article
CAS
PubMed
Google Scholar
Sarkar D, Kundu S, De S, Hariharan C, Saha P, Manna A: The antioxidant activity of allypyrocatechol is mediated via decreased generation of free radicals along with escalation of antioxidant mechanisms. Phytother Res. 2012, .-10.1002/ptr.4720.
Google Scholar
Queiroz ML, Rodrigues AP, Bincoletto C, Figueiredo CA, Malacrida S: Protective effects of Chlorella vulgaris in lead- exposed mice infected with Listeria monocytogenes. Int Immunopharmacol. 2003, 3 (6): 889-900. 10.1016/S1567-5769(03)00082-1.
Article
CAS
PubMed
Google Scholar
Janczyk P, Franke H, Souffrant WB: Nutritional value of Chlorella vulgaris: effects of ultrasonication and electroporation on digestibility in rats. Anim Feed Sci Technol. 2007, 132: 163-169. 10.1016/j.anifeedsci.2006.03.007.
Article
CAS
Google Scholar
Shibata S, Natori Y, Nishhara T, Tomisaka K, Matsumoto K, Sansawa H: Antioxidant and anti-cataract effects of Chlorella on rats with streptozocin-induced diabetes. J Nutr Sci Vitaminol. 2003, 49 (5): 334-339. 10.3177/jnsv.49.334.
Article
CAS
PubMed
Google Scholar
Wang HM, Pan JL, Chen CY, Chiu CC, Yang MH, Chang HW, Chang JS: Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Process Biochem. 2010, 45 (12): 1865-1872. 10.1016/j.procbio.2010.05.023.
Article
CAS
Google Scholar
Sundram K, Gapor A: Vitamin E from palm oil. its extraction and nutritional properties. Lipid Technology. 1992, 4: 137-141.
Google Scholar
Choi Y, Lee J: Antioxidant and antproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem. 2009, 114: 1386-1390. 10.1016/j.foodchem.2008.11.018.
Article
CAS
Google Scholar
Serbinova E, Kagan V, Han D, Packer L: Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopehrol and alpha-tocotrienol. Free Radic Biol Med. 1991, 10: 263-275. 10.1016/0891-5849(91)90033-Y.
Article
CAS
PubMed
Google Scholar
Schaffer S, Müller WE, Eckert GP: Tocotrienols: constitutional effects in aging and disease. J Nutr. 2005, 135 (2): 151-154.
CAS
PubMed
Google Scholar
Norfaizatul SO, Zetty Akmal CZ, Noralisa AK, Then SM, Wan Zurinah WN, Musalmah M: Dual effects of plant antioxidants on neuron cell viability. J Med Plants. 2010, 9: 113-123.
Google Scholar
Saad SM, Mohd Yusof YA, Wan Ngah WZ: Comparison between locally produced Chlorella vulgaris and Chlorella vulgaris from Japan on proliferation and apoptosis of liver cancer cell line, HepG2. Malays J Biochem Mol Biol. 2006, 13: 32-36.
Google Scholar
Makpol S, Durani LW, Chua KH, Yusof YA, Ngah WZ: Tocotrienol-rich fraction prevents cell cycle arrest and elongates telomere length in senescent human diploid fibroblasts. J Biomed Biotechnol. 2011, .-10.1155/2011/506171.
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemitsry. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
Google Scholar
Aebi H, Sute H, Feinstein RN: Activity and stability of catalase in blood and tissue of normal and acatalasemic mice. Biochem Genet. 1968, 2 (3): 245-251. 10.1007/BF01474764.
Article
CAS
PubMed
Google Scholar
Beyer WF, Fridovich I: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987, 161 (2): 559-566. 10.1016/0003-2697(87)90489-1.
Article
CAS
PubMed
Google Scholar
Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967, 70 (1): 158-169.
CAS
PubMed
Google Scholar
Loke C, Nur HM, Mohd FM, Teo S, Nor HA, Yasmin AM: Does Chlorella vulgaris modulate the expression of COL and MMP genes in skin ageing. Med Health. 2010, 5 (1): 1-12.
CAS
Google Scholar
Huang H-M, Fowler C, Xu H, Zhang H, Gibson GE: Mitochondrial function in fibroblasts with aging in cultutre and/or Alzheimer's disease. Neurobiol Aging. 2005, 26: 839-848. 10.1016/j.neurobiolaging.2004.07.012.
Article
CAS
PubMed
Google Scholar
Cecco MD, Jeyapalan J, Zhao X, Tamamori-Adachi M, Sedivy JM: Nuclear protein accumulation in cellular senescence and arganismal aging revealed with a novel single-cell resolution fluorescence mircroscopy assay. Aging. 2011, 3 (10): 955-967.
Article
PubMed
PubMed Central
Google Scholar
Gerland L-M, Peyrol S, Lallemand C, Branche R, Magaud J-P, French M: Association of increased autophagic inclusions labeled for β-galactosidase with fibroblastic aging. Exp Gerontol. 2003, 38: 887-895. 10.1016/S0531-5565(03)00132-3.
Article
CAS
PubMed
Google Scholar
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelly C, Medrano EE, Linskens M, Rubej I, Pereira-Smith O, Peacocke M, Campisi J: A biomarker that identifies senescent human cells in culture and in ageing skin in vivo. Proc Natl Acad Sci U S A. 1995, 92 (20): 9363-9367. 10.1073/pnas.92.20.9363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salmon AB, Richardson A, Perez VI: Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging?. Free Radic Biol Med. 2010, 48: 642-655. 10.1016/j.freeradbiomed.2009.12.015.
Article
CAS
PubMed
Google Scholar
Makpol S, Zainudin A, Rahim NA, Yusof YA, Ngah WZ: Alpha-tocopherol modulates hydrogen peroxide-induced DNA damage and telomere shortening of human skin fibroblasts derived from differently aged individuals. Planta Med. 2010, 76: 869-875. 10.1055/s-0029-1240812.
Article
CAS
PubMed
Google Scholar
Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ: γ-Tocotrienol prevents oxidative stress-induced telomere shortening in human fibroblasts derived from different aged individuals. Oxid Med Cell Longev. 2010, 3 (1): 35-43. 10.4161/oxim.3.1.9940.
Article
PubMed
PubMed Central
Google Scholar
Mutalib MSA, Khaza’ai H, Wahle KWJ: Palm-tocotrienol rich fraction (TRF) is a more effective inhibitor of LDL oxidation and endothelial cell lipid peroxidation than α-tocopherol in vitro. Food Res Int. 2003, 36: 405-413. 10.1016/S0963-9969(02)00173-4.
Article
CAS
Google Scholar
Kamal-Eldin A, Appelqvist LA: The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996, 31 (7): 671-701. 10.1007/BF02522884.
Article
CAS
PubMed
Google Scholar
Tiwari V, Kuhad A, Bishnoi M, Chopra K: Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative-nitrosative stress in rats. Pharmacol Biochem Behav. 2009, 93: 183-189. 10.1016/j.pbb.2009.05.009.
Article
CAS
PubMed
Google Scholar
Lee SH, Kang HJ, Lee H-J, Kang M-H, Park YK: Six-week supplementation with Chlorella has favorable impact on antioxidant status in Korean male smokers. Nutrition. 2010, 26: 175-183. 10.1016/j.nut.2009.03.010.
Article
CAS
PubMed
Google Scholar
Prabu SM, Muthumani M, Shagirtha K: Protective effect of Piper betle leaf extract against cadmium-induced oxidative stress and hepatic dysfunction in rats. Saudi J Biol Sci. 2012, 19: 229-239. 10.1016/j.sjbs.2012.01.005.
Article
CAS
Google Scholar
Briganti S, Wlaschek M, Hinrichs C, Bellei B, Flori E, Reiber N: Small molecular antioxidants effectively protect from PUVA-induced oxidative stress. Free Radic Biol Med. 2008, 45: 636-644. 10.1016/j.freeradbiomed.2008.05.006.
Article
CAS
PubMed
Google Scholar
Remmen HV, Qi W, Sabia M, Freeman G, Estlack L, Yang H, Guo ZM, Huang TT, Strong R, Lee S, Epstein CJ, Richardson A: Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radic Biol Med. 2004, 36 (12): 1625-1634. 10.1016/j.freeradbiomed.2004.03.016.
Article
PubMed
Google Scholar
Oztürk G, Akbulut KG, Güney S, Acuna-Castroviejo D: Age-related changes in the rat brain mitochondrial antioxidative enzyme ratios: Modulation by melatonin. Exp Gerontol. 2012, .-10.1016/j.erger.2012.06.011.
Google Scholar
Lopez-Velez M, Martinez-Martinez F, Del VRC: The study of phenolic compounds as natural antioxidants in wine. Crit Rev Food Sci Nutr. 2003, 43: 233-244.
Article
CAS
PubMed
Google Scholar
Roginsky V: Chain breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in triton X-100 micelles. Arch Biochem Biophys. 2003, 414: 261-270. 10.1016/S0003-9861(03)00143-7.
Article
CAS
PubMed
Google Scholar
Saravanam R, Prakasam A, Ramesh B, Pugalendi KV: Influence of Piper betle on hepatic marker enzymes and tissu antioxidant status in ethanol-treated Wister rats. J Med Food. 2002, 5: 197-204. 10.1089/109662002763003348.
Article
Google Scholar
Arora A, Nair MG, Strasburg GM: Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med. 1998, 24 (9): 1355-1363. 10.1016/S0891-5849(97)00458-9.
Article
CAS
PubMed
Google Scholar
Khan MR, Siddiqui S, Parveen K, Javed S, Diwakar S, Siddiqui WA: Nephroprotective action of tocotrienol-rich fraction (TRF) from palm oil against potassium dichromate (K2Cr2O7)-induced acute renal injury in rats. Chem Biol Interact. 2010, 186 (2): 228-238. 10.1016/j.cbi.2010.04.025.
Article
CAS
PubMed
Google Scholar
Halliwell BB, Gutteridge JMC: Free Radicals in Biology and Medicine. 2002, New York: Oxford University Press Inc.
Google Scholar
Schimke L, Schikora M, Meyer R, Dubel HP, Modersohn D, Kleber FX, Baumann G: Oxidative stress in the human heart is associated with changes in the antioxidative defense as shown after heart transplantation. Mol Cell Biochem. 2000, 204 (1–2): 89-96.
Article
CAS
PubMed
Google Scholar
Muhanis SP, Top AGM, Murugan D, Mustafa MR: Palm oil tocotrienol fractions restore endothelium dependent relaxation in aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats. Nutr Res. 2010, 30: 209-216. 10.1016/j.nutres.2010.03.005.
Article
Google Scholar