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Ginsenoside Rg‑1 prevents elevated 
cytosolic Ca2+ via store‑operated Ca2+ entry 
in high‑glucose–stimulated vascular endothelial 
and smooth muscle cells
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Abstract 

Background:  Ginsenoside Rg-1 (Rg-1), a triterpenoid saponin abundantly present in Panax ginseng, is a type of natu-
rally occurring steroid with known anti-diabetic and anti-inflammatory effects. In this study, we sought to confirm the 
effects and mechanisms of action of Rg-1 on store-operated Ca2+ entry (SOCE) in human vascular endothelial cell line 
(EA) and murine aortic vascular smooth muscle cell line (MOVAS) cells exposed to high glucose.

Methods:  Cytosolic Ca2+ concentrations in EA and MOVAS cells were measured by monitoring fluorescence of the 
ratiometric Ca2+-indicator, Fura-2 AM.

Results:  High glucose significantly increased Ca2+ influx by abnormally activating SOCE in EA and MOVAS cells. 
Notably, this high glucose-induced increase in SOCE was restored to normal levels in EA and MOVAS cells by Rg-1. 
Moreover, Rg-1 induced reductions in SOCE in cells exposed to high glucose were significantly inhibited by the 
plasma membrane Ca2+ ATPase (PMCA) blocker lanthanum, the Na+/K+-ATPase blocker ouabain, or the Na+/Ca2+ 
exchanger (NCX) blockers Ni2+ and KB-R7943. These observations suggest that the mechanism of action of Rg-1 
inhibition of SOCE involves PMCA and Na+/K+-ATPase, and an increase in Ca2+ efflux via NCXs in both EA and MOVAS 
cells exposed to high glucose.

Conclusions:  These findings indicate that Rg-1 may protect vascular endothelial and smooth muscle cells from Ca2+ 
increases following exposure to hyperglycemic conditions.

Keywords:  Ginsenoside Rg-1, Store-operated Ca2+ entry, High glucose, Vascular endothelial cells, Vascular smooth 
muscle cells
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Background
Ca2+, a second messenger involved in vast array of cel-
lular processes such as metabolic signals, energy pro-
duction, cell viability, and apoptosis [1]. Ca2+ signals are 
generated by Ca2+ influx from the extracellular space via 
plasma membrane Ca2+ channels and through intracel-
lular release from the endoplasmic reticulum (ER)/sar-
coplasmic reticulum (SR) via Ca2+-release channels [2]. 
Store-operated Ca2+ entry (SOCE) is an important extra-
cellular Ca2+-influx mechanism in vascular endothelial 
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and smooth muscle cells [3]. In this mechanism, deple-
tion of ER/SR Ca2+ causes stromal interaction molecule 1 
(STIM1) to bind to the ER-plasma membrane and signal 
the Orai channel to trigger Ca2+ influx into the cytosol 
[4]. SOCE is critical to the primary Ca2+ signaling path-
way of cells and plays an essential role in a wide range of 
physiological functions, including extracellular excretion, 
enzyme activity, gene transcription, cell proliferation, and 
apoptosis [5].

High glucose causes an imbalance in cytosolic Ca2+ 
homeostasis. High glucose upregulates STIM1 and 
increases Orai1 protein levels, thereby activating SOCE 
and increasing Ca2+ influx [6, 7]. Previous studies have 
reported that STIM1 and Orai1 proteins are overex-
pressed in human aortic endothelial cells exposed to high 
glucose, resulting in increased Ca2+ influx through SOCE 
[8], and have further shown that chronic exposure to 
high glucose significantly increases apoptosis in human 
umbilical vein endothelial cells owing to increased hydro-
gen peroxide production and SOCE-mediated activation 
of calcineurin [9]. Similar to what is observed in vascu-
lar endothelial cells, SOCE and Orai1 protein levels were 
significantly increased in human aortic smooth muscle 
cells exposed to high glucose [10].

Ca2+ is intimately involved in the regulation of most 
cellular functions, such that even relatively small distur-
bances in Ca2+ homeostasis can have fatal consequences 
for cellular function [11]. Disruption of Ca2+ homeo-
stasis causes vascular endothelial dysfunction by patho-
logically activating endothelial nitric oxide synthase [12] 
and increases the frequency of Ca2+ spikes in vascular 
smooth muscle cells, leading to excessive vasoconstric-
tion [13]. Therefore, an imbalance in cytosolic Ca2+ 
homeostasis induced by high glucose is thought to have 
crucial effects on vascular health.

Panax ginseng is widely used in traditional herbal 
medicine owing to the pharmacological action of its 
ginsenoside saponins [14]. Among the 150 types of 
ginsenoside saponins, ginsenosides Rg-1 (Fig.  1), Rb-1 
and Rg3 have demonstrated various pharmacologi-
cal actions on cardiovascular, neuronal, and immune 
systems [15]. Moreover, ginsenosides are metformin 
mimetics with anti-diabetes properties [16]; among 
them, ginsenoside Rg-1 (hereafter, Rg-1) in particular, 
is known to have an excellent anti-diabetes profile. Rg-1 
has also been demonstrated to directly protect pancre-
atic β-cell function and viability through the PI3K/Akt 
pathway [17]. Many studies have reported that Rg-1 
not only inhibits the deterioration in the viability of 
cells exposed to high glucose, but also protect against 
cell damage. However, there are no reports of the 
effects of Rg-1 on SOCE or the underlying mechanism 
in vascular cells exposed to high glucose. Accordingly, 

we herein sought to investigate the preventive effects 
and related mechanisms of Rg-1 on SOCE in a human 
endothelial cell line (hereafter, EA) and a murine aortic 
vascular smooth muscle cell line (MOVAS) under high 
glucose.

Methods
Materials
Rg-1, Rb-1, glucose, lanthanum (La3+), ouabain, nickel 
(Ni2+) and KB-R7943 were purchased from Sigma-
Aldrich (St. Louis, MO, USA). MTT (3-[4,5-dimethylth-
iazol-2-yl]-2,5 diphenyl tetrazolium bromide) solution 
was from Amresco (Solon, OH, USA), and Fura-2 AM 
was supplied by Molecular Probes (Eugene, OR, USA).

Cell culture and hyperglycemia induction
EA cells, originally isolated from human umbilical veins, 
were purchased from the American Type Culture Collec-
tion (Manassas, VA, USA). MOVAS cells, isolated from 
aortic smooth muscle cells of C57BL6 mice, were pur-
chased from Charles River Laboratories (Wilmington, 
MA, USA). EA and MOVAS cells were maintained in 
Dulbecco’s modified Eagle’s medium supplemented with 
10% fetal bovine serum, 1% MEM non-essential amino 
acids, penicillin, and streptomycin. For culture under 
high-glucose conditions, cells were exposed to medium 
containing 30 mM glucose for 48 hours [18].

Fig. 1  Molecular structure of ginsenoside Rg-1
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Cell viability assay
The optimal concentration of Rg-1 was determined by 
first confirming cell viability using the MTT technique, 
according to the procedure described in a previous study 
[19]. Briefly, cells were seeded in 96-well plates at 1 × 104 
cells per well in 200-μl aliquots. Cells were incubated 
with 0 to 50 μM Rg-1 at 37 °C for 48 hours. Each well was 
then washed with phosphate-buffered saline, followed by 
addition of a pure-grade MTT (5 mg/ml) solution to each 
well. After incubation for 3 hours, 100 ml dimethyl sulfox-
ide (DMSO) was added to each well to dissolve formazan 
crystals generated by reduction of MTT by metaboli-
cally active cells. Plates were incubated for an additional 
3 hours in the dark, and the optical density of each well 
was measured at 540 nm using a plate reader (Spectrostar 
Nano; BMG LABTECH, Ortenberg, Germany).

Cytosolic Ca2+ measurement
EA and MOVAS cells were exposed to high glucose with 
or without Rg-1 for 48 hours. Cytosolic Ca2+ was then 
measured using Fura-2 AM, a membrane-permeable, 
fluorescent ratiometric Ca2+-binding dye [20]. Approxi-
mately 1 × 106/ml cells were incubated with 2.5 μM 
Fura-2 AM in the dark for 30 minutes at room tem-
perature. Dye remaining in the extracellular fluid was 
removed by exchanging the supernatant twice. Cells were 
placed in a quartz cuvette, and fluorescence at 510 nm 
was measured using a fluorescence spectrometer (Photon 
Technology Instruments) with alternating wavelengths of 
340 nm and 380 nm with a chopper wheel (50 Hz). Cyto-
solic Ca2+ was expressed as the ratio of fluorescence at 
340 nm to fluorescence at 380 nm (F340/F380).

Data analysis and statistics
All statistical analyses were performed using SPSS Sta-
tistics software version 26 (IBM, IL, USA). Data are 
expressed as means ± standard error of the mean (SEM). 
Differences among groups were analyzed by analysis of 
variance and Fisher’s Least Significant Difference post-
hoc test. p-values < 0.05 were considered statistically 
significant.

Results
Effects of ginsenosides Rg‑1 and Rb‑1 on high‑glucose–
exposed EA and MOVAS cells
First, we compared the effects of Rg-1 and Rb-1 on SOCE 
in EA and MOVAS cells exposed to high glucose. In 
the normal glucose group, the effects of Rg-1 and Rb-1 
on SOCE did not significantly differ between EA and 
MOVAS cell. However, the SOCE-inhibitory effects of 
Rg-1 and Rb-1 were different in the high-glucose group, 
with Rg-1 significantly reducing SOCE in both EA and 

MOVAS cells and Rb-1 significantly decreasing SOCE 
only in MOVAS cells (Fig.  2A-C). These findings con-
firmed that, of the ginsenosides evaluated, Rg-1 had a 
greater effect than Rb-1 on Ca2+ homeostasis in EA and 
MOVAS cells exposed to high glucose.

Optimal Rg‑1 concentration inhibiting SOCE 
in high‑glucose–exposed EA and MOVAS cells
The optimal Rg-1 concentration inhibiting SOCE was 
determined by the MTT method. Incubation of EA and 
MOVAS cells with 0, 0.01, 0.1, 1, 10, 20 or 50 μM Rg-1 
showed that Rg-1 at concentrations above 20 μM signifi-
cantly reduced cell viability compared with controls (data 
not shown). In addition, the effect of Rg-1 on the degree 
of SOCE inhibition was assessed by incubating EA and 
MOVAS cells exposed to high glucose with 0.1, 1, or 
10 μM Rg-1. In both cell types, 10 μM Rg-1 concentration 
significantly reduced the high glucose-induced increase 
in SOCE, restoring normal glucose levels, whereas nei-
ther 0.1 nor 1 μM Rg-1 had any effect (Fig. 3A-C). Thus, 
Rg-1 was used at a concentration of 10 μM in subsequent 
experiments.

Mechanisms of SOCE inhibition by ginsenoside Rg‑1 
on high‑glucose–exposed EA and MOVAS cells
The mechanism of SOCE inhibition by Rg-1 was ana-
lyzed by comparing its effect with the effects of the 
plasma membrane Ca2+ ATPase (PMCA) blocker La3+; 
the Na+/K+ ATPase blocker ouabain; and the Na+/Ca2+ 
exchanger (NCX) blockers, Ni2+ and KB-R7943. Spe-
cifically, KB-R7943 is an inhibitor of the reverse mode of 
Na+/Ca2+ exchanger.

SOCE was more substantially inhibited in cells pre-
treated with La3+ plus Rg-1 compared with cells pre-
treated with La3+ alone. La3+ alone significantly 
decreased SOCE in high-glucose–exposed EA cells, but 
not MOVAS cells. Notably, La3+ plus Rg-1 resulted in a 
significantly greater increase in SOCE than Rg-1 alone 
in both EA and MOVAS cells exposed to high glucose 
(Fig.  4A-C). These results suggest that the mechanism 
by which Rg-1 decreases SOCE in EA and MOVAS cells 
exposed to high glucose may be associated with the 
PMCA pathway.

To determine whether the SOCE inhibitory effect of 
Rg-1 was related to Na+/K+ channels, EA and MOVAS 
cells exposed to high glucose were pretreated with Rg-1, 
the Na+/K+ ATPase blocker ouabain, or both. Treatment 
of cells exposed to high glucose with ouabain or Rg-1 
alone reduced SOCE compared with controls. Compared 
with Rg-1 alone, however, Rg-1 plus ouabain significantly 
increased SOCE (Fig.  5A-C). This suggests that Rg-1 
increases Ca2+ efflux in EA and MOVAS cells exposed to 
high glucose via the Na+/K+ ATPase pathway.
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Fig. 2  Effects of Rg-1 on SOCE in EA and MOVAS cells exposed to high glucose compared with those of Rb-1. A Representative traces showing the 
effects of normal glucose, high glucose, and high glucose with 10 μM Rg-1 or 10 μM Rb-1, on SOCE in EA cells. B Representative traces showing 
the effects of normal glucose, high glucose, and high glucose with 10 μM Rg-1 or 10 μM Rb-1, on SOCE in MOVAS cells. C Summary data showing 
area under the curve (AUC) values for 500 seconds for EA and MOVAS cells. Data are means ± SEM (n = 6–14; #p < 0.05, ###p < 0.001 compared with 
normal glucose; *p < 0.05, **p < 0.01 compared with high glucose). The symbol (▼) indicates the time point at which 30 μM BHQ was applied

Fig. 3  Effects of various concentrations of Rg-1 on SOCE in EA and MOVAS cells exposed to high glucose. A & B Representative traces showing 
effects of normal glucose, high glucose, and high glucose plus 0.1, 1, or 10 μM Rg-1 on SOCE in (A) EA cells and (B) MOVAS cells. C Summary data 
showing area under the curve (AUC) values for 500 seconds for EA and MOVAS cells. The symbol (▼) indicates the time point at which 30 μM BHQ 
was applied. Data are means ± SEM (n = 6–11; #p < 0.05, ##p < 0.01, ###p < 0.001 compared with normal glucose; *p < 0.05, ***p < 0.001 compared with 
high glucose)
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Fig. 4  Effects of La3+ on Rg-1–induced increases in SOCE in EA and MOVAS cells exposed to high glucose. A & B Representative traces showing the 
effects of high glucose, high glucose plus 125 μM La3+, high glucose plus 10 μM Rg-1, and high glucose plus 10 μM Rg-1 and 125 μM La3+ on SOCE 
in (A) EA and (B) MOVAS cells. C Summary data showing area under the curve (AUC) values for 500 seconds for EA and MOVAS cells. The symbol 
(▼) indicates the time point at which 30 μM BHQ was applied. Data are means ± SEM (n = 7–11; #p < 0.05, ##p < 0.01 compared with high glucose; 
**p < 0.01 compared with high glucose plus Rg-1)

Fig. 5  Effects of ouabain on Rg-1–induced increases in SOCE in EA and MOVAS cells exposed to high glucose. A & B Representative traces showing 
the effects of high glucose, high glucose plus 10 nM ouabain, high glucose plus 10 μM Rg-1, and high glucose plus 10 μM Rg-1 and 10 nM ouabain 
on SOCE in (A) EA and (B) MOVAS cells. C Summary data showing area under the curve (AUC) values for 500 seconds for EA and MOVAS cells. The 
symbol (▼) indicates the time point at which 30 μM BHQ was applied. Data are means ± SEM (n = 6–11; #p < 0.05 compared with high glucose; 
*p < 0.05, **p < 0.01 compared with high glucose plus Rg-1)
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The NCX pathway has been reported to be effective 
in coping with increased intracellular Ca2+ in pancre-
atic cells [21]. Therefore, we assessed whether the Rg-
1-induced reduction in SOCE was related to the NCX 
pathway. Treatment of EA and MOVAS cells with Ni2+ or 
KB-R7943 inhibited the high glucose-induced increase in 
SOCE to a level similar to that of Rg-1. However, SOCE 
was more substantially increased in cells pretreated 
with Rg-1 plus Ni2+ or Rg-1 plus KB-R7943 than in cells 
pretreated with Ni2+ or KB-R7943 alone, respectively 
(Fig. 6A-C).

Collectively, these findings indicate that high glucose 
significantly increases Ca2+ influx by abnormally acti-
vating SOCE in EA and MOVAS cells, and that Rg-1 
reverses SOCE by increasing Ca2+ efflux through PMCA, 
Na+/K+ ATPase, and NCX.

Discussion
In vascular endothelial and smooth muscle cells, the 
SOCE pathway, activated by depletion of intracellular 
Ca2+ stores, plays an important role in regulating intra-
cellular functions [3]. High glucose exposure promotes 
enhanced permeability and proliferation of human coro-
nary artery endothelial cells through increases in SOCE 
via Orai-mediated, Ca2+ release-activated Ca2+ channels 

[22]. Notably in this context, it has been reported that 
diabetic hyperglycemia increases the expression of Orai1 
and SOCE in vascular smooth muscle cells [10]. Our 
findings demonstrated that exposure to high glucose 
resulted in a significant increase in SOCE in EA and 
MOVAS cells; this effect was inhibited by Rg-1 treat-
ment, which restored Ca2+ to levels found under nor-
mal glucose conditions; this Rg-1-associated inhibition 
of SOCE in EA and MOVAS cells exposed to high glu-
cose might be related to the PMCA, Na+/K+ ATPase, 
and NCX pathways (Fig. 7). Notably, Rg-1 did not have a 
significant SOCE-inhibitory effect under normoglycemic 
conditions, but only exhibited this action under hyper-
glycemic conditions. In a similar vein, a study investigat-
ing the blood pressure effects of Codonopsis lanceolata, 
a natural plant rich in triterpenoid saponins, showed no 
effect on blood pressure in the normotensive group, but 
exerted a significant blood pressure-lowering effect in the 
hypertensive group [23].

In this study, treatment with Ca2+ antagonists such as 
La3+, ouabain, Ni2+, and KB-R7943 reduced SOCE in 
cells exposed to high glucose concentrations. However, 
incubation of cells with both Rg-1 and Ca2+ antagonists 
resulted in a rapid increase in SOCE. Increased intracel-
lular Ca2+ is returned to the extracellular compartment 

Fig. 6  Effects of Ni2+ and KB-R7943 on Rg-1–induced increases in SOCE in EA and MOVAS cells exposed to high glucose. A & B Representative 
traces showing the effects of high glucose, high glucose plus 100 nM Ni2+, high glucose plus 10 μM KB-R7943, high glucose plus 10 μM Rg-1, 
high glucose plus 10 μM Rg-1 and 100 nM Ni2+, and high glucose plus 10 μM Rg-1 and 10 μM KB-R7943 on SOCE in (A) EA and (B) MOVAS cells. C 
Summary data showing area under the curve (AUC) values for 500 seconds for EA and MOVAS cells. The symbol (▼) indicates the time point at 
which 30 μM BHQ was applied. Data are means ± SEM (n = 6–12; #p < 0.05, ##p < 0.01 compared with high glucose; *p < 0.05, **p < 0.01 compared 
with high glucose plus Rg-1)
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by the action of the PMCA. This was shown, for example, 
by treatment of cells with 125 μM La3+, which blocked 
PMCA [24]. Treatment of pancreatic beta cells with 
22.2 mM glucose resulted in significantly greater reduc-
tions in PMCA1 and PMCA2 mRNAs than treatment 
with 2.8 mM glucose [25]. These findings, showing that 
PMCA activity was inhibited under high glucose con-
ditions, suggest that the inhibition of PMCA may have 
affected the increase in SOCE under high glucose than 
normal glucose conditions. In addition, the inhibition of 
SOCE by a relatively high concentration of La3+ under 
high glucose conditions may be due to its blocking of 
non-selective cation channels. Conversely, the increase 
in SOCE induced by treatment with both La3+ and Rg-1 
under high glucose conditions may be related to the Rg-
1-induced increase of Ca2+ efflux through PMCA, which 
inhibits SOCE under high glucose conditions.

Exposure of pancreatic β-cells to glucose leads to con-
version of a PMCA-based, low-efficiency Ca2+ efflux 
mechanism to an NCX-based, high-efficiency system that 
is better able to cope with glucose-induced Ca2+ influx 
[21]. As the glycemic load in pancreatic β-cells increases, 
it induces a concentration-dependent decrease in PMCA 
activity, while significantly increasing NCX activity [25]. 
NCX is a reversible transporter of Ca2+ across plasma 
membranes. Exposure to abnormally high glucose con-
centrations has been reported to increase NCX activity 
and contribute to diabetic microvascular complications 
[26, 27]. This increase in NCX activity was inhibited by 
KB-R7943, suggesting that hyperglycemia-induced NCX 
activity is strongly associated with the NCX reverse 
mode [28]. In the present study, Rg-1 treatment inhibited 

the abnormally increased SOCE induced by high glucose 
concentrations, suggesting that Rg-1 may inhibit Ca2+ 
influx through the NCX reverse mode. In contrast, treat-
ment with both Rg-1 and KB-R7943 under high glucose 
conditions resulted in a greater increase in SOCE than 
high glucose alone. Because pretreatment with KB-R7943 
was found to increase the intracellular basal sodium con-
centration in cardiomyocytes of diabetic rats [27], the 
increased potential difference may depolarize cells and 
stimulate voltage-dependent calcium channels. When 
Ca2+ influx is excessively disturbed, various ion channels, 
such as NCXs or voltage-operated Ca2+ channels, play an 
important role in generating the Ca2+ influx underlying 
oscillations [29–31]. Future studies needed to assess the 
effects of Rg-1 on the expression of Ca2+ channel pro-
teins, especially the expression of proteins that regulate 
SOCE, such as Orai1, Orai2, Orai3, STIM1, and STIM2.

Hyperglycemia-induced metabolic dysfunctions, 
such as enhanced formation of advanced glycation end 
products (AGEs) and increased production of reac-
tive oxygen species, have been suggested as factors 
for developing diabetic vascular complications [32]. In 
mouse mesangial cells, high glucose enhanced the for-
mation of methylglyoxal (the major precursor of AGEs) 
and the level of 8-OHdG, suggesting increased oxida-
tive stress [33]. In line with these reports, catalase treat-
ment of platelets from patients with type 2 diabetes 
mellitus increased the PMCA tyrosine phosphorylation 
induced by thapsigargin plus ionomycin, suggesting 
that oxidative stress is involved in the reduced plate-
let PMCA activity seen in diabetic patients [34]. High 
glucose also significantly increased NCX activity and 

Fig. 7  Action mechanisms of Rg-1 on SOCE in EA and MOVAS cells exposed to high glucose. The red and blue colors indicate changes in the 
regulation of intracellular Ca2+ levels by exposure to high glucose or Rg-1 treatment, respectively. The thicknesses of the arrows reflect the amount 
of Ca2+ influx or efflux
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malondialdehyde production in human umbilical vas-
cular endothelial cells, and this effect was abolished 
by KB-R7943-mediated inhibition of the reverse mode 
of NCX, indicating that increased reverse-mode NCX 
activity plays an important role in high glucose-induced 
endothelial dysfunction [28]. Rg-1 has demonstrated 
several pharmacological actions including antioxi-
dant effects [35]. Rg-1 reduces reactive oxygen species 
(ROS) by modulating Nrf2 (nuclear factor-erythrocyte 
2-related factor 2) and NLRP3 (nucleotide-binding oli-
gomerization domain-like receptor protein 3) signaling 
pathways [36]. Several studies have shown that hyper-
glycemia induces lipid peroxidation, nitrite production, 
and intracellular ROS formation [37, 38]. In the current 
study, the reduction in SOCE is probably related to the 
antioxidant activity of Rg-1.

In vascular endothelial cells, Rg-1 produced a more 
prominent SOCE-reducing effect than Rb-1. Although 
few studies have investigated the regulation of intracellu-
lar Ca2+ in vascular cells by Rb-1, one study in rat cortical 
synaptosomes showed that it decreased intracellular Ca2+ 
by increasing Na+/K+-ATPase and Ca2+/Mg2+-ATPase 
activity [39]. In addition, Rb-1 protects cardiomyocytes 
by reducing the high-Ca2+–induced delayed afterdepo-
larizations of cardiomyocytes. On the other hand, Rg-1 
has been reported to have Ca2+-regulating effects in vari-
ous cell types. In an ischemia-reperfused hippocampal 
cell model, it was shown to have neuroprotective effects 
by blocking excess Ca2+ influx and decreasing neuronal 
nitric oxide synthase activity [40]. In myocardial cells, it 
has been shown that, Rg-1 restores cellular homeosta-
sis by reducing ROS and inhibiting Ca2+ influx [41]. In 
neurons, Rg-1 shows a cell-protective effect through a 
reduction in intracellular free Ca2+ [42] and exerts a Ca2+ 
homeostasis-maintenance effect by reducing ROS and 
oxidative stress and protecting against neuroinflamma-
tion [43]. In lymphocytes, Rg-1 has been shown to inhibit 
Ca2+ influx attributable to H2O2-induced damage and 
significantly reduce apoptosis and lymphocyte damage 
caused by oxidative stress, indicating protective effects 
on immune cells [44]. Therefore, Rg-1 exerts cytoprotec-
tive effects under pathological conditions by maintaining 
Ca2+ homeostasis. However, further studies are needed 
to show the different mechanism of Rg-1 in different cell 
types such as endothelial cell and smooth muscle cells.

Conclusions
Present study demonstrated that treatment with Rg-1 
may be a new approach to protecting vascular endothe-
lial and smooth muscle cells in patients with hyperglyce-
mia through maintenance of Ca2+ homeostasis.
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