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Abstract

Background: Bupi Yishen Formula (BYF), a patent traditional Chinese medicine (TCM) formulation, has been used in
the clinical treatment of chronic kidney disease (CKD). However, the mechanism of action of BYF has not been fully
elucidated.

Method: To investigate the variation in the metabolic profile in response to BYF treatment in a rat model of 5/6
nephrectomy (Nx), rats in the treatment groups received low- or high-dose BYF. At the end of the study, serum and
kidney samples were collected for biochemical, pathological, and western blotting analysis. Metabolic changes in
serum were analyzed by liquid chromatography-tandem mass spectrometry.

Results: The results showed that BYF treatment could reduce kidney injury, inhibit inflammation and improve renal
function in a dose-dependent manner. In total, 405 and 195 metabolites were identified in negative and positive
ion modes, respectively. Metabolic pathway enrichment analysis of differential metabolites based on the Kyoto
Encyclopedia of Genes and Genomes database identified 35 metabolic pathways, 3 of which were related to
tryptophan metabolism. High-dose BYF reduced the level of kynurenic acid (KA) by more than 50%, while
increasing melatonin 25-fold and indole-3-acetic acid twofold. Expression levels of aryl hydrocarbon receptor (AhR),
Cyp1A1, and CyP1B1 were significantly reduced in the kidney tissue of rats with high-dose BYF, compared to 5/6
NXx rats.

Conclusion: BYF has a reno-protective effect against 5/6 Nx-induced CKD, which may be mediated via inhibition of
the tryptophan-KA-AhR pathway.

Keywords: Chronic kidney disease, Bupi Yishen formula, Metabolomics, Kynurenic acid, Aryl hydrocarbon receptor
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Background

Chronic kidney disease (CKD) is an emerging epidemic.
The overall prevalence of which increased by 29.3%
worldwide between 1990 and 2017. In total, it affected
697.5 million people in 2017, for a global prevalence of
9.1%, and is associated with high morbidity and mortal-
ity [1]. CKD results in changes in kidney structure and
function, eventually leading to end-stage renal disease
that requires dialysis or kidney transplantation. Thus,
there is an urgent need for effective methods to prevent
CKD progression.

In recent years, there has been increasing evidence re-
garding the beneficial effect of traditional Chinese medi-
cine (TCM) on CKD in humans [2-4] and animals [5-
7]. Bupi Yishen Formula (BYF) is a patent TCM formu-
lation modified from the historical TCM prescription,
Si-jun-zi Decoction. It was developed based on the re-
sults of text mining of medical records from Guangdong
Provincial Hospital of Chinese Medicine, a tertiary hos-
pital in southern China. BYF contains nine herbal medi-
cines, including Astragalus wmongholicus (Huangqi),
Codonopsis pilosula (Dangshen), Atractylodes macroce-
phala (Baizhu), Poria cocos (Fuling), Dioscorea opposita
(Shanyao), Coici semen (Yiyiren), Polygonum multiflorum
(Heshouwu), Cuscuta Chinensis (Tusizi), and Salvia mil-
tiorrhiza (Danshen). Astragalus mongholicus (Huangqi)
and Salvia miltiorrhiza (Danshen), a commonly used
drug pair for clinical treatment of CKD in traditional
Chinese medicine with good efficacy, markedly reduced
serum creatinine and urea nitrogen, and ameliorated
tubular atrophy and interstitial fibrosis in CKD rats [7].
Our previous study observed that the major compound
of Astragalus membranaceus (Huangqi), Astragaloside
IV, prevented indoxyl sulfate-induced tubulointerstitial
injury in mice via attenuation of oxidative stress [8].
Codonopsis pilosula (Dangshen) showed its renoprotec-
tive effect against renal ischemia/reperfusion in rats by
inhibiting the proinflammatory cytokine TNF-a release
[9]. Atractylodes macrocephala (Baizhu) could increase
the level of superoxide dismutase (SOD), decrease the
productions of IL-6 and TNF-q«, and improve the renal
tissue injury on nephrotic syndrome in rats [10]. Poria
cocos (Fuling) ameliorated cisplatin-induced kidney
tubular epithelial cells injury by inhibiting JNK, ERK,
p38, and caspase-3 [11]. Dioscoreaop posita (Shanyao)
could attenuate oxidative stress and fibrosis, regulate
lipid metabolism, and inhibit inflammation against renal
damage [12, 13]. The natural compound of Polygonum
multiflorum (Heshouwu) played a protective role in
ameliorating the progression of focal segmental glomer-
ulosclerosis in a mouse model via activation of the Nrf2-
Keapl antioxidant pathway [14]. In our previous work,
chemical constituents of BYF were systematically investi-
gated by ultra-high-performance liquid chromatography
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(UHPLC) with linear ion trap-orbitrap mass spectrom-
etry (MS) and UHPLC with triple-quadrupole tandem
MS methods, which provided comprehensive qualitative
and quantitative information for analysis of the main
components of BYF. Eighty-six compounds, including
flavones, phenolic acids, saponins, and other com-
pounds, were identified [15]. Though we have not yet
tested the effect of BYF in animals or cells, the major
components of BYF have been shown reno-protective ef-
fect. Moreover, we have performed a multi-center,
double-blind, randomized controlled trial to assess the
efficacy and safety of BYF for delaying progression in pa-
tients with non-diabetes stage 4 CKD (HERBAAL trial)
[16]. The result demonstrated that the BYF group expe-
rienced slower renal function decline compared to the
losartan group over 48 weeks, without significant group
differences in the incidence rates of adverse events [17].
However, the underlying mechanism of the effect of BYF
on CKD is unclear.

Metabolomics is an evolving research area, with nu-
merous successes in terms of characterizing biochemical
metabolites related to disease progression, as well as re-
sponses to therapeutic interventions [18] . Therefore,
metabolomics has been widely used to evaluate the effi-
cacy and potential mechanisms of action of TCM pre-
scriptions and herbs [7, 19, 20], thus facilitating the
modernization of TCM. 5/6 nephrectomy (Nx) is the
most classic CKD model as the glomerulosclerosis and
tubulointerstitial fibrosis that develop after the 5/6 neph-
rectomy have been generally considered to represent the
adverse consequences of a severe reduction in the num-
ber of nephrons [21].

In this study, we aimed to explore the beneficial effects
of BYF on CKD, as well as its potential mechanisms of
action, in 5/6 nephrectomized (Nx) rats. The character-
istics of CKD and effects of BYF treatment were evalu-
ated according to blood biochemical indexes and renal
pathological changes. An untargeted metabolomics
method, liquid chromatography-mass spectrometry/mass
spectrometry (LC-MS/MS), was used for metabolic pro-
filing, to investigate the response to BYF treatment of 5/
6Nx CKD rats. Signaling pathways were examined by
western blotting. Our findings validate the efficacy and
mechanism of BYF, which may offer a promising ap-
proach for treatment of CKD in clinical practice.

Methods

Extract preparation and chemical analysis of BYF extract
The medicinal materials used to produce BYF were pur-
chased from Kangmei Pharmaceutical Co., Ltd. (Guang-
dong, China). Information regarding components of BYF
(e.g., Chinese, Latin and English names, medical parts,
and places of origin) is shown in Suppl. Table 1. The
nine herbs were mixed at the prescribed ratios, extracted
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three times (60 min) with boiling water (1:8), and filtered
with gauze. The filtered BYF extract was obtained by
solvent evaporation in a vacuum at 56 °C.

High-performance liquid chromatography (HPLC) was
performed to verify the similarity of the major com-
pounds in BYF prepared in this study and our previous
study, in which the chemical constituents of BYF were
systematically investigated by HPLC. The HPLC method
is described in Suppl. Item 1.

Experimental animals and medicinal intervention

Male Sprague—Dawley rats (specific pathogen-free grade;
weight, 180-220 g) were purchased from the Laboratory
Animal Center of Southern Medical University
(Guangzhou, China). The rats were housed in a specific
pathogen-free animal breeding room in Guangdong Pro-
vincial Hospital and given free access to water. The rats
were fed according to a 12-h light/dark cycle. All experi-
ments were evaluated and approved by the Ethics Com-
mittee of Animal Experiments, Guangdong Provincial
Hospital of Chinese Medicine (approval no. 2019026).

Forty-six rats were randomly divided into the sham
group (n = 10) and the CKD group (n = 36). CKD was in-
duced by 5/6Nx in rats as follows. All rats were anesthe-
tized with an intraperitoneal injection of 2.0%
pentobarbital sodium (30 mg/kg body weight). Two-
thirds of the left kidney was initially removed. Seven
days later, total right Nx was performed. Rats in the
sham group only underwent removal of the fat sac, with-
out Nx (Fig. 1A).

Four weeks after surgery, the CKD group was ran-
domly divided into the 5/6Nx, L-BYF, and H-BYF
groups, according to the random number table method.
BYF-treated rats received low-dose BYF (3.2 g/kg.w) or
high-dose BYF (6.4 g/kg.w) by intragastric administra-
tion, once daily. Based on the clinical usage [17] and the
Meeh-Rubner equation [22] of dose conversion, 3.2 g/kg
and 6.4 g/kg dosage was chosen for low-dose BYF and
high-dose BYF, respectively.

Rats in the sham and 5/6Nx groups received an identi-
cal volume of normal saline. Body weight was recorded
once weekly throughout the experiment. BYF interven-
tion lasted for four weeks. At the end point of the ex-
periment, rats were anesthetized with an intraperitoneal
injection of 2.0% pentobarbital sodium (30 mg/kg body
weight). When rats became unconscious, they were eu-
thanized using cervical dislocation. Blood and kidney tis-
sues were collected and processed for untargeted
metabolomic, histological, and western blotting analyses.

Biochemical analysis and enzyme-linked immunosorbent
assay

Serum creatinine and blood urea nitrogen were mea-
sured by Cobas C702 automatic analyzers (Roche, Basel,
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Switzerland). Proteinuria was measured using a bicinch-
oninic acid protein detection kit (Thermo Fisher Scien-
tific, Waltham, MA, USA). Serum levels of interleukin
(IL)-6 and IL-1P were measured in accordance with the
enzyme-linked immunosorbent assay kit instructions
(R&D Systems, Minneapolis, MN, USA).

Histological analysis

The kidney tissues of rats were fixed with paraformalde-
hyde, and then dehydrated and embedded in paraffin.
Paraffin-embedded tissues were cut into 3-um sections
and stained with hematoxylin and eosin (Boster Bio,
Wuhan, China).

Immunohistochemistry

Paraffin-embedded rat kidney slides were deparaffined,
rehydrated, and immersed in 3% hydrogen peroxide for
10 min at room temperature to block endogenous perox-
idase activity. All sections were heated in Tris-EDTA
buffer (pH 9.0, Boster, Wuhan, China), blocked with 5%
blocking buffer for 30 min at 37 °C, incubated with pri-
mary antibodies against Tumor necrosis factor (TNF-«)
(1:100, Abcam Cat# ab6671, Cambridge, England), IL-6
(1:100, Abcam Cat# ab9324, Cambridge, England) at
4.°C overnight, incubated with species-specific secondary
antibody (SV0004, Boster, Wuhan, China), developed
with 3,3’-diaminobenzine (DAB, Invitrogen, California,
USA) and counterstained with hematoxylin. The inte-
grated optical density (IOD) values of the positive stain-
ing areas were measured by ImagePro Plus 6.0 software
(Media Cybernetics, CA, USA).

Sample preparation and LC-MS/MS analysis for
metabolomics

Sample preparation: 100-uL samples were extracted by
direct addition of 300 pL of precooled methanol and
acetonitrile (2:1, v/v). Internal standard mixes 1 and 2
were added for sample preparation quality control (QC).
After samples had been vortexed for 1min and incu-
bated at —20°C for 2 h, they were centrifuged at 4000
rpm for 20 min. The supernatants were subjected to vac-
uum freeze-drying. The dried metabolites were resus-
pended in 150 uL of 50% methanol for 30 min and
centrifuged at 4000 rpm. The supernatants were then
transferred to sample vials for LC-MS/MS analysis. A
QC sample was prepared by blending the same volume
of each sample to evaluate the reproducibility of the
overall LC-MS/MS analysis, as described in Suppl. Item
2.

Global metabolomics analysis by LC-MS/MS: Samples
were analyzed on a Waters 2D UHPLC column (Waters,
Milford, MA, USA), coupled to a Q-Exactive mass spec-
trometer (Thermo Fisher Scientific) using a heated elec-
trospray ionization source, controlled by Xcalibur 2.3
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Fig. 1 Effects of BYF on 5/6Nx CKD rats. (A) 5/6Nx method. (B) Body weight. (C) Blood urea nitrogen. (D) Serum creatinine. (E) Twenty-four-hour
urinary protein quantitation. (F) Serum IL-6. (G) Serum IL-1(3. (H) Hematoxylin and eosin staining of kidney tissues. (I-K) Immunohistochemical
staining of TNF-a and IL-6 expression in kidney. Data are presented as the means + standard error of the mean. n =12 rats per group in the 5/
6Nx, L-BYF, and H-BYF groups; n =10 in the sham group (*P < 0.05, **P < 0.001)
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software (Thermo Fisher Scientific). Chromatographic
separation was carried out on a Waters ACQUITY
UHPLC BEH C18 column (1.7 pm, 2.1 mm x 100 mm;
Waters), with the column temperature maintained at
45°C. The normal mobile phase was 0.1% formic acid
(A) and acetonitrile (B) in positive ion mode. In negative
ion mode, the mobile phase was 10 mM ammonium for-
mate (A) and acetonitrile (B). The gradient conditions
were as follows: 0—1 min, 2% B; 1-9 min, 2% B to 98% B;
9-12min, 98% B; 12-12.1 min, 98% B to 2% B; and
12.1-15 min, 2% B. The flow rate was 0.35 mL/min, and
the injection volume was 5 pL.

The mass spectra of the positive/negative ion modes
were captured using the following settings: spray voltage,
3.8/-3.2kV; gas flow rate in sheath, 40 arbitrary units;
aux gas flow rate, 10 arbitrary units; aux gas heater
temperature, 350 °C; and capillary temperature, 320 °C.
The full scanning range was 70—-1050 m/z with a reso-
lution of 70,000, and the automatic gain control target
for MS acquisitions was set to 3e6 with a maximum ion
injection time of 100 ms. The top three precursors were
selected for subsequent MS/MS fragmentation with a
maximum ion injection time of 50 ms and resolution of
17,500, using an automatic gain control of 1le5. The
stepped normalized collision energies were set to 20, 40,
and 60 eV. Nitrogen was used as atomizer and auxiliary
gas. The serum samples were analyzed in positive and
negative ion modes, and the scanning mass-to-charge
(m/z) range was 50 to 1500 Da.

To analyze metabolomic data, the mass spectrum data
were processed for noise reduction, peak alignment, and
peak identification. Peak intensities were normalized
using internal standards. Differential metabolites were
analyzed using partial least square-discriminant analysis.
Differential metabolites among groups were character-
ized by a variable importance value > 1, fold-change >1.2
or <0.83, and q-value < 0.05. By comparison with data-
bases including ChemSpider (www.chemspider.com) and
HMDB (www.hmdb.ca), differential metabolites were
preliminarily identified based on the mass fragmentation
patterns. Pathway analysis was performed using the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
database.

Western blotting analysis

Kidney tissues were lysed in 1 mL radioimmunoprecipi-
tation assay lysis buffer containing 1 mM phenylmethyl
sulfonyl fluoride and 1% phosphatase inhibitor cocktail
(Thermo Fisher Scientific). A bicinchoninic acid protein
detection kit was used to detect protein concentrations.
Protein samples (50 pg) were boiled with sodium dodecyl
sulfate polyacrylamide gel electrophoresis loading buffer,
then electrophoresed on a 10% polyacrylamide gel under
denaturing  conditions and  wet-transferred to
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polyvinylidene difluoride membranes (Millipore, Burling-
ton, MA, USA). Membranes were exposed to blocking
buffer for 2h and hybridized with primary antibody
against aryl hydrocarbon receptor (AhR) (1:500; Abcam,
Cat# ab84833 Cambridge, UK), CYP1A1l (1:400; Santa
Cruz Biotechnology, Cat# sc-25304, CA, USA), CyP1B1
(1:6000; Abcam, Cat# ab185954, Cambridge, UK), or -
actin (1:2000; Cell Signaling Technologies, Cat# 4970S,
Boston, USA) overnight at 4 °C, followed by horseradish
peroxidase-labeled anti-rabbit IgG (1:3000, Cell Signal-
ing Technologies, Cat# 7074S, Boston, USA) or anti-
mouse IgG (1:3000, Cell Signaling Technologies, Cat#
7076S, Boston, USA) at room temperature. Membranes
were washed and then visualized using an enhanced
chemiluminescence detection system (Bio-Rad, Hercules,
CA, USA). The signals were captured and analyzed using
Image Lab System (Bio-Rad).

Statistical analysis

SPSS software (version 18.0, SPSS, Inc., Chicago, IL,
USA) was used for statistical analysis. All data with nor-
mal distributions are presented as the mean + standard
error of the mean. Differences between groups were de-
termined by one-way analysis of variance, followed by
the Tukey test. Differences were considered statistically
significant at p < 0.05.

Results

QC of BYF

HPLC indicated that the major components in BYF were
similar between this study and the previous study, as
shown in Suppl. Fig. 1.

BYF alleviated renal failure phenotypes in CKD rats

We first evaluated the protective effect of BYF on
CKD. It is common for patients with CKD to experi-
ence weight loss. Notably, L-BYF and H-BYF appeared
to promote weight gain in CKD rats compared to 5/
6Nx rats, although weight did not significantly differ
among groups (Fig. 1B). Blood urea nitrogen, serum
creatinine, and 24-h proteinuria levels were signifi-
cantly higher in the 5/6Nx group than in the sham
group. These levels decreased in the BYF-treated
groups in a dose-dependent manner (Fig. 1C-E). With
regard to the systematic inflammatory response, serum
IL-6 and serum IL-1p were elevated in 5/6Nx rats
compared to sham rats, and BYF treatment signifi-
cantly decreased the serum IL-6 and tended to reduce
the serum IL-1f (Fig. 1F, G).

Consistent with the improved renal function and
inhibited inflammation, histopathological changes were
improved by low- and high-dose BYF treatments.
Hematoxylin and eosin staining of renal tissues showed
obvious  mononuclear  lymphocyte infiltration,
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enlargement of the renal tubular lumen, interstitial fibro-
sis, and renal tubular atrophy in the 5/6Nx group (Fig.
1H). Compared to sham rats, the expression of IL-6 and
TNEF-a in kidneys were elevated in 5/6Nx rats and BYF
significantly reduced kidney IL-6 and TNF-« (Fig. 1I-L).

Global metabolic profiling of serum metabolites in CKD
rats

Assessment of data quality using LC-MS/MS

Metabolomics assessment of serum samples from each
group was performed with LC-MS/MS, in both positive
and negative ion modes. The overlapping total ion
current chromatograms of QC samples indicated that
the variations during large-scale sample analysis were ac-
ceptable (Fig. 2A, B). To ensure that the LC-MS system
was stable, principle component analysis was performed,
which revealed that all QC samples were consistently
clustered together (Fig. 2C, D). The ratio between the
number of compounds with <30% coefficient of vari-
ation of the relative peak area in QC samples and all
compounds detected was greater than 60% (Fig. 2E, F).
These results indicated that the LC-MS method was re-
peatable and stable, and thus suitable for further
analysis.

Metabolic profiles of 5/6Nx and H-BYF rats

To evaluate the metabolic changes in CKD rats,
principle component analysis was used. The initial meta-
bolic state of the 5/6Nx group was markedly different
from that of the H-BYF group (Fig. 3A, B), which dem-
onstrated that BYF treatment significantly altered the
serum metabolic profile in CKD rats.

To further compare the metabolic changes between
the 5/6Nx and H-BYF groups, partial least square-
discriminant analysis was performed. Metabolites with a
variable importance value > 1, fold-change >1.2 or < 0.83,
and g-value < 0.05 were defined as differential metabo-
lites among the groups. In total, 405 and 195 metabolites
with significant changes in peak intensity were detected
in negative ion mode (123 upregulated and 72 downreg-
ulated metabolites, respectively) and positive ion mode
(293 upregulated and 112 downregulated metabolites,
respectively) (Fig. 3C, D).

Metabolic pathway analysis of BYF effects on CKD rats

To explore the functional significance of the serum
metabolic changes in the BYF group, metabolic pathway
enrichment analysis of differential metabolites was car-
ried out using the KEGG database. There were 35 meta-
bolic pathways (20 and 23 metabolic pathways in
negative and positive ion modes, respectively), including
neuroactive ligand-receptor interaction, thiamine metab-
olism, steroid hormone biosynthesis, metabolic path-
ways, primary bile acid biosynthesis, tyrosine and
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tryptophan  biosynthesis, tryptophan  metabolism,
phenylalanine-bile secretion, bile secretion, regulation of
actin cytoskeleton, circadian entrainment, parathyroid
hormone synthesis, secretion, and action, biosynthesis of
amino acids, aldosterone synthesis and secretion, cholin-
ergic synapse, dopaminergic synapse, insulin secretion,
synaptic vesicle cycle, gastric acid secretion, pancreatic
secretion, oxidative phosphorylation, salivary secretion,
retrograde endocannabinoid signaling, glutathione me-
tabolism, thermogenesis, CAMP signaling pathway, pro-
tein digestion and absorption, glycine, serine and
threonine metabolism, aminoacyl-tRNA biosynthesis,
mineral absorption, lysine degradation, phosphonate and
phosphinate metabolism, taste transduction, glyoxylate
and dicarboxylate metabolism, and inflammatory medi-
ator regulation of tryptophan channels (Fig. 3E, F).

BYF significantly inhibited tryptophan-KA-AhR pathway
Three of the thirty-five metabolic enrichment pathways
were related to tryptophan metabolism. Tryptophan me-
tabolism involves three pathways: indole, kynurenine,
and serotonin (Fig. 4). The level of tryptophan did not
differ among groups. High-dose BYF treatment reduced
the level of kynurenic acid (KA) by more than 50%,
while increasing the level of melatonin 25-fold and the
level of indole-3-acetic acid twofold (Fig. 5A-D). KA is a
type of uremic toxin produced from tryptophan and an
endogenous ligand of the AhR. To determine whether
BYF treatment influenced the AhR pathway in kidney
tissues, the expression levels of AhR, CyP1Al, and
CyP1B1 were measured by western blotting. The results
showed that BYF treatment significantly inhibited AhR
signaling in a dose-dependent manner (Fig. 5E).

Discussion

BYF treatment markedly improved kidney function, re-
duced proteinuria, inhibited the inflammatory response,
and alleviated interstitial fibrosis and tubular atrophy in
CKD rats in a dose-dependent manner. Metabolomics
analysis indicated that BYF regulated tryptophan metab-
olism and reduced KA production. Expression levels of
AhR, CyplAl, and CyP1Bl1 in kidney tissue were signifi-
cantly reduced in rats that received BYF treatment com-
pared to 5/6Nx rats. Therefore, BYF treatment may
protect the kidney through inhibition of the tryptophan-
KA-AhR pathway in CKD rats.

Because of the limited usefulness of angiotensin-
converting enzyme inhibitors/angiotensin II receptor
blockers in patients with advanced CKD, there is an ur-
gent need for additional renal protective therapies. BYF
was shown to slow renal function decline, compared to
losartan, over 48 weeks in a multi-center, double-blind,
randomized controlled trial [17]. In previous studies by
our group, compounds contained in BYF were identified
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Fig. 3 Metabolic profile differences between the 5/6Nx and H-BYF groups. Principle component analysis score plots of serum metabolites:
comparison between the 5/6Nx and H-BYF groups in negative ion (A) and positive ion (B) modes. Volcano plot for differential metabolites
between the 5/6Nx and H-BYF groups in negative ion (C) and positive ion (D) modes. Bubble plots of KEGG pathway enrichment analysis

between 5/6Nx and H-BYF groups in negative ion (E) and positive ion (F) modes

by UHPLC-MS. Specifically, 15 flavones, 10 saponins, 12
phenolic acids, and 49 other compounds were detected
[15]. According to TCM theory, Qi deficiency and blood
stasis (Qi-Xu-Xue-Yu) occur during the progression of
CKD [23]. Astragalus mongholicus (Huangqi) are com-
monly combined to replenish Qi, while Salvia miltior-
rhiza (Danshen) is often used to activate blood. The
effects of Huangqi and/or Danshen on metabolic path-
ways in rat models of CKD and other diseases have been
reported in previous studies [7, 24, 25]. Astragaloside IV
is one of the main active ingredients of Astragalus mon-
gholicus and is used as a quality control marker of As-
tragalus mongholicus (Huangqi) in the Chinese
Pharmacopeia. Pharmacological effects of Astragaloside
IV  on renoprotection attributable to its anti-
inflammatory, antioxidant, anti-apoptotic properties, and
the roles in enhancement of immunity, are associated
with multiple signaling pathways, including the AMPK
signaling pathway, NF-«B signaling pathway, Nrf2 anti-
oxidant signaling pathways and PKC-a-ERK1/2-NF-«B
pathway [26]. On the other hand, salvianolic acid A in
Salvia miltiorrhiza (Danshen) effectively protects the

kidney against oxidative stress in 5/6Nx rats. One of the
pivotal mechanisms for the protective effects of salviano-
lic acid A on kidney injury was mainly related with its
antioxidative roles by activating the Akt/GSK-3p/Nrf2
signaling pathway and inhibiting the NF-kB signaling
pathway [27]. Cardioprotective effect of rosmarinic acid
in Salvia miltiorrhiza (Danshen) against myocardial is-
chaemia/reperfusion injury via suppression of the NF-xB
inflammatory signalling pathway and ROS production in
mice [28]. Poria cocos (Fuling) treatment inhibited the
upregulation of IkB/NF-kB pathway and prevented the
downregulation of cytoprotective Keapl/Nrf2 pathway
[29]. Atractylenolide I in Atractylodes macrocephala
(Baizhu) ameliorates sepsis syndrome by reduction of
pro-inflammatory cytokines and LPS, and provides an
improvement in liver and kidney functions [30]. There-
fore, the chemical ingredients contained in the drug
compound are complex, and its pharmacological effect is
the comprehensive or integrated effect of the multiple
active ingredients contained in the compound through
multiple pathways, multiple links, and multiple targets,
and the mechanism of action is complex.
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Fig. 4 Tryptophan-KA-AhR pathway. Pathways of tryptophan metabolism through the indole, melatonin, and KA pathways
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MS. (E-F) BYF inhibited the expression of the AhR signaling pathway. n=3 per group (*P < 0.05, **P < 0.001)

In agreement with the holistic thinking of TCM, meta-
bolomics has shown potential in bioactivity evaluation
and action mechanism of TCM as well as pharmaceut-
ical research and development. Compared with tran-
scriptomics, proteomics, and microbiome, metabolomics
has the following advantages: firstly, metabolomics amp-
lifies small changes in gene and protein expression, mak-
ing detection easier. Secondly, metabolomics researchers
do not need to establish whole genome sequencing and
a large number of expressed sequence tags databases,
and the types of metabolites are much smaller than
genes, proteins, and microorganisms in quantitative
terms. Thirdly, the separation and culture of microor-
ganisms is difficult to achieve the desired effect in
microbiome, leading to difficulty in studying bacterial in-
teractions in complex microbial communities, but the
technology used in the metabolomics research is more

versatile and easier to be accepted by researchers. There-
fore, metabolomics has been applied to discover the
mechanism of BYF protecting against CKD.

There was no statistically significant difference be-
tween the male and female CKD patients by gender sub-
group analysis in our previous clinical RCT. Female rats
have menstrual cycles and it is inconvenient to collect
24 h urine, so we chose male rats for this study. In our
study, we identified more than 500 significantly different
metabolites between H-BYF and 5/6Nx rats with LC-
MS/MS-based nontargeted metabolomics. Metabolic
pathway enrichment analysis of differential metabolites
based on the KEGG database identified 35 metabolic
pathways, 3 of which were related to tryptophan metab-
olism. As an essential aromatic amino acid, tryptophan
is a biosynthetic precursor of a variety of host and mi-
crobial metabolites [31]. The metabolism of tryptophan
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has three major pathways in the gastrointestinal tract
(Fig. 4A): 1) the intestinal microorganism-mediated in-
dolic pathway, which transforms tryptophan into several
molecules (e.g., indole-3-acetic acid, indole-3-aldehyde,
indole-3-propionic acid, and indole-3-acetaldehyde) [32—
34]; 2) the kynurenine pathway, which produces kynure-
nine and downstream products such as KA and quinoli-
nic acid in both immune and epithelial cells via the rate-
limiting enzyme, indoleamine 2,3-dioxygenase [35-37];
and 3) the serotonin pathway, which produces melatonin
and serotonin in enterochromaffin cells via tryptophan
hydroxylase-1 [38]. Indeed, tryptophan-derived uremic
toxins, including KA and indole-3-acetic acid, are en-
dogenous agonists of the AhR complex. Tryptophan-
derived uremic toxins accumulate in patients with CKD
and activate the AhR pathway [39], which results in pro-
inflammatory, —oxidant, —apoptotic, and -coagulant ef-
fects [40].

Compared to our 5/6Nx rats, H-BYF rats produced
more KA but less melatonin and indole-3-acetic acid.
These findings indicated that BYF might inhibit the
kynurenine pathway, while facilitating a shift toward the
serotonin and indole pathways. KA is a stable end prod-
uct of the kynurenine pathway, whereas kynurenine is
not. Thus, KA is the most sensitive marker of kynure-
nine pathway activation, which is closely associated with
the presence and/or development of kidney dysfunction/
failure [41]. Lower kidney clearance of KA was associ-
ated with significantly greater risk of CKD progression
compared to indoxyl sulfate [42]. Higher circulating con-
centrations of KA are associated with greater oxidative
stress and incident myocardial infarction [43, 44]. A
large proportion (95%) of tryptophan is metabolized
through the kynurenine pathway, which generates con-
siderably more metabolites than the other two pathways.
Plasma concentrations of strongly protein-bound toxins
are reportedly higher in patients with CKD than in
healthy individuals (KA: 75-fold [45, 46], indoxyl sulfate:
72-fold [47, 48], and indole-3-acetic acid: 2.4-fold [48]).
In addition, the 1-methyltryptophan led to an increase in
the plasma levels of KA in pigs, of approximately 5 uM,
which was sufficient to activate AhR because of the high
affinity of KA to AhR, even at low micromolar concen-
trations [49]. Treatment of murine splenocytes with
5 puM KA exerted a slight proliferative effect, concurrent
with increased secretion of IL-1f and IL-6. This finding
suggested that KA exerts its biological effects via AhR
[50]. We noted that IL-1f and IL-6 levels increased with
BYF treatment, but not significantly (presumably due to
the small sample size). Notably, H-BYF led to reduction
of KA by half, while the level of indole-3-acetic acid in-
creased twofold. This inhibited the AhR signaling path-
way, reducing the expression levels of AhR, CyP1Al,
and CyP1B1. These changes markedly reduced
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proteinuria and the inflammatory response, thus improv-
ing kidney function and histopathological changes in
CKD rats.

Importantly, the production of melatonin was in-
creased with BYF treatment. There is increasing evi-
dence that altered circadian rhythms and serum
melatonin levels are common in patients with CKD, and
that the production of melatonin declines during the
progression of CKD to end-stage renal disease [51].
Melatonin has shown a reno-protective effect in various
renal injury animal models. For instance, melatonin sup-
pressed the renin-angiotensin system in the kidney in 5/
6Nx models [52], inhibited fibroblast-myofibroblast
trans-differentiation during renal fibrosis in unilateral
ureteral obstruction mice [53], and mitigated oxidative
stress in diabetic nephropathy rats [54].

It has been reported that activated AhR aggravates
renal damage and mediates CKD complications, includ-
ing cardiovascular disease, anaemia, bone disorders, cog-
nitive dysfunction and malnutrition, and that it
influences drug metabolism in individuals with CKD
[55]. There are two AhR signalling pathway. One is non-
canonical AhR signalling, which controls AhR gene ex-
pression through non- xenobiotic-responsive element
DNA-response elements. AhR signaling pathway also in-
teracts with additional transcriptional factors such as
STAT [56], Nrf2 [57], activator protein-1 [58], and NF-
kB [59], by binding to them and modulating their target
genes to enhance inflammatory response. In additionally,
AhR in the cytoplasm can activate other cytoplasmic
proteins, like Smads, pB-catenin, MAPK family p38 [60],
NADPH oxidase, and extracellular signal-regulated kin-
ase. We have discussed the molecular mechanism of sev-
eral compounds of BYF protecting against kidney injury,
which are related to many signaling pathways including
AMPK signaling pathway, NF-«xB signaling pathway,
Nrf2 antioxidant signaling pathways. However, how AhR
interacts with or influences other transcriptional factors
and cytoplasmic protein need further study. Integrating
transcriptomics and metabolomics might be helpful to
answer this question.

We are in an era where the need for novel approaches
for delay CKD progression is on its all-time high. Chin-
ese medicines provide a rich of resources for drug dis-
covery and development. Despite the availability of our
clinical RCT and present animal study of BYF treatment,
there are still some inherent hurdles hinder their clinical
translation, including that the oral bioavailability is weak
[61] and the role of key components are difficult to de-
termine. Microbial degradation in the gut is one of the
most common and identified reasons for poor pharma-
cokinetic and oral bioavailability. The intestinal flora is
involved in the metabolism of nutrients and food, and
plays a core role in the conversion of original herbal
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medicine components into functional metabolites. In-
stead of screening functional ingredients directly from
herbal extracts, to study the effect of Chinese medicine
and gut microbiota using multi-omics approaches seems
critical [62].

Conclusion

In our study, an LC-MS/MS-based nontargeted metabo-
lomics approach was used to investigate the reno-
protective effects and mechanism of action of BYF in 5/
6Nx CKD rats. Treatment with BYF alleviated kidney in-
jury, improved renal function, and partially reversed
metabolic abnormalities. Metabolomics analysis indi-
cated that BYF regulated tryptophan metabolism and re-
duced KA production, while reducing the expression
levels of AhR, CyP1A1, and CyP1B1 in kidney tissue.
Therefore, we presume that BYF treatment protected
the kidney through inhibition of the tryptophan-KA-
AhR pathway in CKD rats.
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