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Abstract

Background: Flavonoids from plant medicines are supposed to be viable alternatives for the treatment of type 2
diabetes (T2D) as less toxicity and side effects. Radix scutellariae (RS) is a widely used traditional medicine in Asia. It
has shown great potential in the research of T2D. However, the pharmacological actions remain obscured due to
the complex chemical nature of plant medicines.

Methods: In the present study, a systematic method combining ultrafiltration UPLC-TripleTOF-MS/MS and network
pharmacology was developed to screen α-glucosidase inhibitors from flavonoids of RS, and explore the underlying
mechanism for the treatment of T2D.

Results: The n-butanol part of ethanol extract from RS showed a strong α-glucosidase inhibition activity (90.55%,
IC50 0.551 mg/mL) against positive control acarbose (90.59%, IC50 1.079 mg/mL). A total of 32 kinds of flavonoids
were identified from the extract, and their ESI-MS/MS behaviors were elucidated. Thirteen compounds were
screened as α-glucosidase inhibitors, including viscidulin III, 2′,3,5,6′,7-pentahydroxyflavanone, and so on. A
compound-target-pathway (CTP) network was constructed by integrating these α-glucosidase inhibitors, target
proteins, and related pathways. This network exhibited an uneven distribution and approximate scale-free property.
Chrysin (k = 87), 5,8,2′-trihydroxy-7-methoxyflavone (k = 21) and wogonin (k = 20) were selected as the main active
constituents with much higher degree values. A protein-protein interaction (PPI) weighted network was built for
target proteins of these α-glucosidase inhibitors and drug targets of T2D. PPARG (Cd = 0.165, Cb = 0.232, Cc = 0.401),
ACACB (Cd = 0.155, Cb = 0.184, Cc = 0.318), NFKB1 (Cd = 0.233, Cb = 0.161, Cc = 0.431), and PGH2 (Cd = 0.194, Cb = 0.157,
Cc = 0.427) exhibited as key targets with the highest scores of centrality indices. Furthermore, a core subnetwork
was extracted from the CTP and PPI weighted network. Type II diabetes mellitus (hsa04930) and PPAR signaling
pathway (hsa03320) were confirmed as the critical pathways.
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Conclusions: These results improved current understanding of natural flavonoids on the treatment of T2D. The
combination of ultrafiltration UPLC-TripleTOF-MS/MS and network pharmacology provides a novel strategy for the
research of plant medicines and complex diseases.
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Background
Type 2 diabetes (T2D) is one of the most serious chronic
metabolic disorders characterized by persistent hypergly-
cemia. It accounts for more than 90% of all diabetes [1],
and is directly linked to pathogenic consequences in the
eyes, kidney, and cardiovascular diseases [2]. Natural
products with less side effects have been used to treat dia-
betes for thousands of years [3]. Previously, various nat-
ural products were found to exhibit anti-diabetic effects,
such as herbal formulas, fruits, vegetables, spices, or nat-
ural beverages [4]. These remedies are more accessible
and affordable than modern pharmaceuticals [5].
Radix scutellariae (RS) is the dried root of Scutellaria

baicalensis [6]. It is widely used as herbal medicine in Asia
for thousands of years [7]. This medicine has various
therapeutic functions, including antitumor, cardiovascular,
neuroprotective and anti-inflammatory effects [6, 8, 9]. A
growing body of exciting evidences also indicated an anti-
diabetic effect of RS. For instance, water extract of RS
showed a reduction of body weight and blood triglyceride
in type 2 diabetic db/db mice [10]. Methanol extract of RS
had strong α-glucosidase inhibition [11]. Another trad-
itional medicine coptis together with RS demonstrated po-
tent anti-hyperglycemic effect on diabetic rats [12]. In
addition, ethanolic extract of RS was found to enhance the
antidiabetic effect of metformin, and increase pancreatic
insulin content as well as improving the lipid profile in
diabetic Wistar rats [13]. These reports suggested great
potential of RS in the drug discovery of T2D.
The α-glucosidase is an exo-type carbohydrate enzyme

that catalyzes the liberation of α-glucose from the non-
reducing end of the carbohydrates. It locates in the
brush border surface membrane of the small intestinal
cells. This enzyme accelerates glucose reabsorption in
the intestine [14]. Inhibition of α-glucosidase could delay
the digestion, absorption of carbohydrates, and suppress
postprandial hyperglycemia [15]. Natural α-glucosidase
inhibitors have presented viable alternatives to the treat-
ment of T2D as fewer toxicity and adverse effects [16].
More than one hundred herbal medicines have exhibited
great potency in α-glucosidase inhibition and equivalent
efficacies to synthetic drugs in managing diabetes [17].
Numerous compounds of natural origin are considered

as models for drug discovery of T2D, such as flavonoids,
polyphenols, terpenoids, alkaloids, saponins, quinones [18].
Flavonoids are a group of natural polyphenolic derivatives

that widely exist in traditional medicines [19]. In recent
years, considerable portions of natural flavonoids displayed
anti-diabetic effects, including quercetin, rutin, naringin,
baicalein [20–22]. Many flavonoids were also found in RS,
such as baicalein, baicalin, wogonin, wogonoside, and so
on [23]. A part of these compounds were reported to ex-
hibit α-glucosidase inhibition [22]. Therefore, RS is consid-
ered as a source of natural α-glucosidase inhibitors.
The identification of the pharmacological profile of

natural products is always a challenging task. Ultrafiltra-
tion method has attracted much attention in the screen-
ing and analysis of bioactive compounds from botanical
extracts [24]. It has the advantage of high-speed and
high-reliability, which facilitates the separation of ligand-
receptor complexes for unbound compounds [25, 26].
For instance, Zhang et al. established an ultrafiltration
LC-MS method for screening and characterizing throm-
bin inhibitors from Rhizoma. Wang et al. applied ultra-
filtration LC-MS combined with reverse phase-medium
pressure liquid chromatography for screening and isola-
tion potential α-glucosidase inhibitors from RS [27].
However, these studies mainly focused on the screening
of bioactive molecules. Further researches are urgently
needed to elucidate the underlying mechanism.
Molecular mechanism of natural products is always dif-

ficult and confused as the complex chemical nature [28,
29]. Recently, network pharmacology approach, also
known as system pharmacology, has emerged as a power-
ful tool to solve the problem [30, 31]. This methodology
holds a significant potential for extracting biological infor-
mation from large amounts of chemical data [32], and en-
ables to predict the target profiles and pharmacological
actions of herbal compounds [33, 34]. Chen et al. con-
structed a multi-parameter network model on the basis of
three important parameters to tentatively explain the anti-
fibrosis mechanism of herbal medicine Sophora flavescens
[35]. Luo et al. used systems pharmacology strategies for
anti-cancer drug discovery based on natural products [36].
Gogoi et al developed a network pharmacology-based vir-
tual screening of natural products from Clerodendrum
species for identification of novel anti-cancer therapeutics
[37]. These studies demonstrated that network pharma-
cology approach had real potential in the mechanism re-
search of natural products [38, 39].
In the present study, we developed a systematic method

to screen α-glucosidase inhibitors from plant flavonoids
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and explore the underlying mechanism. Ultrafiltration
UPLC-TripleTOF-MS/MS was used to identify flavonoids
from the RS extract and screen potential α-glucosidase in-
hibitors. Network pharmacology was applied to investigate
the interrelationships between these compounds, related
target proteins and pathways. Several networks were con-
structed, and a series of topological characteristics were
calculated to determine the main active constituents, key
targets and critical pathways.

Methods
Materials and reagents
Crude Radix scutellariae was purchased from Baoji Me-
dicinal Material Company (Shaanxi, China). The plant
species was authenticated by Prof. Xiaomei Wang from
Shaanxi Key Laboratory of Phytochemistry in Baoji Uni-
versity of Art and Sciences. Wogonin (HW158604), bai-
calin (HB158602), wogonoside (HW158601), oroxylin A
(HB158728), chrysin (C110078), skullcapflavone II
(HA062620), oroxylin A− 7-O-β-D-glucuronopyranoside
(HO158605), baicalein-6-O-β-D-glucuronopyranoside
(XB161661), and chrysin-7-O-β-D-glucuronopyranoside
(HA061609) were obtained from Chenguang Biotech Co.
Ltd. (Shaanxi, China) with a purity higher than 98%. The
α-Glucosidase (from Saccharomyces cerevisiae) was pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Acar-
bose and p-nitrophenyl-α-D-glucopyranoside (α-pNPG)
were acquired from Aladdin Industrial Corporation
(Shanghai, China). Methanol of HPLC grade was sup-
plied by Merck (Darmstadt, Germany). Formic acid
(HPLC grade) was purchased from Tedia (Fairfield, OH,
USA). Ultrapure water was obtained using a Milli-Q
purification system (Millipore Co., USA). All other re-
agents were analytically pure.

Standards and sample preparation
Reference substances were accurately weighed and dis-
solved in methanol (5 μg/mL). The solutions were stored
at 4 °C until use. Dried Radix scutellariae powders (100
g) were passed through 100-mesh sieves, then orderly
extracted with n-hexane, chloroform, 70% ethanol by
heating reflux for 2–3 h, three times. Then, the 70%
ethanol solution was leached with n-butanol (saturated
by water). The solvents were removed by evaporation in
vacuo, and the extracts were stored at − 20 °C until re-
quired, thawed at room temperature, dissolved in metha-
nol (1 mg/mL). Finally, the solution was filtered with
0.22 μm Millipore filter membrane, and used directly for
LC-MS.

α-Glucosidase inhibition assay
The α-glucosidase inhibitory activity was evaluated based
on the slightly modified method of the literature [40]. The
assay mixture (160 μL) contained 20 μL of phosphate

buffer (0.1M, pH 7.0) in 96-well plates, 20 μL of enzyme
solution (0.1 U /mL α-glucosidase in phosphate buffer),
20 μL of sample in phosphate buffer with different concen-
trations to be mixed and incubated at 37 °C for 15min.
Then, the reaction was initiated by adding 20 μL of α-
pNPG (2.5mM in phosphate buffer). After 15min at 37 °C,
the reaction was stopped by adding 80 μL Na2CO3 (0.2M)
solution. Amount of released PNP (4-nitrophenol) was
quantified by a microplate reader at the absorbance of 405
nm. The inhibitory rates (%) were calculated as follows:

Inhibition% ¼ 1− As−Acð Þ=Ab½ � � 100

Where the symbol ‘As’ is the absorbance of the test
sample; ‘Ac’ is the absorbance of the sample contrast
(without enzyme solution); and ‘Ab’ is the absorbance of
the blank (without tested sample). All reactions were
conducted in three replications and acarbose was used
as positive control. The half maximal inhibitory concen-
tration of the test sample (IC50) was calculated using the
modified Karber’s method.

Screening of α-glucosidase inhibitors from RS
A 2 μL aliquot of n-butanol part of ethanol extract from
RS (50 mg/mL) was incubated with 8 μL of α-glucosidase
(100 μM, dissolved in 10mM ammonium acetate buffer,
pH 6.86) for 30 min at 37 °C. After incubation, each sam-
ple was filtered through a Vivaspin 2 concentrator
(MWCO 10 kDa, Sartorius, Göttingen, Germany) at 10,
000 g for 10 min. Then, the filter was washed three times
with 200 μL ammonium acetate buffer (PH 6.86) to re-
move the unbound compounds. The bound ligands were
released by adding 200 μL of methanol/water mixtures
(1:1, v/v) adjusted with acetic acid to pH 3.30, followed
by centrifugation at 10,000 g for 15 min. This procedure
was repeated three times. A control experiment in which
α-glucosidase omitted was also carried out before each
screening experiment. The released ligands were then
analyzed by LC-MS.

UPLC-TripleTOF-MS/MS analysis
Chromatographic separations were achieved on LC-
20ADXR (Shimadzu, Tokyo, Japan) coupled with a Shim-
pack XR-ODS column (100mm × 2.0 mm, 2.2 μm, Shi-
madzu). The mobile phases consisted of eluent A (0.1%
formic acid in water, v/v) and eluent B (0.1% formic acid
in methanol, v/v). The gradient elution program was set
as follows: 10 to 48% B from 0 to 8 min, holding for 6
min, 48 to 100% B from 14 to 20min. After holding
100% B for next 5 min, the ratio was returned to its
starting condition. The injection volume was 20 μL
(20 μg/mL) at a flow rate of 0.3 mL/min. The column
was maintained at 40 °C. MS analysis was performed on
a TripleTOF 4600 mass analyzer (AB SCIEX, USA)
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equipped with electrospray ionization (ESI) source. The
instrument was operated in positive ESI mode with a
declustering potential voltage (DP) of 100 V and ion-
spray voltage of 5.5 KV. The nebulization temperature
was 550 °C. GS1, GS2 and curtain gas were maintained
at 55, 55 and 30 psi, respectively. Collision energy was
10 eV for MS and 50 eV for MS/MS. An automated cali-
bration delivery system (CDS) was applied to regulate
the MS and the MS/MS. The constituents were identi-
fied by the comparison with reference standards, the ac-
curate molecular weights (with a mass tolerance of ±5
ppm), as well as the MS/MS fragment patterns. The op-
erations, acquisition, and analysis of data were moni-
tored by Analyst TF 1.7 (AB SCIEX, Concord, Canada)
and PeakView 2.0 (AB SCIEX, Concord, Canada).

Collection of target proteins and pathways enrichment
analysis
Target proteins of the α-glucosidase inhibitors from RS were
collected using SuperPred (http://prediction.charite.de/) and
DrugBank (https://www.drugbank.ca/). The target prediction
is based on the similarity distribution among the targets’ li-
gands. The distributions are utilized for estimating individual
thresholds and probabilities for a specific target. By means
of these individual thresholds and probabilities, the input
compound was screened against a database containing about
341,000 compounds, 1800 targets and 665,000 compound-
target interactions [41]. Information of all the targets was
uniformed by Uniprot (http://www.uniprot.org/). Pathway
analysis was applied to these proteins by DAVID 6.8
(https://david.ncifcrf.gov/). The queried species was Homo
sapiens. Raw P-values were adjusted using Benjamini &
Hochberg procedure [42]. Pathways with adjusted P-values
less than 0.05 were considered as significant.

Construction of networks for the α-glucosidase inhibitors
from RS
A complex network analysis was performed on the col-
lected data for further interpretation. First, a compound-
target-pathway (CTP) network was constructed to screen
main active components from RS. This network consisted
of numerous nodes and edges. Nodes represented the α-
glucosidase inhibitors from RS, corresponding target pro-
teins and related pathways, respectively. Edges referred to
interactions between them. If a protein was the hit target
of particular inhibitor, or involved in any pathways, con-
nections were made between these elements.
Subsequently, we collected therapeutic targets of T2D

from TTD database (https://db.idrblab.org/ttd/) [43],
and integrated with targets of the α-glucosidase inhibi-
tors into a protein-protein interaction (PPI) weighted
network. This network was designed to evaluate the
closeness of interaction between RS and T2D. Interac-
tions between the two groups of proteins were calculated

by Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING, https://string-db.org/) [44]. STRING
uses a scoring mechanism to give a comprehensive score
to the results obtained by these different methods, in-
cluding experimental data, data mined from PubMed ab-
stract text, database data, and results predicted by
bioinformatics methods. A weighted protein-protein
interaction (PPI) network was constructed on the basis
of these data. Nodes indicated the proteins, and that
connections represented interactions between them with
scores higher than 0.7.
Moreover, key nodes of the PPI network and their

neighbor nodes were extracted, as well as the directly
connected α-glucosidase inhibitors and related pathways.
These elements were reconstructed as a core subnet-
work to explore the underlying pharmaceutical mechan-
ism of RS. Construction and visualization of all the
networks were performed by Pajek ver. 2.00 (Batagelj
and Mrvar, 2009).

Statistical and topological analysis of the network
To interpret the behavior of the α-glucosidase inhibitors
from RS and T2D, several topological parameters of the
network were analyzed (Table 1). The degree ki is the
number of its connections attached to a given node i.
The directly linked nodes are called neighbors of node i.
Mean value of k of all nodes is defined as average degree

k . Degree distribution is the proportion of randomly
selected nodes with specific number of connections, and

Table 1 Definitions of the topological parameters used in the
network analysis

Statistical characteristic Symbol Equation a

Degree k
ki ¼

PN

j¼1
eij

Average degree <k> < k >¼ 1
N

PN
i¼1ki

Average path length L L ¼ 1
NðN−1Þ

X

i≠ j

dij

Diameter D D =max {dij}

Node strength s si ¼
X

j∈Ni

wij

Dispersion of weight distribution Y
Yi ¼

X

j∈Ni

½wij

si
�
2

Degree centrality Cd Cd ¼ ki
N−1

Betweenness centrality Cb
Cb ¼

PN

jð<kÞ

PN

k

gjkðiÞ
gjk

Closeness centrality Cc Cc ¼ N−1
XN

j¼1

dij

a N is the total number of all nodes in the network; eij is the numbers of edges
from node i to j; dij is the shortest path length from node i to j; gjk is the
numbers of geodesics connecting nodes j and k; Ni is the neighbor collection
of node i; Wij is the edge weight between node i and j
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denoted as P(k). Average path length (L) refers to the
mean distance between each pairs of nodes, which mea-
sures the overall navigability of a network. The diameter
(D) is the maximum distance between any pair of nodes.
Centrality measures the relative influence of a node

within the overall architecture of a network. In this study,
three centrality metrics were comprehensively evaluated.
Each of them focused on specific influence of a node on
other nodes. Degree centrality (Cd) indicates the propor-
tion of other nodes adjacent to a node, representing the
immediate influence that the closest nodes produce on
the corresponding vertex. Betweenness centrality (Cb) re-
fers to the total number of shortest paths going through a
node, which directly reflects the influence of a node has
on the spread of information through the network. Close-
ness centrality (Cc) is the number of other nodes divided
by the sum of distances between one node and the others,
reflecting how close a node is to others. The statistical
analysis was performed with MATLAB 2016a (The Math-
Works Inc., Natick, MA, USA).

Results
Identification of flavonoids from Radix Scutellariae
The n-butanol part of ethanol extract from Radix Scutel-
lariae were analyzed by UPLC-TripleTOF-MS/MS. A
total of 32 kinds of flavonoids were identified within 5
ppm mass tolerance. Nine of them (compound 10, 11,
12, 14, 16, 24, 26, 28, 29) were confirmed by the refer-
ence standards, and the others by fragmentation analysis.
The identification results were also compared with those
from previous studies to ensure the accuracy. Detailed
MS data of these compounds are listed in Table 2, and
the MS/MS fragmentation patterns of typical flavonoids
from RS are shown in Additional file 1.
The identified flavonoids contained 20 aglycones

(compound 1, 3, 5, 6, 8, 9, 17–21, 23–31) and 12 glyco-
sides (compound 2, 4, 7, 10–16, 22, 32). Compound 1, 3,
8, 28 belonged to aglycones, substituted by several hy-
droxyl groups. Compound 28 showed [M +H]+ peak at
m/z 255.0654 (Additional file 1a). This protonated mo-
lecular ion yielded the product ions at m/z 153.0192,
103.0547 in the MS/MS spectra. The two ions were at-
tributed to the 1,3A+ and 1,3B+, indicating the occurrence
of two OH groups in A-ring and none OH in B-ring. It
was consistent with the report of chrysin by Luo et al
[7]. Hence, compound 28 was tentatively identified as
chrysin, which was further confirmed by the standard.
Similarly, compound 1, 3, 8 were identified as 2′,3,5,6′,
7-pentahydroxyflavanone, 2′,5,6′,7-tetrahydroxyflavane,
and dihydrobaicalein, respectively [45, 46].
Compound 5, 6, 9, 17–21, 23–27, 29–31 belonged to

the methoxylated flavonoid aglycones. They exhibited a
characteristic ion (15*n Da) due to the loss of CH3 radi-
cals. Protonated molecular ion of compound 26 was

observed at m/z 285.0764 (Additional file 1b). The sole
flavone aglycone easily gave a prominent ion [M +H-
15]+ at m/z 270.2520, originated from losing one CH3

(15 Da). It also lost a CHO (29 Da) from C-ring, and
produced the fragment at m/z 241.0494. In addition, the
neutral loss of H2O (18 Da) from m/z 270.2520 pro-
duced the ions at m/z 252.0420 and 179.0462. Diagnostic
fragment ions originated from Retro-Diels-Alder (RDA)
reaction are often helpful to the structural determination
of A- and B-ring substitution patterns [45]. Our data
showed fragment ions 1,3A+ (m/z 168.0076) and 1,3B+

(m/z 103.0523), originated from the cleavage of the bond
at position 1/3 of C-ring. It was also annotated by Ma
et al. [47], and that compound 26 was finally identified
as wogonin.
Compound 17 showed [M +H]+ peak at m/z 301.0703

(Additional file 1c). MS/MS spectra of this compound
exhibited a methoxylated flavone characteristic loss of
CH3 (15 Da), resulting in a product ion at m/z 286.0501.
Besides, the parent ion m/z 301.0703 also yielded the
ions at m/z 184.0006, 156.0054, 137.9944, and 119.0452.
The product ion m/z 184.0006 was attributed to the
1,3A+, indicating that the substituent groups of two OH
and an OCH3 were located in A-ring. The ion m/z
156.0054 was produced by the neutral loss of CO and
H2O from the 1,3A+. This compound was finally identi-
fied as 4′-hydroxywogonin [46]. Compound 23 (Add-
itional file 1d) exhibited a same characteristic loss of
CH3 (15 Da) at m/z 286.0456. Moreover, other RDA
fragments from the fragment ion, 1,3A+ at m/z 168.0050
and 1,4A+ at m/z 140.0096, could also be observed. It
was identified as 5,8,2′-trihydroxy-7-methoxyflavone, the
isomer of compound 17. Identification of other com-
pounds in this group was also conducted by comparison
with previous reports, including compound 5, 6, 9 [7, 45,
48], compound 18–21 [49, 50], compound 25 [51], com-
pound 27 [52], compound 30–31 [8].
Compound 2, 4, 7, 10–16, 22, 32 belonged to flavonoid

glycosides, glycosylated in different positions. Neutral
loss of glucuronic acid (176 Da) or glucose (162 Da) is
common in flavone glycoside, as the O-glucosylic bond
is easily cleaved to generate aglycone. Reference stan-
dards of compound 10, 11, 12, 14, and 16 showed a frag-
ment ion at [M +H-176]+ due to the loss of glucuronic
acid. These compounds could be further distinguished
by the fragment of residual aglycone. Compound 14
(Additional file 1e) and compound 16 (Additional file 1f)
were a pair of isomers. They both went through the loss
of glucuronic acid (176 Da), and produced the aglycone
ions wogonin (8-OCH3) and oroxylin A (6-OCH3), re-
spectively. Furthermore, they both exhibited a base peak
[M +H-176-CH3] at m/z 270.0494. However, these two
compounds could be distinguished by the relative abun-
dances of the losses of CO and CHO from the parent
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Table 2 Characterization of flavonoids from Radix Scutellariae extracts by UPLC-TripleTOF-MS/MS

No. Compound a tR
(min)

Formula Measured m/z
b

Error c

(ppm)
MS2 (m/z)

1 2′,3,5,6′,7-Pentahydroxyflavanone 5.80 C15H12O7 305.0659 1.00 153.0079, 123.0366, 97.0212

2 5,2′6’-Trihydroxy-7,8-dimethoxyflavone-2′-O-β-D-
glucopyranoside

8.69 C23H24O12 493.1336 −0.90 331.0841, 316.0528, 298.0487,
287.0291

3 2′,5,6′,7-Tetrahydroxyflavane 9.33 C15H12O6 289.0709 0.80 169.0200, 153.0076, 147.0345,
134.9982

4 Chrysin-7-O-β-D-glucopyranoside 9.55 C21H20O9 417.1179 −0.30 307.0808, 297.0547, 279.0451,
267.0465

5 Viscidulin III 9.58 C17H14O8 347.0764 0.70 314.0373, 289.0361, 286.0436,
233.0423

6 2′,6′,7-Trihydroxy-5-methoxyflavanone 9.69 C16H14O6 303.0859 −1.40 167.0340, 152.0095, 123.0445,
107.0489

7 Baicalein-7-O-β-D-glucopyranoside 10.79 C21H20O10 433.1133 0.90 271.0555, 253.0444, 197.0546,
169.0102

8 Dihydroxybaicalein 11.00 C15H12O5 273.0760 0.90 169.0112, 123.0070, 103.0529

9 5,7,2′-Trihydroxy-6′-methoxyflavone 11.33 C16H12O6 301.0700 −2.20 250.9845, 241.0439, 153.0148,
139.0000

10 Baicalin * 11.33 C21H18O11 447.0925 0.70 271.0583, 253.0482, 225.0534, 1,
690,121

11 Baicalein-6-O-β-D-glucuronopyranoside * 12.57 C21H18O11 447.0926 0.90 327.0583, 271.0590, 253.0515,
184.0556

12 Chrysin-7-O-β-D-glucuronopyranoside * 13.07 C21H18O10 431.0971 −0.40 255.0683, 187.0802, 1,530,556,
103.0534

13 5,6,7-Trihydroxy-8-methoxyflavone-7-O-β-D-
glucuronopyranoside

13.14 C22H20O12 477.1027 −0.10 301.0752, 286.0516, 199.0233,
184.0029

14 Oroxylin A-7-O-β-D-glucuronopyranoside * 13.73 C22H20O11 461.1071 −1.60 285.0748, 270.0550, 242.0571,
168.0048

15 5,7,2′-Trihydroxy-6-methoxyflavone-7-O-β-D-
glucuronopyranoside

13.87 C22H20O12 477.1029 0.30 301.0735, 286.0499, 183.9976,
157.0433

16 Wogonoside * 14.14 C22H20O11 461.1069 −2.00 285.0748, 270.0550, 242.0571,
149.1111

17 4′-Hydroxywogonin 16.22 C16H12O6 301.0703 −1.20 286.0501, 184.0006, 156.0054,
137.9944

18 6-Methoxynaringenin 16.85 C16H14O6 303.0865 0.60 168.0022, 147.0416, 135.0801,
129.0299

19 5,6,7-Trihydroxy-4′-methoxyflavanone 16.86 C16H14O6 303.0861 −0.70 147.0423, 135.0801, 129.0299,
107.0491

20 2′,5,6′,7-Tetrahydroxy-8-methoxyflavone 16.86 C16H12O7 317.0658 0.70 209.0372, 147.0453, 129.0344,
123.0368

21 5,8,2′-Trihydroxy-6,7-dimethoxyflavone 16.86 C17H14O7 331.0811 −0.40 301.0164, 239.0294, 183.0857,
147.0425

22 Oroxylin A-7-O-β-D-glucuronide methyl ester 17.42 C23H22O11 475.1231 −0.80 285.0784, 271.0634, 253.0525,
225.0554

23 5,8,2′-Trihydroxy-7-methoxyflavone 17.74 C16H12O6 301.0709 0.80 286.0456, 168.0050, 140.0096,
121.0289

24 Skullcapflavone II * 17.91 C19H18O8 375.1077 0.70 345.0560, 327.0460, 227.0541,
212.0289

25 Dihydrooroxylin A 18.22 C16H14O5 287.0916 0.70 272.0570, 183.0258, 168.0043,
140.0092

26 Wogonin * 18.32 C16H12O5 285.0764 2.30 270.2520, 252.0420, 241, 0409,
179.0462

27 5,8-dihydroxy-6,7-dimethoxyflavone 18.43 C17H14O6 315.0867 1.20 285.0382, 257.0436, 197.0589,
182.9920
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ion [M +H-176-CH3]. In the MS/MS of compound 16,
the relative abundance of ion [M +H-176-CH3-CO] at
m/z 242.0598 was lower than [M +H-176-CH3-CHO] at
m/z 241.0494, since the loss of CHO could produce a
more stable p-quinoid skeleton. Nevertheless, it was
contrary to compound 14. Finally, compound 14 was
identified as oroxylin A-7-O-β-D-glucuronopyranoside,
and compound 16 was wogonoside.
Compound 12 also exhibited the characteristic frag-

ment ion [M +H-176] at m/z 255.0683. Moreover, other
RDA fragments from the aglycone ion of chrysin (1,3A0

+

at m/z 153.0186 and 1,3B0
+ at m/z 103.0558) were ob-

served. This compound was identified as chrysin-7-O-β-
D-glucuronopyranoside, which was supported by the re-
port by Luo et al [7]. Identification of other compounds
in this group was according to previous studies, includ-
ing compound 2 and 4 [7], compound 7 [53], compound
13 and 15 [8], compound 22 and 32 [54]. However, these
results are only based on LC-MS/MS, which might be
limited by various factors. More reference standards and
analytical tools would be used to check the accuracy of
identification in our next study.

Potential α-glucosidase inhibitors, target proteins and
related pathways
An in vitro α-glucosidase inhibition assay was performed
on the n-butanol part of ethanol extract from RS (Add-
itional file 2). It showed higher α-glucosidase inhibitory
activity (IC50 = 0.551 mg/mL) than the positive control
(IC50 = 1.079 mg/mL). The inhibition rate reached
90.55% at the concentration of 2.34 mg/mL, whereas that
of the positive control was 90.59% at 15 mg/mL. These
data indicated that the crude extract of RS was much
more potent than acarbose on α-glucosidase inhibition.
Ultrafiltration LC-MS/MS has been widely used to

screen bioactive compounds from natural products [55].
In this study, the complexes of α-glucosidase and ligands
from RS were retained by an ultrafiltration membrane,
whereas the unbound, low molecular weight compounds
were washed away from the chamber. Subsequently, the

remainings were dissociated, and the ligands were identi-
fied by LC-MS/MS. Finally, a total of 13 peaks were de-
tected, yet not presented in control group, indicating a
specific binding to α-glucosidase. Chemical structures of
the trapped ligands are shown in Fig. 1, including wogo-
nin, chrysin, oroxylin A, 5,8,2′-trihydroxy-7-methoxyfla-
vone, and so on. These compounds were considered as
potential α-glucosidase inhibitors, and reorganized as a
chemical ingredients database for the next analysis.
Interactions between small molecules and proteins are

often highly valued in biomedical and pharmaceutical sci-
ences [56]. Numerous target proteins have been used for
the treatment of T2D, such as insulin receptor, peroxi-
some proliferator activated receptor gamma (PPARG),
and α-glucosidase [57]. In this study, target proteins of the
13 α-glucosidase inhibitors were collected using web tools.
A total of 117 target proteins were obtained (Additional
file 3). Some of them were therapeutic targets of T2D,
such as bile acid receptor, histone deacetylase 1, prosta-
glandin G/H synthase 2, and so on [58]. It indicated that
these α-glucosidase inhibitors might affect T2D through
multi-targets.
A pathway contains a panel of cascade reactions

among various biomolecules [59]. Pathway analysis dem-
onstrated that the 117 targets of α-glucosidase inhibitors
were involved in 86 pathways (Additional file 3), includ-
ing metabolism of xenobiotics by cytochrome P450, ster-
oid hormone biosynthesis, insulin resistance, retinol
metabolism, and so on. These data were further analyzed
by network pharmacology.

Compound-target-pathway (CTP) network and main
active constituents of the α-glucosidase inhibitors from
RS
Natural products have advantages of multi-components
and multi-targets [60]. Their pharmacological effects are
the consequence of a series of interactional biochemical
reactions. On the other hand, T2D is a chronic degen-
erative disease involving various genetic and environ-
mental factors [61]. These elements cause great difficulty

Table 2 Characterization of flavonoids from Radix Scutellariae extracts by UPLC-TripleTOF-MS/MS (Continued)

No. Compound a tR
(min)

Formula Measured m/z
b

Error c

(ppm)
MS2 (m/z)

28 Chrysin * 18.62 C15H10O4 255.0654 0.80 153.0192, 129.0342, 103.0547

29 Oroxylin A * 18.71 C16H12O5 285.0760 0.90 270.0511, 168.0051, 140.0097,
112.0151

30 Tenaxin I 19.18 C18H16O7 345.0971 0.60 315.0528, 297.0426, 272.0299,
197.0095

31 Moslosooflavone 19.43 C17H14O5 299.0911 −1.00 284.0606, 283.0583, 255.0621,
238.0570

32 Oroxylin A-7-O-β-D-glucuronopyranoside butyl ester 19.52 C26H28O11 517.1694 −2.00 285.0532, 270.0317
a Compounds were identified by the comparison with exact mass (< 5 ppm), reference standards (indicated by an asterisk), as well as the MS/MS fragmentation
patterns (Ref. [7, 8, 45–54]); b Measured m/z of peak [M + H]+; c Mass accuracy between the calculated m/z and measured m/z of peak [M + H]+
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in the related researches. Network methodology provides
us a great opportunity to solve the problem from a sys-
temic perspective. In the present study, a compound-
target-pathway network was first built for the α-glucosi-
dase inhibitors, target proteins and related pathways
(Fig. 2). This network contained 216 nodes (N = 216)
and 877 connections (E = 877). The nodes consisted of
13 α-glucosidase inhibitors (red nodes), 117 target pro-
teins (yellow nodes), and 86 pathways (green nodes).
The larger circles denote the nodes with the most con-
nections, and that gray lines represent connections. An-
notations of these nodes were listed in Additional file 3.
Several topological parameters were calculated to de-

scribe characteristics of the network. Degree is the most
elementary characteristic for a node, which tells us how
many directly connected neighbors a node holds. k
of the CTP network was 8.12, demonstrating that an
average of more than eight neighbors were connected
with one node. On the other hand, degree distribution
measures the diversity of a network. Obviously, a few
nodes had numerous neighbors, whereas others only had
a small number of connections. Figure 3a shows that the
red and blue nodes had an uneven distribution, whereas
green nodes exhibited approximate scale-free property.

The difference of P(k) for α-glucosidase inhibitors, hit
targets and related pathways might be due to the com-
plexity of natural products. The data suggested that a
few highly connected nodes existed in the CTP network.
As interactions between molecules play a critical role

in modulating the intrinsic biological processes, more at-
tention should be paid to the highly-connected elements
[62]. Within the framework of network science, the
nodes with most connections are generally considered as
hubs [63]. Although hubs are few in number, they are
generally positioned to make strong contributions to
global network function [63]. Disturbances on these
hubs would spread rapidly throughout the entire net-
work. Figure 3b shows a descending order of degree
values for all nodes of the CTP network.
Among the α-glucosidase inhibitors, chrysin (k = 87) had

the largest k, followed by 5,8,2′-trihydroxy-7-methoxyfla-
vone (k = 21), and wogonin (k = 20). The three compounds
exhibited much higher degree values than average
( k = 8.12). Chrysin treatment has been used to improve
diabetes in rats, which could attenuate diabetes-induced
impairment [64]. Wogonin could enhance the intracellular
level of adiponectin, a therapeutic target for insulin resist-
ance, diabetes, and diabetes-related complications [65].

Fig. 1 Chemical structures of the potential α-glucosidase inhibitors from flavonoids of Radix Scutellariae extract
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Although there were few reports about bioactivity of 5,8,2′-
trihydroxy-7-methoxyflavone, the activities of flavonoids
are structure dependent with the hydroxylated phenolic
structure [66], which should be tested in the future. These
compounds have significant impacts on the global network
function, and were considered as main active ingredients.
They might contribute the most to the pharmacological ef-
fects of α-glucosidase inhibitors from RS.
Multi-targets could provide superior therapeutic effect

and less side effect compared to a single action, especially
in the treatment of complex diseases [67]. In the target
proteins, mitogen-activated protein kinase 3 (MAPK3, k =
60), mitogen-activated protein kinase 1 (MAPK1, k = 59)
and phosphoinositide-3-kinase regulatory subunit 1
(PIK3R1, k = 49) had much higher degree values than
others. The two MAPKs have been found to be increased
in human and rodent adipose tissue in the diabetic state
[68]. PIK3R1 plays a key role in insulin signaling and dia-
betes [69]. The three proteins were interconnected with

the most compounds and pathways in the CTP network,
and were also considered as hub nodes.
Normal pathways maintain balance between complex

intracellular and intercellular networks. The most highly
connected pathway in the CTP network was metabolic
pathways (hsa01100, k = 29), followed by pathways in can-
cer (hsa05200, k = 21), metabolism of xenobiotics by cyto-
chrome P450 (hsa00980, k = 15) and PI3K-Akt signaling
pathway (hsa04151, k = 15). Hsa01100 is a mega pathway
defined in Kyoto Encyclopedia of Genes and Genomes
(KEGG), that encompasses several other pathways [70],
and was excluded to avoid redundant data. Hsa05200 is
related to many diseases. A cross talk is existed between
diabetes and obesity, and that diabetes has been shown to
increase cancer risk [71]. Some drugs appear to reduce
cancer incidence and improve prognosis of patients with
diabetes [72]. Hsa00980 takes part in biotransformation of
medicines in vivo [73]. Hsa04151 is required for insulin-
dependent regulation on cellular metabolism, which was
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Fig. 2 Compound-target-pathway (CTP) network of the potential α-glucosidase inhibitors from RS. The network consists of 13 red nodes
(potential α-glucosidase inhibitors), 117 yellow nodes (target proteins), 86 green nodes (pathways), and 877 connections. The larger circles denote
key nodes with the most connections. Node information is listed in Additional file 4. Gray lines represent connections
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directly associated with T2D [74]. These reports indicated
that the α-glucosidase inhibitors from RS might be work
through various pathways.

Protein-protein interaction (PPI) weighted network and
key targets of the α-glucosidase inhibitors from RS
Many biological systems found in biology contain numer-
ous components, and the interactions between individual

agents cause the emergence of structures and functions
[75]. T2D is a typical polygenic disease affected by various
therapeutic targets [76]. Elucidation of the interactions be-
tween targets of T2D and ligands of α-glucosidase inhibi-
tors from RS would help to understand the molecular
mechanisms. In this study, a total of 64 targets of T2D
were collected, including 34 successful and 30 clinical trial
targets. Coincidentally, nine of them were also the targets

a

b

Fig. 3 a Degree distribution of the CTP network. k represents degree values, and that P(k) indicates degree distribution. b Degree values (k) of all
nodes in the CTP network, ranked in a descending order
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of α-glucosidase inhibitors from RS, such as bile acid re-
ceptor (NR1H4), histone deacetylase 1 (HDAC1), prosta-
glandin G/H synthase 2 (PGH2), and so on. We analyzed
the functional associations between the two groups of pro-
teins using STRING database. After preliminary exclusion
of isolated nodes, 69 ligands of α-glucosidase inhibitors
from RS and 35 drug-targets of T2D were preserved. A
protein-protein interaction (PPI) weighted network was
then constructed (Fig. 4) for the two groups of proteins,
containing 104 nodes and 228 connections.
In this PPI weighted network, degree ki represents the

number of other proteins interacted with node i. Node
strength (si) describes the interactive intensities between
the two groups of proteins. This parameter comprehen-
sively reflects local information of node i by considering
neighbor nodes and edge weights. Correlation between
degree k and the average strength (k) for nodes with spe-
cific k values were investigated. If s(k) ∼ kβ with an expo-
nent β ≠ 1, the edge weight is correlated with the
network topology. Figure 5a depicts the correlation be-
tween k and s(k) for the PPI network. The s(k) increased
with k as s(k) ∼ kβ with the exponent β ≈ 0.87, indicating
that the node strengths were closely associated with
degrees.
Node strengths of the PPI network were then sorted in

descending order (Fig. 5b). Larger strengths point to
nodes with larger degrees. Nuclear factor kappa B sub-
unit 1 (NFKB1) had the strongest interactions (s = 21.26)
with the targets of the potential α-glucosidase inhibitors,
followed by phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit gamma (PK3CG, s = 16.61),
acetyl-CoA carboxylase beta (ACACB, s = 13.32), and in-
sulin precursor (INS, s = 12.96). In the targets of the po-
tential α-glucosidase inhibitors, PGH2 (s = 17.47) and
PPARG (s = 14.66) interacted with the most nodes of
T2D. Moreover, the two proteins were also successful
targets of T2D. These nodes occupied important posi-
tions in the overall organization of PPI network.

System behaviors are dependent largely on the overall
structure rather than the individual parts. Disparity Yi
depicts the dispersion of weight distribution [77]. If the
weights of all edges are approximately equal, Yi ∝ 1/ki. If
one edge weight is important whereas the others negli-
gible, Yi ≈ 1. It is obvious that Yi is associated with ki.
Y(k) often attracts more attentions in the weighted net-
work. It is the average of Yi for all nodes with degree k.
If the weight distribution is relatively uniform, Y(k) ∝ 1/
k, otherwise Y(k) ≈ 1. As shown in Fig. 5c, the average
disparity Y(k) ∝ 1/k in the PPI network. It demonstrated
that the edge weight distribution for nodes with the
same degree k was approximately equal.
Changes in central positions of the network are always

more important than those in marginal or relatively iso-
lated positions [78]. To determine central nodes of the
PPI network, three centrality indices, degree centrality,
betweenness centrality, and closeness centrality were in-
tegrated into a three-dimensional diagram (Fig. 6). Dis-
tribution of these values seemed roughly uniform.
However, a few nodes appeared as outliers. PPARG
(Cd = 0.165, Cb = 0.232, Cc = 0.401), ACACB (Cd = 0.155,
Cb = 0.184, Cc = 0.318), NFKB1 (Cd = 0.233, Cb = 0.161,
Cc = 0.431), and PGH2 (Cd = 0.194, Cb = 0.157, Cc =
0.427) showed higher centrality scores than other nodes.
A total of 54 neighbors were found to be connected with
these central nodes, accounting for 51.9% of the total
target proteins. The highly connectivity of the four pro-
teins indicated that they could affect the PPI weighted
network greatly.
PPARG and PGH2 are both important targets of the

α-glucosidase inhibitors and T2D. Recent studies have
demonstrated the association of PPARG with T2D.
PPARG is a master transcriptional regulator of adipocyte
differentiation. Variants in PPARG with decreased activ-
ity in adipocyte differentiation were found to be associ-
ated with increased risk of T2D [79]. A family-based
study of Mexican Americans showed that variation in
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PPARG contributes to declining insulin resistance and
concomitant deterioration in β-cell function at risk for
T2D [80]. PGH2 generates prostaglandins and causes in-
sulin insensitivity. PGH2 polymorphisms were found to
be associated with T2D in Pima Indians comprising
1000 subjects [81]. Another variant of PGH2 had a pro-
tective role against T2D in two German cohorts [82].
ACACB and NFKB1 are therapeutic targets of T2D,

and have a strong relationship with targets of α-glucosi-
dase inhibitors from RS. ACACB is a regulator of fatty
acid metabolism. It catalyzes the carboxylation of acetyl-
CoA to malonyl-CoA. The problems in fatty acid metab-
olism can lead to insulin resistance, which is a precursor
for T2D. Polymorphisms of ACACB are associated with
T2D in postmenopausal women and Pakistani Punjabis
[83, 84]. NFKB1 encodes a subunit of NF-kappa B. It is
specifically involved in anti-inflammatory effects, and
that inflammation is linked to insulin resistance and dia-
betes. Two common NFKB1 variants were found to be
involved in T2D in an elderly cohort [85]. A transcrip-
tome and proteome study demonstrated that NFKB1
were increased in expression in diabetic subjects [86].
These reports further confirmed the importance of
PPARG, PGH2, ACACB, and NFKB1 to the α-glucosi-
dase inhibitors from RS.

Core subnetwork and critical pathways of the α-
glucosidase inhibitors from RS
In order to get further understanding of the key targets,
the nodes connected to PPARG, ACACB, NFKB1, and
PGH2 were extracted from PPI network. A total of 45
targets of the α-glucosidase inhibitors and 13 drug tar-
gets of T2D were selected. Pathway analysis indicated
that these proteins were involved in 91 pathways. After
querying KEGG DISEASE database, the type II diabetes
mellitus pathway (hsa04930) and PPAR signaling path-
way (hsa03320) showed a direct correlation with T2D.
Therefore, the two processes might play significant roles
in the pharmacological activities of the α-glucosidase in-
hibitors from RS. Moreover, we also extracted the α-glu-
cosidase inhibitors connected to these key targets from
CTP network, including chrysin, 5,8,2′-trihydroxy-7-
methoxyflavone, and wogonin. All these elements were
reorganized as a core subnetwork (Fig. 7), consisted of
63 nodes and 220 connections.
In this core subnetwork, chrysin, 5,8,2′-trihydroxy-7-

methoxyflavone, and seven targets, MAPK1, MAPK3,

Fig. 5 a Average strength s(k) as a function of degree k in
logarithmic coordinates. The data points are fitted to a straight line,
showing the relation s(k) ∼ kβ. b Node strengths of the PPI network
sorted in descending order. c Disparity Y(k) in the edge weight
decays as a function of k. The data points are well approximated by
the curve Y(k) = 1/k
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PIK3R1, protein kinase C delta (PRKCD), INS, insulin
receptor (INSR), solute carrier family 2 member 4
(GLUT4) belonged to hsa04930. As Fig. 8a shown, type
II diabetes mellitus contains various kinases. MAPK1
and MAPK3 (also known as ERK2 and ERK1) play an
important role in the MAPK/ERK cascade. Diabetogenic
factors have been found to affect insulin signaling
through activation of the ERK signaling pathway [87].
Previous research has revealed that targeting of the ERK
pathway held promise for the treatment of T2D [88]. In
the present study, MAPK1 and MAPK3 were the targets
of chrysin and 5,8,2′-trihydroxy-7-methoxyflavone. In

addition, PIK3R1 is necessary for the insulin-stimulated
increase in glucose uptake and glycogen synthesis in
insulin-sensitive tissues. Mutations of PIK3R1 could
cause insulin resistance, which is strongly associated
with insulin resistance [69]. Interestingly, chrysin, 5,8,2′-
trihydroxy-7-methoxyflavone, MAPK1, MAPK3 and
PIK3R1 were also hub nodes of the CTP network.
Chrysin, 5,8,2′-trihydroxy-7-methoxyflavone, and an-

other six targets, peroxisome proliferator activated re-
ceptor alpha (PPARA), peroxisome proliferator activated
receptor delta (PPARD), PPARG, retinoid X receptor
alpha (RXRA), 3-phosphoinositide dependent protein
kinase 1 (PDPK1), stearoyl-CoA desaturase (ACOD)
were involved in hsa03320 (Fig. 8b). Accumulating evi-
dence highlighted the role of PPAR signaling in T2D
[89]. PPARs (Peroxisome proliferator-activated recep-
tors) are nuclear hormone receptors that are activated
by fatty acids and their derivatives, containing three sub-
types (PPAR alpha, beta/delta, and gamma). The three
PPAR isoforms all appeared in hsa03320. They were
both the targets of the α-glucosidase inhibitors from RS
and T2D. Moreover, PPARG was the central node of
PPI weight network. It could promote adipocyte differ-
entiation to enhance blood glucose uptake. In hsa03320
process, chrysin and 5,8,2′-trihydroxy-7-methoxyflavone
were directly connected with the PPARs. This further
confirmed the importance of the two α-glucosidase in-
hibitors. These data supported the hypothesis that the α-
glucosidase inhibitors from RS might influence T2D
through hsa04930 and hsa03320 processes.
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Fig. 7 Core subnetwork for the potential α-glucosidase inhibitors and type 2 diabetes mellitus, consisted of 29 nodes and 47 connections. The
yellow nodes are the targets of potential α-glucosidase inhibitors from RS, and that blue nodes indicate therapeutic targets of T2D. Red and
green nodes represent the related α-glucosidase inhibitors and pathways, respectively

Fig. 6 Three-dimensional diagram of degree centrality (Cd),
betweenness centrality (Cb) and closeness centrality (Cc) for the
nodes in PPI network
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Discussion
Many previous studies have investigated the antidiabetic
constituents of Radix scutellariae. For instance, Cui et al.
used a tandem quadrupole mass spectrometer coupled
with enzyme activity analysis to explore hypoglycemic ef-
fect of RS and Coptidis rhizome [90]. This method was ac-
curate and sensitive enough for quantitative evaluation of
seven major components and six enzymes. The results in-
dicated that combined extract had stronger effects on T2D
through multiple components against multiple targets.
Tahtah et al. applied triple aldose reductase/α-glucosidase/
radical scavenging high-resolution profiling combined with
high-performance liquid chromatography-high-resolution
mass spectrometry-solid-phase extraction-nuclear mag-
netic resonance spectroscopy to identify antidiabetic con-
stituents from RS [91]. Baicalein was screened as α-
glucosidase inhibitor. In another approach, a systematic
study on metabolism and activity evaluation of Radix

Scutellaria extract in rat plasma was conducted, using
UHPLC with quadrupole time-of-flight mass spectrometry
[92]. Wogonoside, norwogoin-7-O-Glu acid and oroxylo-
side exhibited better binding affinities with α-glucosidase.
These results are partially consistent with those obtained
in our study. While they demonstrate versatility and suc-
cess of phytochemical analysis in the identification of novel
ligands for therapeutic targets, these studies are labor-
intensive and time consuming [55]. Moreover, the mech-
anism analysis of active constituents is often limited by
existing knowledges and experiences. Our study constructs
a network model of compounds, target proteins and path-
ways to explore mechanism of α-glucosidase inhibitors
identified by ultrafiltration LC-MS from RS. This approach
is more rapidly and extensive as the application of compu-
tational tools as well as systems biology. The selected main
active components, key targets and critical pathways would
provide more information for the interpretation of Radix

Fig. 8 Critical pathways of the potential α-glucosidase inhibitors from RS. a Type 2 diabetes mellitus pathway. b PPAR signaling pathway. The
yellow nodes are the targets of potential α-glucosidase inhibitors from RS, blue nodes indicate therapeutic targets of T2D, and that pink nodes
denote targets belonged to both the two groups. Red nodes represent the related α-glucosidase inhibitors
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Scutellaria and T2D. However, these results are mainly
based on statistical analysis and prediction. Further studies
on cell and animal models are required to give a distinct
answer.

Conclusion
This study presents one of the first systematic analyses
of α-glucosidase inhibitors from natural products using
ultrafiltration LC-MS/MS and network pharmacology.
Our findings suggested a possible application of flavo-
noids from Radix scutellariae in the treatment of T2D.
The n-butanol part of ethanol extract from RS showed
strong α-glucosidase inhibition activity. Thirty-two kinds
of flavonoids were identified from the extract, and 13 of
them were screened as α-glucosidase inhibitors, includ-
ing viscidulin III, oroxylin A, 2′,3,5,6′,7-pentahydroxyfla-
vanone, and so on. The results were strongly supported
by previous reports about natural flavonoids and T2D
[4, 5, 14, 22, 66]. These compounds, together with their
target proteins and related pathways, were integrated
into three complex networks. The underlying mechan-
ism of these natural α-glucosidase inhibitors were re-
vealed by network analyses. Chrysin, 5,8,2′-trihydroxy-7-
methoxyflavone and wogonin were the main active con-
stituents. PPARG, PGH2, ACACB, and NFKB1 were key
targets. The α-glucosidase inhibitors from RS might in-
fluence T2D progression through the type II diabetes
mellitus and PPAR signaling pathways. In all, the com-
bination of ultrafiltration LC-MS and system pharmacol-
ogy would enable to generate novel insight into the
research of plant medicines.
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