Yang et al. BMC Complementary Medicine and Therapies (2020) 20:377 BM C C om p | ementa ry
https://doi.org/10.1186/512906-020-03164-3 .. .
Medicine and Therapies

RESEARCH ARTICLE Open Access

Hugan Qingzhi medication ameliorates free ®
fatty acid-induced L0O2 hepatocyte
endoplasmic reticulum stress by regulating
the activation of PKC-6

Miaoting Yang', Zhijuan Chen?, Shijian Xiang?, Fan Xia®, Waijiao Tang?, Xiaorui Yao® and Benjie Zhou®'

Check for
updates

Abstract

Background: Previous studies have found that Hugan Qingzhi tablet (HQT) has significant lipid-lowering and
antioxidant effects on non-alcoholic fatty liver disease (NAFLD). Moreover, the results of proteomic analysis
confirmed that various proteins in endoplasmic reticulum stress (ERS) pathway were activated and recovered by
HQT. However, its mechanism remains confused. The purpose of this study was to explore the effects of HQT-
medicated serum on hepatic ERS and its relevant mechanisms.

Methods: 102 cells were induced by Free Fatty Acid (FFA) for 24 h to establish a model of hepatic ERS and
pretreated with the drug-medicated rat serum for 24 h. Accumulation of intracellular lipid was evaluated using Oil
Red O staining and Triglyceride detection kit. The morphological changes of ER were observed by TEM. PKC-6 was
silenced by specific SIRNA. Western blot and RT-qPCR were applied to detect the expression of markers related to
ERS, calcium disorder, steatosis and insulin resistance. The fluorescence of Ca’* influx was recorded using fluorescence
spectrophotometer.

Results: HQT-medicated serum significantly decreased the intracellular TG content. Furthermore, it caused significant
reduction in the expression of ERS markers and an improvement in ER structure of L0O2 cells. PKC-0 was activated into
phosphorylated PKC-6 in FFA-induced L0O2 hepatocytes while these changes can be reversed by HQT-medicated
serum. Silencing PKC-6 in LO2 cells can restore the expression and activity of SERCA2 in ER and down-regulate the
expression of IP3R protein to maintain intracellular calcium homeostasis, so as to relieve FFA-induced ERS and its lipid
accumulation and insulin resistance.

Conclusions: The results concluded that HQT-medicated serum exerts protective effects against hepatic ERS, steatosis
and insulin resistance in FFA-induced L02 hepatocyte. And its potential mechanism might be down-regulating the
activation of PKC-6 and stabilization of intracellular calcium.
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Background

Nonalcoholic fatty liver disease (NAFLD) has emerged
as the worldwide kind of chronic liver disease, which is
defined as fatty infiltration of the liver (hepatic steatosis)
without viral infection, chronic alcohol intake or any
other secondary causes of hepatic injury [1]. Previous ex-
position of the pathogenesis and progression of NAFLD
was the “two-hit” that first put forward by Day et al. As
stated by this hypothesis, hepatic steatosis is character-
ized as the “first hit”, which increases the liver’s suscepti-
bility to various “second hits”, which in turn lead to
oxidative stress, inflammation, or cell apoptosis [2, 3].

Recently, mounting evidences have reported that de-
struction of endoplasmic reticulum (ER) or/and ER
stress (ERS) is an important pathway associated with the
deterioration of hepatocyte steatosis to Nonalcoholic
steatohepatitis (NASH) [4]. Sustained and irreversible
ERS plays an essential role in NAFLD pathologic
changes which activates multiple signaling pathways [5].
It would interfere with the secretion of triglyceride from
liver, indirectly slow down the metabolism of triglycer-
ides by inducing insulin resistance, and then promote
the expression of inflammatory factors, and finally de-
teriorate the progression of NAFLD to NASH [6, 7].

Increasing studies have confirmed that protein kinase
C-8 (PKC-8), one of novel (8, & and 6) PKC isoforms
which triggered by diacylglycerol (DAG) acutely and
chronically [8], can be involved in the regulation of the
course of NASH through ERS pathway. PKC-§ expres-
sion was found to be upregulated in human obese and
obese diabetic patients to a degree similar to that shown
in obese and insulin resistant mice [9, 10]. In a previous
study of methionine- and choline- deficient (MCD) dietary
induced NASH [11], crucial features for the pathophysi-
ology of NAFLD progression, such as TG accumulation in
the liver, oxidative stress and hepatocytes apoptosis, were
repressed in PKC-8~ mice. Furthermore, fatty acids
could activate the expression of PKC-§ accompanied by
the activation of ERS [12]. However, an internal link be-
tween PKC-8 and the pathology of NASH or ERS remains
to be expounded.

Cellular and animal studies have shown that a variety
of natural products can prevent or even treat different
types of liver diseases [13—-16]. Hugan Qingzhi tablet
(HQT) has been used in ameliorating NAFLD in clinical
practice for a long time. It's extracted and processed
from five plant materials, including Rh. alismatis, Fr.
crataegi, P. typhae, Fo. Nelumbinis, and Ra. Notoginseng
[17]. And twelve major compounds in HQT had been
certificated and quantified by UHPLC-QqQ-MS spec-
trometry, namely, alisol A 24-acetate, 23-Oacetylalisol B,
typhaneoside, heterosine lisu-3-o-new hesperidin, nuci-
ferine, notoginsenoside R1, isorhamnetin, quercetin, epi-
catechin, rutin, isoquercetin, and hyperoside [18, 19]. In
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our previous experiments, it was confirmed that HQT
could inhibit intracellular lipid accumulation and oxida-
tive stress by regulating AMPK and PPAR« pathway [17,
20]. Furthermore, previous animal experiments have
shown that HQT can improve liver lipid metabolism
and alleviated hepatocyte inflammation, which involves
activating AMPK pathway, inhibiting NF- kB activity
and regulating SIRT1 pathway [21-23]. It can prevent
the damage caused by long-term high-fat diet in rats and
maintain normal protein synthesis and bile metabolism
in the liver [24]. Interestingly, proteomics based on rela-
tive and absolute quantitative (ITRAQ) suggested that
the therapeutic effect of HQT is closely associated with
protein processing in the ER, which is obtained not only
in the experiment of L02 hepatocyte injury induced by
free fatty acids, but also in the NAFLD induced by high-
fat diet in rats [25, 26]. However, the mechanisms
whereby HQT exerts in ERS remain to be elucidated. In
this study we would like to investigate the effects and
mechanism of HQT-medicated serum on FFA-induced
hepatocyte steatosis model by the activation of ERS.

Methods

Plant material and preparation of HQT

HQT (NO: 20170905) was supplied by Guangzhou
Chinese Crude Drug Co. (Guangzhou, China) and certi-
fied by Chuangming Liu, a professor of Traditional
Chinese Medicine in Southern Medical University. Its
voucher specimens of HQT have been kept in the
Southern Medical University (Guangzhou, China) [17].
The method is divided into following steps: firstly, mixtures
of 30% Rh. alismatis, 30% Fr. crataegi, 15% P. typhae, and
20% Fo. nelumbinis were extracted by 70% ethanol (6:1, v/
w) through heating reflux for 2h, and then collected the
ethanol extracts. The residue was refluxed again according
to the aforementioned methods. Then the extracted solu-
tion was merged for rotatory evaporation for concentration
and dryness. After grinding and sieving, 5% Ra. notoginseng
was added to the dried extracts to prepare HQT. Finally,
Thin-layer chromatography (TLC) and High-performance
liquid chromatography (HPLC) were applied to analysis the
quality and quantity of HQT [18, 19].

Preparation of HQT-medicated serum

Thirty Sprague Dawley rats (male, weight about 180-220
g) were provided by the Animal Experiment Center of
Southern Medical University Guangzhou, China (Quality
certificate number: SCXK (Yue) 2011-0015). All animal
experiments were authorized by the Southern Medical
University Animal Ethics Committee and carried out in
compliance with the institutional guidelines (Animal
Welfare Assurance 1L2016133). Those rats were divided
into five groups: a vehicle control group, three groups of
different doses of HQT-medicated serum (HQT-L,



Yang et al. BMC Complementary Medicine and Therapies

HQT-M, HQT-H) and fenofibrate-medicated serum
(FF), and administered orally 1 ml/100 g of saline, differ-
ent doses of HQT (2.7, 5.4, 10.8 g/kg/day), or fenofibrate
(0.4 g/kg/day) respectively. The drug was given intragas-
trically once a day for a week. After 1 h at the last ad-
ministrate, animals were injected 2% pentobarbital
sodium (3 ml/kg body weight) for anesthesia. And then
blood was collected from the abdominal aorta aseptic-
ally, centrifuged and stored at —80°C. All rats were
sacrificed by cervical dislocation under anesthesia. The
quality control of HQT- medicated serum have been re-
ported by Yin, etc. [17].

Experimental protocols

L02 was purchased from China Cell Culture Center
(Shanghai, China) and cultured in RPMI-1640 medium
containing 10% FBS (Gibco, USA) in a CO, incubator at
37°C. Cells were treated with FFA (oleic acid and pal-
mitic acid at the ratio of 2:1) at the concentration of 1
mM for 24 h to establish a model of steatosis and ERS.
Before cultivation with FFA, different kinds of medicated
serum were added into culture medium for 24 h. They
were divided into six groups including control group
(CON), FFA group (FFA), FFA + 10% low/moderate/high
dose of HQT-medicated serum group (HQT-L, HQT-M,
HQT-H), and FFA +10% fenofibrate-medicated serum
group (FF) [17].

Coefficient optimum proportion of HQT-medicated serum
The cytotoxicity of each concentration and medication
of the serum on L02 cells was determined and screened
by lactate dehydrogenase (LDH) release assay. Cells were
cultured with medicated-serum in different concentration
(10, 20, 30, 40% of vehicle serum) last for 24 h to find the
optimal concentration for therapy. And then cells were
added to 10% vehicle serum, 10% low/moderate/high dose
of HQT-medication serum, or 10% fenofibrate-medicated
serum (selecting the 10% concentration based on previous
experiment). After incubating for 24 h, the supernatant
was collected and assayed with the LDH colorimetric
assay kit.

Histopathological examination

Cells were washed in PBS, fixed with 4% formaldehyde
for 30 min, and stained with solution of Oil Red O for
30 min at room temperature. Images were taken under
Olympus BX51 image system (Olympus, Tokyo, Japan)
at 400 x magnification.

Cells were fixed with 10% glutaraldehyde for 1h,
washed with PBS for two times and then placed at 4°C
for 4 h. Then cells were dehydrated next in a series con-
centration of acetone, embedded in epoxy resin and ex-
cised into ultrathin sections. The sample sections (CON
group, FFA group, HQT-H group) were performed by a
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transmission electron microscope (FEI Tecnai G>20
TWIN, America).

Biochemical assay

According to the experimental method described as 2.3,
the cells were treated with RPMI-1640 containing differ-
ent concentrations of HQT-medicated serum (HQT-L,
HQT-M, and HQT-H) or fenofibrate-medicated serum
(FF) last for 24 h, before stimulation with 1 mM FFA for
24 h. Next, the culture supernatant and cells were col-
lected for detecting following biochemical parameters,
such as triglycerides (TG), aspartate aminotransferase
(AST), alanine aminotransferase (ALT), Reactive oxygen
species (ROS) (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China), Human IL-1f, Human TNFa
(MultiSciences, Hangzhou, China), and Caspase 3 activ-
ity (Beyotime Biotechnology, Jiangsu, China). The de-
tected methods were all according to the corresponding
manufacturer’s instructions.

SiRNA transfection of PKC-6

Cells were plated in 6-well plates without antibiotics.
They were divided into six groups including control
siRNA group (NC), control siRNA + FFA group (NF),
control siRNA + FFA +10% high dose of HQT-
medicated serum group (NH), PKC-8 siRNA group (SC),
PKC-8 siRNA + FFA group (SF) and PKC-8§ siRNA +
FFA +10% high dose of HQT-medicated serum group
(SH). Next, cells with about 50% confluence were trans-
fected with 50nM PKC-§ siRNA or 50nM Control
siRNA using Lipofectamine 2000 (Life Science, CA,
USA). After 6 h, the medium was replaced with RPMI-
1640 containing 10% FBS last for 24 h and then subse-
quent treatments were performed with, or without FFA
and HQT-medicated serum. Human PKC-8 siRNA were
synthesized and purchased by RiboBio Inc. (Guangzhou,
China). The transfected target sequences of PKC-§
siRNA was 5'-GCATGAATGTGCACCATAAdTAT-3".

Intracellular calcium levels

According to the experimental method described as 2.3
and 2.7, L02 cells transfected with siRNA and adminis-
trated with or without high dose of HQT-medicated
serum were washed three times with PBS, incubated
with 5puM of Fluo-4/AM (Beyotime Biotechnology,
Jiangsu, China) and Pluronic F-127 (Beyotime Biotech-
nology, Jiangsu, China) for 30 min at 37 °C and protected
from light throughout. The fluorescence of Ca2+ levels
in the Fluo-4/AM-treated cells was recorded using
Fluorescence spectrophotometer (excitation at 494 nm
and emission at 516 nm).
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Capacity of glucose consumption

L02 cells were planted in 96-well at the density of 1 x
10* cells per well. After transfected with siRNA, admin-
istrated with medicated serum, and stimulated by FFA,
RIMP-1640 containing 100 nmol/L insulin (Procell,
Wuhan, China) without phenol red were added into per
wells for 6h and wells without cells acted as Blank
group. And then the supernatants were collected and
centrifuged at 2500 r/min. Glucose oxidase method
(Applygen Technologies Inc., Beijing, China) was used
to determine the capacity of glucose consumption.

Western blot

Cells were lysed by RIPA lysis buffer (KeyGEN BioTECH),
centrifuged for 15min at 12,000g, and determined by
BCA Protein Assay Kit (Beyotime Biotechnology, Jiangsu,
China). Proteins were separated by 8—12% SDS/PAGE and
transferred to polyvinylidene difluoride membranes. The
membrane was blocked with TBS-T (containing 5% bo-
vine serum albumin) for 1 h prior at 25°C and western
blotting with polyclonal antibody at 4 °C overnight. The
primary antibodies included rabbit polyclonal antibody
against GRP78, PKC-§, p-PKC-8, CHOP, CASPASE12 (1:
1000, Abcam, UK); SREBP1c, FOXO1, SERCA2, CANX,
IP3R, p-PERK, PI3Kp85, AKT, p-AKT, IRE1l-a, p-IRE1-a
(1:1000, Affinity, USA); PERK, ATF6, ATF4 (1:1000, Cell
Signaling Technology, USA); GAPDH (1:5000, Proteintech
Group, Inc., USA). After 1h incubation with correspond-
ing secondary antibody, the immunoreactive bands were
visualized by a chemiluminescent substrate (ECL,
Amersham, USA).

RT-qPCR

Trizol reagent (Invitrogen, Carlsbad, USA) was used to
extract the total RNA of L0O2 cells. Quantity and quality
of RNA was evaluated by Nanodrop ND-1000 ultraviolet
spectrophotometer (Nanodrop). ¢cDNA was reverse-
transcribed from 1pg of total RNA using the Prime
Script™ RT Master Mix Reagent kit (TaKaRa). Quantita-
tive real time PCR was carried out using Roche LightCy-
cler480 detection system and SYBR Premix Ex TaqTM

Table 1 Primer design for rtPCR
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kit according to the instruction manual (TaKaRa). Cor-
responding primers set for PCR are summarized in
Table 1.

Statistical analysis

All data presented as mean + standard deviation. Statis-
tical significance differences between groups were evalu-
ated by using Student’s t-test or One-way analysis of
variance (ANOVA) with the SPSS 23.0 statistical soft-
ware package. When P value is less than 0.05, the differ-
ence is considered to be statistically significant.

Results

HQT-medicated serum reduces FFA-induced L02
hepatocyte steatosis

In order to examine the optimum concentration of HQT
serum for LO2 hepatocyte, we performed a LDH release
assay to measure the cytotoxicity of HQT-medicated rat
sera. In comparison to normal culture medium contain-
ing 10% FBS, 10% vehicle serum have no harm to L02
cells (p > 0.05, Fig. 1a), however, when the concentration
reached over 20% the content of LDH have increased
sharply (p <0.001, Fig. 1a). Furthermore, the results also
showed that the treatments of 10% each dose of HQT-
medicated serum and 10% fenofibrate-medicated serum
have no significant difference on LDH release (p > 0.05,
Fig. 1b), signifying that each medicated serum adminis-
tration at the concentration of 10% has no toxicity to
L02 hepatocytes.

After intervention with 1 mM FFA for 24 h, HQT-
medicated serum showed the similar ability as fenofi-
brate serum group to attenuate FFA-induced intracellu-
lar fatty degeneration in LO2 hepatocytes. The size and
number of intracellular lipid droplets increased remark-
ably in the FFA group (Fig. 1c) whereas treatment with
HQT-medicated serum have less intracellular fatty le-
sions which committed with the data of oil red-based
colorimetric assay (Fig. 1d). Besides, the content of TG
in FFA group was much higher than that in CON group
(p <0.01, Fig. 1e), and reduced significantly in HQT-M,
HQT-H, and FF group (p<0.05, 0.01, 0.05, Fig. le).

Gene Forward Reverse

GRP78 GTCCTATGTCGCCTTCACTCC GCACAGACGGGTCATTCCAC
PERK GGCTTGAAAGCAGTTAG GGACAGTTGCCTTACAGA
ATF6 GCCGCCGTCCCAGATATTA GCAAAGAGAGCAGAATCCCA
XBP-1 GAGTTAAGACAGCGCTTGGG ACTGGGTCCAAGTTGTCCAG
CASPASE-12 ACAGCACATTCCTGGTGTTTATG CAGACTCTGGCAGTTACGGTTG
CHOP GGAAACAGAGTGGTCATTCCC CTGCTTGAGCCGTTCATTCTC
PKC-6 GAAGCAGGGATTAAAGTGTG TTCTTCTCGAAACCCTGATA
B-ACTIN TGACGTGGACATCCGCAAAG CTGGAAGGTGGACAGCGAGG
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Fig. 1 HQT-medicated serum reduces FFA-induced L02 hepatocyte steatosis. a and b LDH release assay for each medicated serum treatment in
FFA-induced L02 cells. LO2 cells were treated with or without different concentrations of blank vehicle serum (0,10,20,30,40%) for 24 h (a); L0O2
cells were treated with HQT-L, HQT-M, HQT-H, FF and vehicle serum, respectively (b). c Lipid droplets were observed by Oil Red O staining
(original magnification: x 400). d Lipid content in the cells determined by Oil red-based colorimetric assay. e TG content in FFA-induced L02
hepatocytes. f AST and ALT levels in FFA-induced L0O2 hepatocytes. Results are expressed as means + S.D. “"p <0001 compared with the 10%
FBS group. “p <001, "p <0.001 vs CON group, *p < 0.05, p < 0.01, ¥ p < 0.001 vs FFA group

Level of AST and ALT in the supernatant of culture
medium are used to evaluate the functional status of
L02 cells. The results showed that AST and ALT levels
of HQT-M group, HQT-H group and FF group were
significantly lower than those in FFA group (p <0.001,
Fig. 1f).

HQT-medicated serum protects against FFA-induced L02
hepatocyte from ERS

To evaluate the effects of HQT-medicated serum on
FFA-induced LO2 hepatocyte ERS, the substructure of
endoplasmic reticulum was firstly performed by trans-
mission electron microscopy. Endoplasmic reticulum
was arranged in an orderly and normally manner with
ribosomes attaching to its surface neatly in CON group,
and there were no obvious lipid vesicles found in the
cytoplasm. But the substructure of ER in FFA group
showed severe damage as evidenced by rough ER dilata-
tion and degranulation. And lipid droplets of different
sizes were distributed in the cytoplasm, which led to the

disorder of the distribution of the ER and structural
damage. However, after the intervention of high dose of
HQT-medicated serum, the overall structure of the cells
tended to be normal that the phenomenon of lipid vacu-
oles was significantly reduced and the structure and
morphology of the ER were significantly improved
(Fig. 2a).

Secondly, the function of ER in different groups were
performed in Western blot and RT-qPCR analysis by de-
tecting the expression of ERS-related proteins and
mRNA. The expression levels of p-PERK, p-IRE-1,
GRP78, ATF6, ATF4, CHOP, and CASPASE12 protein
was upregulated in FFA-stimulated L02 cells compared
by CON group (p <0.05, Fig. 2b and c). However, L02
cells pretreated with HQT-M-, HQT-H- or fenofibrate-
medicated serum all showed significantly lowered ex-
pression levels of ERS-related proteins compared by FFA
group (p<0.05, Fig. 2b and c). Besides, corresponding
RT-qPCR results presented in Fig. 2d were consistent
with the western blot validation.
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FF

CON FFA

HQT-L HQT-M HQT-H

CHOP

Cysteine-requiring Aspartate Protease (Caspase) is a
family of proteases in the process of cell apoptosis and
Caspase-3 is the last executor of the Caspase apoptosis
pathway induced by ERS, therefore the activity of
Caspase-3 enzyme was next detected for identifying the
protective effects of HQT on the pathway of ERS-
induced apoptosis. The activity of Caspase-3 in FFA
group was 2.4 times higher than that in CON group
(p<0.001, Fig. 2e). However, pretreatment of the cells
with HQT-M, HQT-H or FF have reduced these en-
zyme activity (p < 0.05).

PKC-6 silencing ameliorates FFA-induced LO2 hepatocyte
ERS
In order to figure out the mechanism of HQT-
medicated serum in protecting against FFA-induced L02
hepatocyte from ERS, surprisingly, we found that the
phosphorylation of PKC-§ increased notably in the FFA
group compared by CON group (p <0.01, Fig. 3a and b),
but was downregulated in HQT-M, HQT-H and FF
group (p < 0.01, 0.01, 0.01).

Whether HQT can alleviate FFA-induced ERS by down-
regulating the phosphorylated expression of PKC-8?
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Therefore, PKC-8 siRNA was applied to LO2 cells for ex-
ploring the impact of PKC-§ inhibition in FFA-stimulated
ERS in LO2 hepatocytes. The protein and mRNA expres-
sion levels of PKC-§ was significantly decreased in L02
cells after PKC-8 siRNA treatment. And the

phosphorylated expression of PKC-8 was downregulated
at the same time (p < 0.001, Fig. 3c and d). FFA treatment
in the control siRNA group upregulated the expression of
p-PERK, p-IRE-la, GRP78, ATF6, ATF4, CHOP, and
CASPASE12 protein (p<0.01, Fig. 3e and f). However,
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transfection of PKC-§ siRNA protected FFA-induced L02
cells from ERS by downregulating ERS-related proteins or
mRNA expression. Additionally, our results shown in
Fig. 3h indicated that PKC-§ silencing inhibited Caspase-3
activity of L02 cells induced by FFA. FFA treatment led to
activating the enzyme of Caspase-3 (p < 0.001). However,
the inhibition of PKC-8 by siRNA significantly decreased
the influence of FFA on Caspase-3 activity (p < 0.01).

PKC-6 silencing recovers calcium homeostasis in ER
Calcium imbalance in endoplasmic reticulum is decisive for
the progress of ER Stress. Fluo-4/AM, a calconcarboxylic
acid dye, was used to determine differences in the calcium
concentration in LO2 cells with different treatments. FFA
treatment increased the level of cellular calcium (p < 0.001,
Fig. 4a), but these changes were attenuated moderately in
PKC-8 knockdown L02 cells (p <0.001). And there is no
significant difference between SF group and SH group (p >
0.05). Otherwise, SERCA is one of the essential enzymes in
keeping balance of ER calcium. In comparison of the NC
group, SERCA activity was obviously repressed in the NF
group with FAA treatment (p < 0.01, Fig. 4b). And PKC-§
downregulation partially restored the SERCA activity in-
duced by FFA, but there was no difference between SF
group and NF group (p > 0.05). Additionally, in comparison
with the NC group, the protein of CANX and IP3R that as-
sociated with calcium transport were upregulated by FFA
treatment alone, whereas SERCA2 was downregulated (p <
0.01, Fig. 4c and d). And the expression levels of IP3R and
SERCA?2 protein were reversed effectively (p < 0.01), but the
expression of CANX showed no significant difference after
transfected with PKC-8 siRNA (p > 0.05).

PKC-6 silencing inhibits FFA-induced L02 hepatocyte steatosis
L02 cells with PKC-8 gene knockdown showed the abil-
ity to inhibit intracellular lipid accumulation induced by
FFA. Hepatocyte steatosis induced by FFA pretreated
with control siRNA could still lead to a substantial in-
crease in TG production, whereas pretreatment of PKC-
0 siRNA significantly relieved these symptoms (Fig. 5a, b
and c). Another finding that is consistent with those pre-
sented in Fig. 5d and e, FFA treatment resulted in the
upregulation of SREBP-1C and FOXOI1. But that were
significantly downregulated in PKC-8 knocked down
cells. Furthermore, in comparison of SF group, L02 hep-
atocyte transfected with PKC-8 siRNA and pretreated of
HQT-medicated serum demonstrating a better efficacy
in FFA-induced L02 hepatocyte steatosis (p < 0.05,
Fig. 5b, ¢, d, and e).

PKC-6 silencing improves insulin resistance in FFA-
induced L02 hepatocyte

Levels of IL-1B, TNF-a, ROS and glucose consumption
were performed to evaluate the severity of insulin
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resistance in FFA-induced L02 hepatocyte. PKC-§ silen-
cing have attenuated FFA-induced IL-1p and ROS pro-
duction (p<0.001, 0.05, Fig. 6a and c). Nevertheless,
TNF-a showed no significant different between FFA-
induced LO02 cells with the pretreatments of PKC-§
siRNA and control siRNA (p>0.05, Fig. 6b). Addition-
ally, in PKC-8 knocked down cells, the attenuate cap-
acity of glucose consumption induced by FFA were
recovered significantly (p <0.05, Fig. 6d and e). Lastly,
we evaluated the expression levels of PI3K-p85, AKT,
and p-AKT that associated with cellular insulin
utilization. Results showed that the protein of PI3K-p85
and p-AKT/AKT were decreased in FFA-induced L02
cells without PKC-§ siRNA transfection(p < 0.001,0.05,
Fig. 6f and g). However, PKC-§ silencing by siRNA sig-
nificantly ameliorated the effects of FFA on the expres-
sion of PI3K-p85 and p-AKT/AKT. (p<0.05, 0.05,
Fig. 6f and g).

Discussion

NAFLD is a reversible disease in its early stage. There-
fore, treatments should be carried out as soon as pos-
sible to prevent it from turning into NASH, a more
aggressive condition and inflection point of NAFLD, and
to obtain better prognosis [27]. Accumulating studies
have found that abnormal expression of ERS-related
proteins, such as GPR78, p-PERK, and ATF6, were de-
tected in liver cells of patients with obesity or NAFLD
[28], which were involved in the pathology process of
NAFLD, including hepatic steatosis, insulin resistance,
inflammation and apoptosis.

Proteomic analysis had showed that the antagonistic
effect of HQT on FFA-induced injury of L02 hepatocytes
was related to the protein processing of ER [25]. How-
ever, it is still not fully clarified. In this study, we pre-
pared HQT-medicated serum according to the theory of
serum pharmacology [29]. Then, we came to the same
conclusion as before that the 10% (vol/vol) HQT-
medicated sera has no toxicity in culturing LO2 cells
through an LDH-released assay [17]. Next, to establish a
cell model of lipid-overload and ER Stress, the L02 cells
were exposed to FFA at a final concentration of 1 mM
for 24 h determined by results from oil red O staining,
TG content, expression levels of ERS-related protein or
mRNA (Additional file 1). High and moderate concen-
trations of HQT serum showed the similar ability as
fenofibrate serum group to attenuate FFA-induced intra-
cellular TG and lipid droplets. In addition, AST and
ALT activities were decreased in HQT groups indicating
its beneficia effect on hepatoprotective effect.

Excessive lipids accumulated in the hepatocytes results
in hepatic steatosis, then the generation of ROS and in-
flammatory cytokines would be stimulated, which co-
operate to promote NAFLD progressing to NASH [30,
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31, 32]. Along with that process, the disturbances in ER
plays an essential role in NASH development, exacerba-
tion of hepatic steatosis, IR, and inflammatory response
by inducing hepatocyte apoptosis [33, 34]. Our results
showed that upregulation of signaling molecules such as
GRP78, p-PERK, p-IRE-1a, ATF6 and ATF4 in the FFA-
treated group suggested that ERS model in vitro was
successfully induced by FFA. There are a variety of haz-
ards inducing ERS in the development process of NAFL
D, such as lipid-overload, hypercholesterolemia, oxida-
tive stress and inflammatory [35], etc. Simultaneously,
multiple pathways of ERS promotes the transformation
of NAFLD to NASH. The pathways of PERK/ATF4,
IRE1/XBP1, ATF6 contribute to the expression of adi-
pose genes to regulate the synthesis, differentiation and
transportation of lipid. PERK deletion inhibited the sus-
tained expression of FAS, ACL and SCD1 in immortal-
ized murine embryonic fibroblasts [34, 36]. ATF4
overexpression induces early onset of hyperlipidemia in
zebrafish [36], while hepatic lipogenesis was diminished
in fructose-fed ATF4-deficient mice with impacts on
downregulation of PPAR-y, SREBP-1, ACC and FAS
[37]. Activated XBP1 and ATF6 can directly combined
with fat synthesis gene promoter for regulating the as-
sembly and secretion of VLDL [38-41]. Additionally,

activated IRE-1a and PERK mediates inflammatory reac-
tion through the pathways of JNK/AP-1 and IKK/NF-«xB
to upregulate a variety of inflammatory factors including
TNF-a. IL-1p and MCP-1, which were subsequent to
hepatic IR, inflammation, and even organic damage [42].
Similarly, HQT serum or fenofibrate serum all showed
significantly lowered protein or mRNA expression levels
of ERS-related signaling molecular which can be con-
cluded that HQT serum or fenofibrate serum protected
hepatocytes against FFA-induced ERS, thus effectively
improving its pathologic and functional state. Moreover,
under a long-term period of ERS, cell apoptosis can be
mediated by signaling pathway of PERK/ATF4/CHOP,
IRE-1/JNK and CASPASE12 [43-45]. On the one hand,
antiapoptotic proteins are reduced, while proapoptotic
proteins are increased [46]. On the other hand, activa-
tion of calcium efflux receptor causes calcium leakage in
the endoplasmic reticulum, then increases calcium con-
centration in the cytoplasm, and generation of oxygen
free radicals, which ultimately activates cell apoptosis by
the mitochondrial dependent or independent pathways
[47-49]. Surprisingly, our results proved that ERS-
induced apoptosis has occurred in FFA group with up-
regulated expression of CHOP and CASPASE12, while
HQT serum or fenofibrate serum not only lowered
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protein or mRNA expression levels of them, but also
protected hepatic endoplasmic reticulum against FFA-
caused vesicular dilation, ribosome shedding, and other
abnormal structural changes, and reduced the generation
of lipid vacuoles, so that the overall structure of L02
cells tend to be normal.

Mounting researches has focused on the role of PKC-
9, an atypical isoform of the PKC family, which are sig-
nal transduction enzymes activated by diacylglycerol
(DAG), a metabolite of free fatty acid [50]. Previous
studies have confirmed that PKC-8 can be involved in
the regulation of the course of NASH through ERS path-
way, and downregulated expression of PKC-8 have been
useful in reducing the expression levels of ERS-related
molecules, decreasing concentration of blood lipid and
ALT in NASH or diabetic mice, in order to improving
hepatic steatosis and fibrosis [12, 51-53]. Notably, we
observed the activation of phosphorylated PKC-§ in
FFA-induced LO2 hepatocytes while these changes can
be reversed by HQT-medicated serum. And whether
HQT can alleviate FFA-induced ERS by regulating the
activation of PKC-8? Therefore, we used specific siRNA
sequences to silence PKC-§ gene in L02 cells. Our re-
sults showed that the expression levels of p-PERK, p-
IRE-1a, GRP78, ATF6, CASPASE12 and CHOP protein
in SF group were not significantly different from those
in SH group except ATF4 after treated with FFA for 24
h, however, the cells in the PKC-§ siRNA-transfected
group were significantly lower than those in the non-

transfected group. In addition, PKC-8 silencing could ef-
fectively inhibit the activation of Caspase-3 in L02 cells
induced by FFA, but the Caspase-3 activity in the SF
group was still increased with a comparison to the SC
group. The results indicated that PKC-§ silencing can
significantly ameliorate FFA-induced ERS in L02
hepatocytes.

And how does PKC-§ relate to ERS? Endoplasmic
reticulum, as the main site of calcium storage, maintains
intracellular calcium homeostasis. Under physiological
conditions, calcium ions are transferred to the cytosol
through the Ryanodine Receptor (RyR) and 1,4,5-tris-
phosphate receptor (IP3R) [54], and transported into the
ER through SERCA to maintain the dynamic balance of
Ca®* in the ER. Inhibition of SERCA activity leads to an
increase in Ca”* concentration in cytoplasm, which in
turn activates ERS, CaMKKB/AMPK/mTOR cascade sig-
naling pathways, and ultimately promotes cell apoptosis
[55, 56]. In addition, the inhibition of SERCA resulted in
the production of ERS and IR in ob/ob mice fed with a
western diet [57]. Conversely, enhancing the activity of
SERCA blocked the ERS-activated apoptotic pathway in-
duced by palmitic acid in BEL-7402 hepatoma cell line
[58]. These results indicated that SERCA inactivation is
closely related to the production of ERS and plays an
important role in metabolic disorder through ERS. In
present experiment, it showed that the activity of SREC
A2 decreased significantly, and intracellular calcium
concentration increased significantly in L02 cells treated
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with FFA, while the expression level and activity of
SERCA2 in LO2 cells transfected with PKC-§ siRNA
were restored. Meanwhile, the expression of IP3R and
CANKX decreased obviously to maintain intracellular cal-
cium homeostasis. It can be seen that silencing PKC-§
may play a key role in maintaining calcium homeostasis.
The pathogenic factors of NAFLD are closely related to
IR. Excessive accumulation of lipid in hepatocytes can
disrupt the transduction of insulin signaling pathway,
and IR can also affect the synthesis, secretion and trans-
port of lipid in the liver. Previous studies have found
that the expression of SERCA in hepatocytes and macro-
phages of obese mice is decreased with IR, and the ex-
pression of ERS signaling molecules is upregulated, but
recovery of SERCA2 can alleviate ERS, normalize

content of blood glucose and hepatic TG, and even fa-
cilitate transduction of insulin [59].In addition, activity
of SERCA2 protein of islet  cells in diabetic patients
were decreased through NO-/AMPK-dependent path-
ways under inflammatory response, which could result
in glucose intolerance and reduce islet  cell prolifera-
tion and insulin secretion. Then, ERS was induced at the
same time [60]. Similarly, silencing PKC-§ in LO02 cells
restored the expression and activity of SERCA2 protein
and alleviated status of ERS. After remission of ERS, on
the one hand, the expression levels of SREBP-1c and
FOXO-1 protein were down-regulated for alleviating
FFA-induced steatosis; On the other hand, silencing
PKC-8 inhibited the production of inflammatory factors
(IL-1p and TNF-a) and ROS and up-regulated the
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expression of PI3K-p85 and p-AKT protein in order to
restoring the transduction pathway of insulin, thus alle-
viating IR and glucose intolerance in FFA-induced L02
hepatocytes (Fig. 7).

Conclusions

HQT-medicated serum could effectively alleviate the
ERS state of L02 cells. On the one hand, it signifi-
cantly decreased the intracellular TG content and the
activities of AST and ALT. HQT-medicated serum
can downregulate the expression of ERS-related sig-
naling molecules, so that effectively protected against
hepatocytes from the FFA-induced steatosis and im-
proved its functional status. Moreover, the mechanism
may be related to regulating the activation of PKC-§.
PKC-§ plays an important role in the progression of
NAFLD disease. Silencing PKC-8 in LO2 cells can re-
store the expression and activity of SERCA2 protein
in ER and downregulate the expression of IP3R pro-
tein to maintain intracellular calcium homeostasis,
thus relieving the FFA-induced ERS and its lipid ac-
cumulation and insulin resistance.
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