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Abstract

Background: In traditional Malay medicine, Marantodes pumilum (Blume) Kuntze (family Primulaceae) is commonly
used by women to treat parturition, flatulence, dysentery, dysmenorrhea, gonorrhea, and bone diseases. Preliminary
screening of some Primulaceae species showed that they possess xanthine oxidase inhibitory activity. Thus, this
study aimed to investigate the xanthine oxidase inhibitory activity of three varieties of M. pumilum and their
phytochemical compounds.

Method: Dichloromethane, methanol, and water extracts of the leaves and roots of M. pumilum var. alata, M.
pumilum var. pumila, and M. pumilum var. lanceolata were tested using an in vitro xanthine oxidase inhibitory assay.
Bioassay-guided fractionation and isolation were carried out on the most active extract using chromatographic
techniques. The structures of the isolated compounds were determined using spectroscopic techniques.

Results: The most active dichloromethane extract of M. pumilum var. pumila leaves (IC50 = 161.6 μg/mL) yielded
one new compound, 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), and five known compounds, viz.
ardisiaquinone A (2), maesanin (3), stigmasterol (4), tetracosane (5), and margaric acid (6). The new compound was
found to be the most active xanthine oxidase inhibitor with an IC50 value of 0.66 ± 0.01 μg/mL, which was not
significantly different (p > 0.05) from that of the positive control, allopurinol (IC50 = 0.24 ± 0.00 μg/mL).

Conclusion: This study suggests that the new compound 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1),
which was isolated from the dichloromethane extract of M. pumilum var. pumila leaves, could be a potential
xanthine oxidase inhibitor.
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Background
Marantodes pumilum (Blume) Kuntze belongs to the
Primulaceae family [1]. It was previously known as Labi-
sia pumila (Blume) Fern.-Vill. from the Myrsinaceae
family [2]. The taxonomic characteristics of eight var-
ieties of M. pumilum have been described [3], and three
of the varieties (var. alata Scheff., var. pumila, and var.
lanceolata (Scheff.) Mez) are commonly used in
Malaysia [2]. The close resemblance of var. alata and
var. pumila leaves has made macromorphological identi-
fication quite difficult, as the leaf laminas of both var-
ieties are either narrowly or broadly elliptic or ovate
with 10–30 × 1.3–11 cm dimensions [3]. However, their
petioles differ. The petiole of var. alata is 5–12 cm long
and broadly winged (3–5mm wide), whereas that of var.
pumila is 4–15 cm long and slightly winged. Nonetheless,
to differentiate them based on characteristic anatomical
features and chemical profiling, a pharmacognostical study
of these varieties was performed using microscopic, high-
performance thin layer chromatography (HPTLC), high
performance liquid chromatography (HPLC), and attenu-
ated total reflectance-Fourier transform infrared spectros-
copy (ATR-FTIR) techniques [4].
In traditional Malay medicine, M. pumilum decoction

is popularly used among women to induce and facilitate
labor, delay fertility, and regain vitality, as well as to treat
flatulence, dysentery, dysmenorrhea, gonorrhea, and
bone diseases [5–7]. Men of several ethnic groups in the
Sarawak state of Malaysia also consume the plant to
maintain and increase stamina [8]. Additionally, the
plant has been increasingly used as a supplement and
beverage among the public for general health mainten-
ance [9]. Previous scientific studies have reported the ac-
tivities of M. pumilum, including antioxidant [10],
xanthine oxidase inhibition [11, 12], antimicrobial [13],
anti-inflammatory [14], uterotonic effect [15], phytoes-
trogenicity [16], anti-obesity [17], anti-aging [18], and
anti-carcinogenic [19]. Its phytochemical compositions
such as triterpenoid saponins, alk(en) ylresorcinols,
benzoquinone derivatives, fatty acids, flavonoids, and
phenolics, have been documented [13, 20–23].
Xanthine oxidase (XO) catalyzes the oxidation of

hypoxanthine to xanthine and xanthine to uric acid [24].
It plays a major role during the last step of purine nu-
cleotide metabolism in humans, and serves as an import-
ant biological source of oxygen-derived free radicals.
Free radicals can contribute to the oxidative damage to
living tissues, which are involved in many pathological
processes and various ischemic tissues, vascular injuries,
and inflammation [25, 26]. Xanthine oxidase is primarily
distributed in the liver and intestine [27]. In humans,
overproduction of xanthine oxidase elevates the blood
stream uric acid concentration and leads to hyperurice-
mia [28]. Uric acid deposition begins when uric acid

dissolves in the blood and forms urate monohydrate
crystals in the joints and kidneys, leading to painful in-
flammation. Uric acid has been identified as a marker
for gout and several metabolic and hemodynamic abnor-
malities [25, 29, 30]. Synthetic xanthine oxidase inhibi-
tors such as allopurinol, febuxostat, and phenylpyrazol
derivative Y-700, have been widely used to treat hyper-
uricemia and gout [27], but may have side effects. The
extensively prescribed allopurinol has been reported to
cause Stevens-Johnson syndrome, toxic epidermal necro-
lysis, hepatic disorders, and renal dysfunction [31].
Therefore, new alternatives such as medicinal plants,
with fewer side effects, are desired [32, 33].
Phytochemical constituents such as phenolics, flavonoids,

coumarins, lignans, triterpenoids, and alkaloids have been
reported to inhibit xanthine oxidase [27, 34–36]. Esculetin,
a hydroxycoumarin derivative, displayed strong xanthine
oxidase inhibitory activity [37] and was proposed as an ap-
propriate bioactive quality control marker for a traditional
Chinese medicine formula used in the treatment of hyper-
uricemia [38]. The extract of M. pumilum was reported to
alleviate hyperuricemia in vivo [39]. Thus, in this study, po-
tential xanthine oxidase inhibitors were determined by
evaluating the xanthine oxidase inhibitory activity of M.
pumilum varieties and isolated compounds using an
in vitro assay. The compound could be used as an analytical
marker for quality control purposes of M. pumilum-con-
taining herbal products intended for hyperuricemia or
gouty conditions.

Methods
Materials and equipment
Microplates (96-well) used in the in vitro assay were ob-
tained from Thermo Multiskan Go (Waltham, MA,
USA). The following adsorbents were used: silica gel 60
(5–40 μm, cat. no. 1.07747) was used for vacuum liquid
chromatography (VLC), silica gel 60 (40–63 μm, cat. no.
1.09385) and Sephadex LH-20 (GE Healthcare, Upsalla,
Sweden) were used for column chromatography (CC),
and silica gel 60 GF254 (0.25 mm, cat. no. 1.05554) was
used for thin layer chromatography (TLC). The silica
gels were obtained from Merck (Darmstadt, Germany).
For structural elucidation of the isolated compounds,

ultraviolet (UV) spectra were recorded in ethanol using
a Shimadzu UV1800 UV-Vis spectrophotometer (Shi-
madzu Corp., Kyoto, Japan), and infra-red (IR) spectra
were obtained using a Spectrum 100 FTIR spectropho-
tometer (PerkinElmer, Inc., Waltham, MA, USA) with
an ATR technique. One-dimensional proton (1H) and
carbon (13C) and two-dimensional nuclear magnetic res-
onance (NMR) spectra were determined using a Bruker
Avance III 600MHz spectrometer (Bruker BioSpin,
Karlsruhe, Germany), while high-resolution electrospray
ionization mass spectrometry (HR-ESI-MS) and electron
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ionization mass spectrometry (EI-MS) spectra were ob-
tained using an Ultimate 3000 system, MicrOTOF-Q II
(Bruker Daltonics, Bremen, Germany).

Chemicals and reagents
Analytical grade organic solvents, including dichlorometh-
ane (DCM), methanol (MeOH), chloroform (CHCl3), di-
methyl sulfoxide (DMSO), hexane, ethyl acetate (EtOAc),
toluene, acetone, and ethanol (EtOH), were purchased
from Merck (Darmstadt, Germany). For the bioassay, allo-
purinol, xanthine, and xanthine oxidase (cow’s milk) were
purchased from Sigma-Aldrich Chemicals (St. Louis, MO,
USA), while dimethyl sulfoxide (DMSO), hydrochloric
acid (HCl), sodium hydroxide (NaOH), and potassium
dihydrogen phosphate (KH2PO4) were purchased from
Merck (Darmstadt, Germany).

Preparation of M. pumilum extracts
Three wild varieties of M. pumilum were collected from
the Bujang Melaka Forest Reserve in Malaysia and au-
thenticated by Mr. Sani Miran†, a botanist from the
Herbarium of Universiti Kebangsaan Malaysia in Bangi
(UKMB). The voucher specimens of var. alata (voucher
number: UKMB 30006/SM 2622), var. pumila (UKMB
30007/SM s.n.), and var. lanceolata (UKMB 30008/SM
s.n.) were deposited in the Herbarium of Universiti
Kebangsaan Malaysia.
Leaves and roots (consisting of both stems and roots)

of the fresh plants were separated and air-dried under
shade. Following this, they were coarsely ground to ob-
tain six powdered plant materials: var. alata leaves (0.2
kg) and roots (0.8 kg), var. pumila leaves (0.8 kg) and
roots (2.0 kg), and var. lanceolata leaves (0.2 kg) and
roots (0.5 kg). Within 1 week, each plant powder was
successively macerated with dichloromethane in a
powder-to-solvent ratio of 1:5, followed by methanol (ra-
tio of 1:5). The methanol residue was refluxed with dis-
tilled water in a residue-to-solvent ratio of 1:13 for the
leaves and 1:10 for the roots. The dichloromethane and
methanol fluid extracts were vacuum-dried, and the
water extracts were freeze-dried. This process resulted
in eighteen dried extracts, which were stored in a re-
frigerator at 4 °C until further analyses.

In vitro xanthine oxidase assay
The xanthine oxidase inhibitory assay was carried out
using a previously reported method [40] with slight
modifications. Initially, allopurinol (the positive control)
and the dichloromethane and methanol extracts were
dissolved in dimethyl sulfoxide (DMSO), and the water
extracts were dissolved in distilled water. This was
followed by dilution with potassium phosphate buffer
(0.05M, pH 7.5) to achieve the desired concentrations.
Each test solution contained 0.5% DMSO. The assay was

performed in triplicates in a 96-well microplate. The
assay reaction mixture, which consisted of 130 μL of buf-
fer, 10 μL of either test solution (400 μg/mL for extracts
and 100 μg/mL for isolated compounds) or allopurinol
(100 μg/mL), and 10 μL of xanthine oxidase (0.2 U/well),
was incubated at 25 °C for 15 min. Then, 100 μL of sub-
strate solution, xanthine (0.15 mM, pH 7.5), was added
before further incubating at 25 °C for 10 min. The final
assay mixture was spectrophotometrically measured at
295 nm. Xanthine oxidase inhibitory activity was
expressed as the percentage of xanthine oxidase inhib-
ition and calculated using the following formula:

%Xanthine Oxidase Inhibition

¼ A − Bð Þ − C −Dð Þ
A − Bð Þ

� �
� 100

Where A is the optical density without the test solu-
tion or allopurinol, B is the optical density of blank solu-
tion containing only potassium phosphate buffer (0.05
M, pH 7.5), C is the optical density of the test solution
or allopurinol with the presence of xanthine oxidase,
and D is the optical density of the test solution or allo-
purinol without xanthine oxidase. Test solutions with
more than 50% xanthine oxidase inhibition were reas-
sayed at concentrations of 25, 50, 100, 200, and 400 μg/
mL for extracts, 0.39, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50
and 100 μg/mL for compound 1, and 6.25, 12.5, 25, 50,
and 100 μg/mL for compound 2. Their half-maximal in-
hibitory concentration (IC50) values were determined
from percentages of xanthine oxidase inhibition of the
respective concentration range using GraphPad Prism 5
software (La Jolla, CA, USA) and compared with that of
allopurinol (0.0064, 0.032, 0.16, 0.8, 4, 20, and 100 μg/
mL).

Isolation and structural elucidation of compounds from
M. pumilum var. pumila
The screening assay revealed that the dichloromethane
extract of M. pumilum var. pumila leaves was most ac-
tive. The extract (20.0 g) was fractionated by vacuum li-
quid chromatography using silica gel and gradient
elution with increasing polarity mobile phase, that is, 3 L
of hexane-ethyl acetate (9:1, 8:2, 7:3, 6:4, 5:5, 3:7, 2:8,
and 1:9) followed by 2 L of 100% ethyl acetate and 2 L of
100% methanol. Eluents (250 mL each) were collected
and combined based on the similarity of TLC profiles to
obtain 16 fractions (CC1: F1–16) (Fig. 1). The fractions
were further fractionated using various chromatographic
techniques with different solvent compositions to obtain
six pure compounds.
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3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1)
The fraction CC1-F11 (0.13 g) was fractionated using
Sephadex LH-20 column chromatography (Φ 25mm)
with 1% methanol in chloroform to yield seven fractions
that were assayed for xanthine oxidase inhibition. The third
fraction was then eluted using silica gel column chromatog-
raphy with chloroform-ethyl acetate (4:1) to obtain pure
compound 1. Compound 1 was also isolated from fractions
CC1-F12 (0.86mg) and CC1-F13 (0.26mg) via several steps
of bioassay-guided column chromatography and xanthine
oxidase inhibition assay (Fig. 1). Compound 1 was obtained
as a white amorphous solid (2.2mg), and the data for its
structural elucidation were as follows: TLC: Rf 0.3 (toluene-
acetone, 9:1); UV (EtOH) λmax nm (log ε): 275 (3.17); IR
(ATR) max, cm

− 1: 3256, 2926, 2952, 1734, 1659, 1607,
1464, 1383, 1311, and 1202; EI-MS m/z: 236 [M]+ (calcu-
lated for C12H12O5, 236.2207 g/mol); 1H-NMR (CDCl3,
600MHz) δH (ppm): 2.45 (3H, s, H-11), 2.65 (3H, s, H-
12), 3.89 (s, OCH3), and 6.91 (s, H-6); 13C-NMR (CDCl3,
150MHz) δC (ppm): 162.7 (C-1), 157.1 (C-3), 139.9 (C-4),
110.2 (C-4a), 153.1 (C-5), 101.8 (C-6), 142.5 (C-7), 119.8
(C-8), 131.1 (C-8a), 18.2 (C-9), and 15.2 (C-10).

Ardisiaquinone A (2)
The fraction CC1-F15 (0.69 g) was fractionated using Sephadex
LH-20 column chromatography with 1% methanol in chloro-
form to yield eight fractions. The third fraction was then
eluted using silica gel column chromatography with
chloroform-methanol (9:1) to obtain five fractions. The fourth
fraction was triturated with hexane–methanol (1:1) to give
compound 2. Compound 2 was obtained as a yellow powder
(5.0mg), and the data for its structural elucidation were as fol-
lows: UV (EtOH) λmax nm (log ε): 285 (3.15), and 206 (3.00);
IR (ATR) max, cm

−1: 3346, 3342, 2923, 2954, 1633, 1595,
1463, 1311, 1202, 1078, and 838; HR-ESI-MS (+ve mode) m/
z: 527.4275 [M-H]+ (calculated for C30H40O8, 528.4275 g/
mol); 1H-NMR (CDCl3, 600MHz) δH (ppm): 1.29 (16H, m,
H-9-H-12, H-9′-H-12′, overlapped), 1.47 (4H, m, H-8, H-8′),
2.02 (4H, m, H-13, H-13′), 2.46 (4H, m, H-7, H-7′), 3.88 (s,
OCH3), 5.35 (2H, m, H-14, H-14′), 5.86 (d, J = 3.0Hz, H-6,
H-6′), and 7.28 (br s, OH); 13C-NMR (CDCl3, 150MHz) δC
(ppm): 22.6 (C-7, C-7′), 27.2 (C-13, C-13′), 27.9 (C-8, C-8′),
29.2–29.7 (C-9-12, C-9′-12′), 129.7 (C-14, C-14′), 182.8 (C-1,
C-1′), 151.5 (C-2, C-2′), 119.1 (C-3, C-3′), 181.7 (C-4, C-4′),
161.1 (C-5, C-5′), and 102.2 (C-6, C-6′).

Fig. 1 Flowchart of bioassay-guided isolation of compound 1 from dichloromethane extract of Marantodes pumilum var. pumila leaves
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Maesanin (3)
The fraction CC1-F3 (0.62 g) was fractionated using Sepha-
dex LH-20 column chromatography with 1% methanol in
chloroform to yield eight fractions. The fourth fraction was
then eluted using silica gel column chromatography with
chloroform-ethyl acetate (9:1), followed by trituration with
hexane-methanol (1:1) to obtain compound 3. Compound 3
was obtained as a yellow crystal (10.0mg), and the data for
its structural elucidation were as follows: UV (EtOH) λmax

nm (log ε): 285 (3.17) and 206 (2.97); IR (ATR) max, cm
− 1:

3342, 2851, 2921, 1659, 1607, 1464, 1383, 1311, and 1200;
HR-ESI-MS m/z: 363.5800 [M+H]+ (calculated for
C22H34O4, 362.5800 g/mol); 1H-NMR (CD3OD, 600MHz)
δH (ppm): 0.93 (3H, m, H-15′), 1.29–1.34 (16H, m, H-3′-H-
8′, H-13′-H-14′, overlapped), 1.45 (2H, m, H-2′), 2.05 (4H,
m, H-9′, H-12′), 2.41 (2H, t, J = 7.8, H-1′), 3.85 (s, OCH3),
5.36 (2H, m, H-10′, H-11′), and 5.91 (s, H-6); 13C-NMR
(CD3OD, 150MHz) δC (ppm): 13.1 (C-15′), 21.9 (C-1′),
22.3–31.5 (C-2′-8′, C-13′-14′), 26.7 (C-9′, C-12′), 129.4 (C-
10′, C-11′), 182.2 (C-1), 154.5 (C-2), 118.7 (C-3), 183.0 (C-
4), 160.5 (C-5), 55.8 (OCH3), and 102.6 (C-6).

Stigmasterol (4)
The fraction CC1-F7 (2.0 g) was fractionated using
Sephadex LH-20 column chromatography with 1%
methanol in chloroform to yield ten fractions. The fifth
fraction was purified by re-crystallization in methanol to

yield compound 4. Compound 4 was obtained as a white
needle crystal (14.0 mg), and the data for its structural
elucidation were as follows: mp 133–134°C; UV (EtOH)
λmax nm (log ε): 202 (3.76); IR (ATR) max, cm

− 1: 3347,
2934, 2868, 1464, 1382, 1048, and 968; HR-ESI-MS m/z:
413.2666 [M +H]+ (calculated for C29H48O, 412.2470 g/
mol); 1H-NMR (CDCl3, 600MHz) δH (ppm): 0.72 (3H, s,
H-18), 0.82 (3H, d, J = 6.6 Hz, H-27), 0.83 (3H, t, H-29),
0.87 (3H, d, J = 6.0 Hz, H-26), 0.95 (H-9), 1.01 (3H, s, H-
19), 1.03 (H-14), 1.04 (3H, d, J = 6.6 Hz, H-21), 1.08 (H-
15), 1.10 (H-1), 1.13 (H-17), 1.19 (H-12, H-28), 1.28 (H-
16), 1.43 (H-28), 1.48 (H-8), 1.50 (H-7), 1.52 (H-2, H-
11), 1.53 (H-25), 1.54 (H-24), 1.58 (H-15), 1.73 (H-16),
1.86 (H-2), 1.88 (H-1), 1.98 (H-7), 2.01 (H-12), 2.07 (H-
20), 2.26 (H-4), 2.32 (H-4), 3.55 (H-3), 5.04 (dd, J = 15.3,
8.9 Hz, H-23), 5.17 (dd, J = 15.1, 8.7 Hz, H-22), and 5.37
(H-6); 13C-NMR (CDCl3, 150MHz) δC (ppm): 11.9 (C-
18), 12.3 (C-29), 19.0 (C-27), 19.4 (C-19), 21.1 (C-11, C-
26), 23.1 (C-21), 24.3 (C-15), 26.0 (C-28), 29.1 (C-16),
31.7 (C-7, C-25), 31.9 (C-2, C-8), 36.2 (C-10), 37.3 (C-1),
39.7 (C-12), 40.6 (C-20), 42.3 (C-13), 45.8 (C-4), 50.1 (C-
9), 51.3 (C-24), 56.0 (C-17), 56.8 (C-14), 71.8 (C-3),
121.8 (C-6), 129.3 (C-23), 138.4 (C-22), and 140.8 (C-5).

Tetracosane (5)
The fraction CC1-F1 (0.12 g) was precipitated to obtain
compound 5. Compound 5 was obtained as a white

Table 1 Percentages of xanthine oxidase inhibition of extracts of Marantodes pumilum varieties and allopurinol

Species Plant part Crude extracts Yield (%) Percentage of xanthine oxidase inhibition (%)a

M. pumilum var. alata Roots DCM 0.85 0.00

MeOH 8.08 0.00

H2O 6.00 0.00

Leaves DCM 1.80 68.21 ± 2.50

MeOH 2.23 41.15 ± 4.31

H2O 2.74 0.00

M. pumilum var. pumila Roots DCM 1.59 0.00

MeOH 4.63 0.00

H2O 2.58 0.00

Leaves DCM 1.38 85.77 ± 0.70

MeOH 1.09 80.97 ± 0.72

H2O 4.56 0.00

M. pumilum var. lanceolata Roots DCM 3.16 0.00

MeOH 7.21 0.00

H2O 5.16 0.00

Leaves DCM 3.30 74.33 ± 4.33

MeOH 8.70 67.52 ± 0.35

H2O 1.03 0.00

Allopurinol (positive control) 99.82 ± 0.00

Data are presented as mean ± S.E.M. of three replicates (n = 3)
aPercentage of xanthine oxidase inhibition of extracts and allopurinol were determined at concentration of 400 μg/mL and 100 μg/mL, respectively
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waxy solid (10.8 mg), and the data for its structural
elucidation were as follows: UV (EtOH) λmax nm (log
ε): 202 (1.35); IR (ATR) max, cm− 1: 2915, 2849,
1473, 1463, 1262, 1021, 1096, 802, 729, and 719; HR-
ESI-MS m/z: 338.3369 [M+] (calculated for C24H50,
338.3913 g/mol); 1H-NMR (CDCl3, 600MHz) δH
(ppm): 0.88 (6H, m, H-1, H-24), 1.27 (40H, m, H-3-
H-22), and 1.32 (4H, m, H-2, H-23).

Margaric acid, (6)
The fraction CC1-F10 (1.84 g) was fractionated using
Sephadex LH-20 column chromatography with 1%
methanol in chloroform to yield ten fractions. The
fourth fraction was then eluted using silica gel column
chromatography with chloroform-ethyl acetate (4:1) to
obtain ten more fractions. The fourth fraction was fur-
ther purified using silica gel column chromatography

Table 2 IC50 values of xanthine oxidase inhibition of selected extracts of Marantodes pumilum varieties and allopurinol

Species Plant
part

Crude
extracts

Concentration
(μg/mL)

Percentage of xanthine oxidase
inhibition (%)

IC50 value of xanthine oxidase
inhibition (μg/mL)a

M. pumilum var.
alata

Leaves DCM 25 28.08 ± 0.18 310.9 ± 8.25

50 15.94 ± 0.00

100 3.99 ± 0.00

200 20.49 ± 0.22

400 68.21 ± 2.50

M. pumilum var.
pumila

Leaves DCM 25 15.34 ± 0.25 161.6 ± 7.35

50 14.31 ± 0.89

100 23.85 ± 0.05

200 65.28 ± 1.81

400 85.77 ± 0.70

MeOH 25 4.94 ± 0.29 175.1 ± 0.20

50 9.86 ± 1.51

100 20.08 ± 0.05

200 60.73 ± 0.72

400 80.97 ± 0.72

M. pumilum var.
lanceolata

Leaves DCM 25 26.90 ± 3.09 233.1 ± 19.85

50 13.60 ± 2.93

100 28.89 ± 0.87

200 35.59 ± 1.40

400 74.33 ± 4.33

MeOH 25 19.15 ± 0.04 185.3 ± 2.50

50 11.25 ± 1.21

100 37.98 ± 0.88

200 53.37 ± 0.37

400 67.52 ± 0.35

Allopurinol (positive control) 0.0064 4.12 ± 0.00 0.24 ± 0.00

0.032 17.81 ± 0.00

0.16 29.47 ± 0.00

0.8 93.66 ± 0.00

4 98.86 ± 0.00

20 99.01 ± 0.00

100 99.82 ± 0.00

Data are presented as mean ± SEM. of three replicates (n = 3)
aIC50 values were obtained based on the percentage of xanthine oxidase inhibition of extracts and allopurinol at different concentrations using the Graphpad
Prism 5 software (La Jolla, CA, USA)
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with chloroform-ethyl acetate (3:1) to obtain compound
6. Compound 6 was obtained as a white amorphous
solid (9.0 mg), and the data for its structural elucidation
were as follows: UV (EtOH) λmax nm (log ε): 202 (2.47);
IR (ATR) max, cm

− 1: 2916, 2848, 1706, 1697, 1463,
1430, 1411, 1310, 1295, 1272, 1251, 1229, 1208, 1188,
939, and 720; EI-MS m/z: 269 [M-1]+ (calculated for
C17H34O2, 270.0 g/mol); 1H-NMR (CDCl3, 600MHz) δH
(ppm): 0.89 (3H, t, J = 7.2, H-17), 1.26–1.32 (26H, m, H-
4-H-16, overlapped), 1.65 (2H, m, H-3), and 2.35 (2H, t,
J = 7.5 Hz, H-2); 13C-NMR (CDCl3, 150MHz) δC (ppm):
14.2 (C-17), 22.7 (C-16), 24.7 (C-3), 29.1–31.9 (C-4-C-
15), 34.1 (C-2), and 180.3 (C-1).

Statistical analysis
Assay data obtained were subjected to one-way ANOVA
with post-hoc Tukey’s multiple comparisons test using
GraphPad Prism 5 software (La Jolla, CA, USA). The
data are expressed as mean ± standard error of the mean
(S.E.M.) with triplicate measurements (n = 3). The differ-
ence between means was determined at 95% confidence
intervals, with p value < 0.05 considered as significantly
different.

Results
In vitro xanthine oxidase inhibitory activity of M. pumilum
varieties
Among the eighteen extracts assayed, five exhibited
more than 50% xanthine oxidase inhibition, and their
inhibitions were less than that of the positive control,
allopurinol (99.82 ± 0.00%, IC50 = 0.24 ± 0.00 μg/mL).
They were the dichloromethane extracts of var. alata
(68.21 ± 2.50%, IC50 = 310.9 ± 8.25 μg/mL), var. pumila
(85.77 ± 0.70%, IC50 = 161.6 ± 7.35 μg/mL), and var.
lanceolata (74.33 ± 4.33%, IC50 = 233.1 ± 19.85 μg/mL)
leaves, and the methanol extracts of var. pumila
(80.97 ± 0.72%, IC50 = 175.1 ± 0.20 μg/mL) and var. lan-
ceolata (67.52 ± 0.35%, IC50 = 185.3 ± 2.50 μg/mL)
leaves (Tables 1 and 2). The dichloromethane extract
of var. pumila leaves was considered to be more ac-
tive than the other extracts because it had the highest
percentage of xanthine oxidase inhibition and the
lowest IC50 value. Thus, the extract was subjected to
further fractionation processes that led to the isola-
tion of six pure compounds.

Structural elucidation of compounds isolated from the
dichloromethane extract of M. pumilum var. pumila leaves
and their xanthine oxidase inhibitory activity
Compound 1 was obtained as a white amorphous pow-
der from the dichloromethane fraction, and its molecu-
lar formula was established as 7 degrees of unsaturation.
Its UV spectrum showed maximum absorption at 275
nm. Its ATR-FTIR spectrum showed strong absorption
at 3256 (O-H stretching), 1734 (C=O), 1473–1424 (C-H
bending), and 1256 (C-O stretching) cm− 1. Its 1H-NMR
spectrum (CDCl3, 600MHz) showed methyl protons at
δ 2.45 (3H, H-9) and δ 2.65 (3H, s, H-10), a methoxy
proton at δ 3.89 (3H, s, H-5), and an aromatic proton at
δ 6.91 (s). Its 13C-NMR spectrum (CDCl3, 150MHz)
showed 12 carbons with signals indicating the presence
of one carbonyl carbon at δ 162.7 (C-1), one methoxy
carbon at δ 153.1 (C-5), and two methyl carbons at δ
18.8 (C-11) and δ 15.2 (C-12). Its 1H-1H COSY
spectrum displayed the correlation between aromatic
protons at δ 6.91 (s) and methoxy protons at δ 3.89, thus
revealing the location of the aromatic proton group at
the C-6 position. Its HSQC spectrum showed

Fig. 2 HMBC (H→ C) and COSY (H H) correlations for compound
1 obtained using NMR spectrometric technique

Table 3 1H- and 13C-NMR spectra data for compound 1

No δC (ppm) δH (ppm)

1 162.7 –

3 157.1 –

4 139.9 –

4a 110.2 –

5 153.1 –

OCH3 56.6 3.89, s

6 101.8 6.91, s

7 142.5 –

OH – –

8 119.8 –

8a 131.1

9 18.8 2.45, s

10 15.2 2.65, s
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correlations between methoxy protons at δ 3.89 and δ
56.6 (C-5), an aromatic proton at δ 6.9 and δ 101.8 (C-
6), and two methyl protons at δ 2.45 and δ 2.65 and δ
18.8 (C-9) and δ 15.2 (C-10), respectively. In its HMBC
spectrum, the linkage of two methyl protons was estab-
lished by the cross peaks between H-9 (δ 2.45) and C-4

(δ139.9, 2J), C-4a (δ110.2, 3J), and C-3 (δ157.1, 3J), and
between H-10 (δ 2.65) and C-7 (δ 142.5, 3J), C-8 (δ
119.8, 2J), and C-8a (δ 131.1, 3J). This correlation con-
firmed the position of methyl protons in compound 1.
The spectrum also showed the correlation between
methoxy protons at δ 3.89 and C-5 (δ 153.1, 2J), and the

Fig. 3 Chemical structures of compounds 2–6 elucidated using UV, IR, MS, and NMR spectroscopic techniques
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correlation between aromatic protons (δ 6.91) and C-5
(δ 153.1, 2J), C-7 (δ 142.5, 2J), and C-8 (δ 119.8, 3J).
Therefore, based on the data above the structure of
compound 1 was determined as 3,7-dihydroxy-5-meth-
oxy-4,8-dimethyl-isocoumarin (Fig. 2). All 1H-NMR and
13C-NMR data of compound 1 are shown in Table 3.
The other five known compounds were identified as

ardisiaquinone A (2) [41], maesanin (3) [42], stigmas-
terol (4) [43], tetracosane (5) [44], and margaric acid (6)
[45] (Fig. 3) by comparing MS and NMR data with those
reported in the literature.
Of the six compounds, only 3,7-dihydroxy-5-methoxy-

4,8-dimethyl-isocoumarin (1) and ardisiaquinone A (2)
exhibited more than 50% xanthine oxidase inhibition
(Table 4), with the former (1) being more potent than
the latter (2). The former (1) had an IC50 value of 0.66 ±
0.01 μg/mL, which is comparable (p > 0.05) with that of
allopurinol (IC50 = 0.24 ± 0.00 μg/mL) (Table 5).

Discussion
The extract of M. pumilum var. pumila leaves inhibited
xanthine oxidase in vitro. The findings of this study sup-
port the previous report [39] in which ethanol (80%) M.
pumilum var. pumila leaf extract showed anti-
hyperuricemic effect by inhibiting hepatic xanthine oxi-
dase and reducing serum uric acid levels in
hyperuricemic-induced male Sprague-Dawley rats 14 days
after treatment with 200mg/kg extract.
In this study, a new compound (3,7-dihydroxy-5-methoxy-

4,8-dimethyl-isocoumarin) was isolated from the dichloro-
methane extract of M. pumilum var. pumila leaves, which
was found to be the most active extract (IC50 = 161.6 ±
7.35 μg/mL). The compound had an IC50 value (0.66 ±
0.01 μg/mL) that was comparable to that of allopurinol
(IC50 = 0.24 ± 0.00 μg/mL) and could be a potential xanthine
oxidase inhibitor. A study by Lin et al. [46] demonstrated
competitive inhibition of selected coumarins (e.g., coumarin,
4-hydroxycoumarin, 7-hydroxycoumarin, esculetin, scopole-
tin, dihydrocoumarin, and 7-hydroxy-4-methylesculetin)
against xanthine oxidase. Esculetin was found to be the most

potent inhibitor through substrate binding blockade. It was
suggested that the two hydroxyl moieties on its benzene ring
contributed to its activity by forming hydrogen bonds with
the active site of xanthine oxidase. Therefore, the presence of
two hydroxyl groups in the structure of 3,7-dihydroxy-5-
methoxy-4,8-dimethyl-isocoumarin (1) could explain the
basis of its xanthine oxidase inhibitory activity. Another
study also reported that the xanthine oxidase inhibitory ac-
tivity of 5,7-dihydroxy-3-(3-hydroxyphenyl) coumarin was 7-
fold better than that of allopurinol [47]. The low activity of
ardisiaquinone A (2) and lack of activity of the other isolated
compounds (3–6) obtained in this study could be explained
by the difference in molecular structure that influences the
stability of hydrophilic and hydrophobic characteristics on
the xanthine oxidase active binding site [48].
There are several reviews on the anti-hyperuricemic

effects of foods [49], Chinese herbs [50], and natural
products [51]. Hyperuricemia has been linked with car-
diovascular disease, hypertension, diabetes, obesity,
chronic kidney disease, and many other diseases [52, 53].
Its prevalence in the female population and post-
menopausal women has been reported [54–56]. The data
from the Third National Health and Nutrition Examin-
ation Survey showed that menopause was associated
with higher serum uric acid levels and postmenopausal
hormone replacement was associated with lower serum
uric acid levels, suggesting that estrogen plays a key role
in protecting women from hyperuricemia and gout [57].
Several publications have reported on the potential use
of M. pumilum extract to alleviate postmenopausal con-
ditions due to estrogenic properties [58–60], hyperchol-
esterolemia [61], and hypertension [62]. Thus, the
extract of M. pumilum var. pumilum could be beneficial
in preventing or treating hyperuricemic-related dis-
eases, while 3,7-dihydroxy-5-methoxy-4,8-dimethyl-
isocoumarin (1) could be used as an analytical marker
to standardize the extract and formulated herbal
products. Standardization by simultaneous quantifica-
tion of xanthine oxidase inhibitors from Zanthoxylum
armatum fruits using high-performance liquid

Table 4 Percentages of xanthine oxidase inhibition of isolated compounds and allopurinol

Compound Percentage of xanthine oxidase inhibition (%)a

1 98.46 ± 0.37

2 91.54 ± 0.08

3 0.00

4 0.00

5 0.00

6 0.00

Allopurinol (positive control) 99.82 ± 0.00

Data are presented as mean ± S.E.M. of three replicates (n = 3)
aPercentage of xanthine oxidase inhibition of compounds and allopurinol were determined at a concentration of 100 μg/mL
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chromatography with a photometric diode array de-
tector (HPLC-PDA) has been reported [63].

Conclusions
In the present study, three varieties of M. pumilum were
investigated based on their ethnomedical uses and bio-
logical activities. The study identified a new isocoumarin
compound, 3,7-dihydroxy-5-methoxy-4,8-dimethyl-iso-
coumarin (1), from the dichloromethane extract of M.
pumilum var. pumila leaves. The compound was the
most active xanthine oxidase inhibitor and had an IC50

value (0.66 ± 0.01 μg/mL) that was comparable with that
of allopurinol (IC50 = 0.24 ± 0.00 μg/mL). Therefore, M.
pumilum var. pumila leaves could potentially be a
source of new natural xanthine oxidase inhibitors. How-
ever, in vivo studies are required to establish its efficacy
and safety.
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Table 5 IC50 values of xanthine oxidase inhibition of compounds 1 and 2 compared to allopurinol

Compound Concentration (μg/
mL)

Percentage of xanthine oxidase inhibition
(%)

IC50 value of xanthine oxidase inhibition (μg/
mL)a

1 0.39 39.57 ± 0.68 0.66 ± 0.01 b

0.78 54.14 ± 0.34

1.56 66.49 ± 0.05

3.13 76.17 ± 0.52

6.25 86.02 ± 0.14

12.5 91.75 ± 0.22

25 95.04 ± 0.86

50 96.91 ± 0.06

100 98.46 ± 0.37

2 6.25 9.11 ± 0.28 31.2 ± 1.28

12.5 14.54 ± 0.45

25 36.31 ± 0.08

50 74.08 ± 0.50

100 91.54 ± 0.08

Allopurinol (positive
control)

0.0064 4.12 ± 0.00 0.24 ± 0.00

0.032 17.81 ± 0.00

0.16 29.47 ± 0.00

0.8 93.66 ± 0.00

4 98.86 ± 0.00

20 99.01 ± 0.00

100 99.82 ± 0.00

Data are presented as mean ± S.E.M. of three replicates (n = 3)
aIC50 values were obtained based on the percentage of xanthine oxidase inhibition of compounds and allopurinol at different concentrations using the Graphpad
Prism 5 software (La Jolla, CA, USA)
bNot significantly different compared to allopurinol (p > 0.05), analyzed using one-way ANOVA followed by Tukey’s multiple comparisons test
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