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Abstract

Background: Javanica oil emulsion injection (JOEI) is an effective therapeutic option for patients with non-small
cell lung cancer (NSCLC), but its mechanisms have not been fully elucidated.

Methods: In this study, we utilized network pharmacology to systematically investigate the bioactive components
and targets of JOEI, identify common targets in NSCLC, and understand and evaluate the underlying mechanism of
JOEI in the treatment of NSCLC through expression level, correlation, enrichment, Cox, survival and molecular
docking analyses. The results indicated that five compounds of JOEI interact with five pivotal targets (LDLR, FABP4,
ABCBI1, PTGS2, and SDC4) that might be strongly correlated with the JOEI-mediated treatment of NSCLC.

Results: The expression level analysis demonstrated that NSCLC tissues exhibit low expression of FABP4, ABCB1,
LDLR and PTGS2 and high SDC4 expression. According to the correlation analysis, a decrease in FABP4 expression
was strongly correlated with decreases in LDLR and ABCB1, and a decrease in LDLR was strongly correlated with
decreased PTGS2 and increased in SDC4 expression. Cox and survival analyses showed that the survival rate of the
high-risk group was significantly lower than that of the low-risk group (p =0.00388). In the survival analysis, the area
under the curve (AUC) showed that the pivotal gene model exhibited the best predictive capacity over 4 years
(AUC=10.613). Moreover, the molecular docking analysis indicated that LDLR, FABP4, ABCB1, PTGS2 and SDC4
exhibit good binding activity with the corresponding compounds.

Conclusion: In conclusion, this study predicted and verified that the mechanism of JOEI against NSCLC involves
multiple targets and signaling pathways. Furthermore, this study provides candidate targets for the treatment of
NSCLG, lays a good foundation for further experimental research and promotes the reasonable application of JOEI
in clinical treatment.
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Background

Based on global estimates, 18.1 million new cancer cases
and 9.6 million deaths occurred in 2018. As one of the
most common cancers globally, lung cancer remains a
critical cause of cancer-related death [1, 2]. Among
smokers and nonsmokers, non-small cell lung cancer
(NSCLC) is the most common subtype of lung cancer
[3]. Due to the limitation of its early detection, the ma-
jority of patients with NSCLC are diagnosed at late
stages, and the 5-year overall survival (OS) rate is only
11% [4—6].. Therefore, an in-depth understanding of the
regulatory mechanism of NSCLC occurrence and devel-
opment is urgently needed to provide more effective
strategies for the treatment of this type of cancer.

Traditional Chinese medicine (TCM), as a crucial
component of complementary and alternative medical
systems, has been widely applied in Asian nations, par-
ticularly China, Japan and North and South Korea, for
thousands of years for the clinical treatment of cancers
[7, 8]. In particular, herbal medicine is considered part
of the anticancer strategy in China. A large number of
cancer patients prefer to receive TCM via either injec-
tion or oral administration when receiving radiotherapy
or chemotherapy, [9, 10].

With the continuous expansion of clinical practice to-
ward the comprehensive treatment of tumors, TCM has
been proven to be effective in not only relieving adverse
events such as fatigue, pain, emesis, diarrhea, and pan-
cytopenia caused by surgery and chemotherapy but also
improving quality of life and immune functions and
strengthening survival benefits [8, 11-14].

Javanica oil emulsion injection (JOEI), which is a prod-
uct produced from Brucea oleifera ether extracts as a
raw material, has been engaged as an adjunctive therapy
for lung carcinoma, brain metastasis of lung carcinoma,
and gastrointestinal tumorigenesis in China [15-19]. Re-
cent studies have recognized that some components of
JOEI exhibit specific affinity for tumor cell membranes
and potent antitumour activity [20]. Previous investiga-
tions have indicated that JOEI can enhance efficacy,
improve quality of life and decrease the incidence of
platinum-containing chemotherapeutic side effects, such
as nausea, vomiting and leukopenia, for patients with ad-
vanced NSCLC in the clinic, but no relevant study has
attempted to explain its mechanism [16, 21]. To enhance
the treatment effect of JOEI, the molecular and bio-
logical basis of JOEI in the treatment of NSCLC needs
to be elucidated [22].

Network pharmacology has recently emerged as a
novel strategy for identifying the bioactive compounds
of several TCM formulas and their underlying complex
pharmacological mechanisms from systemic and holistic
perspectives [12, 23-27]. Network pharmacology has
been applied to delineate the convoluted interactions
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among genes, proteins and metabolites related to dis-
eases and drugs from the perspective of networks, which
is in line with the multicomponent and multitarget na-
ture of TCM. The integration of network pharmacology
and TCM alters the conventional “one target, one drug”
paradigm to a “multi-target, multi-component drug”
strategy [28].

Therefore, in this study, we employed network
pharmacology and bioinformatics methods to investigate
and predict the molecular mechanisms underlying the
effectiveness of JOEI against NSCLC. A flowchart of the
technical strategy used in this study is presented in
Fig. 1.

Methods

Active components and putative targets of JOEI

By a thorough literature review, we aimed to identify and
extract the chemical composition of JOEI [8, 10, 11]. All
the compounds were then inputted into the PubChem
database (https://pubchem.ncbi.nlm.nih.gov) [29] to obtain
their respective 3D molecular structure files. Because the
targets of the compounds without accurate structural infor-
mation could not be successfully predicted, we decided to
exclude these chemicals after removing replicated data. The
3D chemical structure files of all the active compounds
were imported into the Search Tool for Interacting Chemi-
cals (STITCH, http://stitch.embl.de/) [30, 31], SuperPred
(http://prediction.charite.de/) [32], and SwissTargetPredic-
tion (http://www.swisstargetprediction.ch/) [33]. To obtain
the corresponding known or predicted targets from the
above-mentioned three databases after discarding dupli-
cated data, only human targets were analyzed.

Known targets related to NSCLC
The human targets affiliated with NSCLC can be
obtained from four resources:

(1) The Therapeutic Target Database (TTD, https://
db.idrblab.org/ttd/) is a database that furnishes informa-
tion on acknowledged and explored therapeutic proteins
and targeted diseases, nucleic acid targets and pathways
as well as the corresponding drugs directed at each of
these targets [34]. We screened the TTD using the
keyword “non-small cell lung cancer” and acquired
54 known NSCLC-related targets.

(2) DisGeNET is a discovery platform that integrates
information from various data sources. DisGeNET pro-
vides information on diseases, gene-disease associations,
clinical or abnormal human phenotypes, disorders,
variant-disease associations, and traits, among other
data, to support studies on the mechanisms underlying
human diseases [35].

(3) The Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) is an international overt reposi-
tory that archives and freely distributes high-throughput
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Fig. 1 Flowchart of the technical strategy
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gene expression and other functional genomics datasets
[36]. Datasets that met the following criteria were poten-
tially included: 1) tissue samples collected from human
NSCLC and corresponding adjacent or normal tissues
and 2) 30 samples at any rate. For assaying decontrolled
gene expression, the differentially expressed genes (DEGs)
were identified using the “limma” package of R software
[37], and the DEGs in each microarray were also filtered
using the same package. Target integration of the DEGs
discriminated from four datasets (GSE19804, GSE18842,
GSE43458, and GSE62113) was performed using Robus-
tRankAggreg [38]. Genes with a log2-fold change |log,FC|
>1 and an FDR-adjusted P value < 0.05 were considered
DEGs [39].

(4) The Cancer Genome Atlas (TCGA) provides over
2.5 petabytes of genomic, epigenomic, transcriptomic,
and proteomic data, and our ability to diagnose, treat,
and prevent cancer has benefited from these data [40].
We obtained the NSCLC-related database from https://
xenabrowser.net/datapages/, clicked on “gene expression
RNAseq”, selected “HTSeq - Counts (n=585) GDC
Hub”, clicked on “phenotype” and chose “Phenotype
(n=877) GDC Hub”, and the resulting database was
analyzed using the ‘edgeR’ package in R [41].

Protein-protein interaction (PPI) analysis
We inputted the NSCLC-related targets and putative
targets of certain chemical components into the Search

Table 1 Information on the chemical components of JOEI
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Tool for the Retrieval of Interacting Genes/Proteins
(STRING, https://string-db.org/) database [42], which is
a database of known and predicted PPIs that includes
both direct and indirect interactions among proteins.
After restricting the species to “Homo sapiens”, PPI data
with confidence scores above 0.7 (low: <0.4; medium:
0.4 to 0.7; and high: >0.7) were identified as putative
targets for further research.

Network construction

The network visualization tool Cytoscape 3.6.1 (http://
cytoscape.org/, ver. 3.5.1) was adopted to obtain the PPI
network map [43]. Common targets between the
compound-putative target network and the NSCLC target
PPI network were identified as potential targets for the
components of JOEI in NSCLC. In such a network, an in-
jection, a compound, or a gene/protein serves as an “edge”
and reflects an association between nodes. For each node
in the interaction network, three indices (significant pa-
rameters) were measured to assess its topological features:
degree, betweenness, and closeness. The measure “degree”
is construed as the number of edges associated with node
i, and nodes with a higher degree are considered more im-
portant. The metric “betweenness” represents the number
of shortest paths between node pairs passing through
node i, and the measure “closeness” is the reciprocal of
the sum of the distances from node i to other nodes.
Nodes with higher values of these measures are more

PubChem CID COMPOUND Canonical SMILES STRUCTURE
5280450 Linoleic acid CCCCCC=Cre=Ccreceeccc=o00o

L .
985 Palmitic acid CCCccecccecccccc=0)0 B,
5281 Stearic acid CCCCeccccceccccccc=0)0 O
445639 Oleic acid CCCCCCCee=creceeccecc=oo

5280934 a-Linolenic acid

CCC=CCC=CCC=Creeeecce=o0)0
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important in the network. The key hubs in the network all
exhibit high centrality [44—47].

Expression level and correlation analyses of the key targets
The results from the expression level and correlation ana-
lyses were visualized through Gene Expression Profiling
Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/
index.html), a web-based tool that analyzes tumor data
from TCGA and the Genotype-Tissue Expression (GTEx)
project. GEPIA contains 9736 tumor samples and 8587
normal tissue samples covering 33 malignancies. The
expression analysis between tumor and normal data was
performed using a standard processing pipeline [48],
which allows both an analysis according to specific
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conditions, similar to tumor and normal differential ex-
pression analysis, and the detection of the expression of
the hub targets in NSCLC and normal tissues. A boxplot
was then generated to visualize the relationships [49].

Enrichment analysis

To clarify the roles of the potential targets in gene func-
tion and signaling pathways, Gene Ontology (GO) enrich-
ment and Kyoto Encyclopedia of Genes and Genomes
(KEGQG) pathway enrichment analyses of the targets in the
compound-NSCLC target network were performed using
the g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) database.
The GO project divided functions into three facets, cellu-
lar component, molecular function and biological process,
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and reveals possible biological processes associated with
key targets [50, 51]. In addition to pathway enrichment
analysis, KEGG pathway enrichment analysis provides
pathway functional annotations of a specific gene set.
According to the results from the g:Profiler database,
the multi-component, multi-target and multi-pathway
characteristics of JOEI for treating NSCLC can be
illustrated by analyzing the vital GO terms and path-
ways of the key targets. The results from the GO and
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KEGG analyses were visualized using the ‘GOplot’
package in R software [52].

Cox and survival analyses

The risk score (RS) was based on the linear combination
of the candidate mRNAs for each patient with NSCLC
and calculated by multiplying the sum of the mRNA
expression values by the single variable Cox regression
coefficient [39].
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Table 2 Compound-NSCLC target network

UniProt accession Gene name Protein name Structure

P01130 LDLR Low-density lipoprotein receptor

P08183 ABCB1 Multidrug resistance protein 1

P31431 SDC4 Syndecan-4

P35354 PTGS2 Prostaglandin G/H synthase 2

P15090 FABP4 Fatty acid-binding protein, adipocyte

The prediction performance of the model was mea-
sured based on the area under the curve (AUC) obtained
from the time-dependent receiver operating characteris-
tic (ROC) analysis, and the accuracy of the RS to predict
OS at 1 to 5years was assessed. The capacity of the
evaluation model can be obtained by analyzing the AUC of
the ROC curve. A larger AUC usually represents bet-
ter performance, and the AUC was greater than 0.7,
which indicated that the model has better classification
capacity. All statistical analyses were performed using R
software (version 3.4.2), and survival and ROC curves

were drawn using the ‘survival’ and ‘survivalROC’ pack-
ages, respectively [53, 54].

Molecular docking

Molecular docking has been extensively used for ligand-
based and structured-based target prediction. The 3D crystal
structures of the candidate targets from the Research Colla-
boratory for Structural Bioinformatics (RCSB) Protein Data
Bank (http://www.pdb.org/) [55] were downloaded to assess
these targets. If the root mean square deviation (RMSD) of a
model is less than 3 A, it can be regarded as a decent or

Fig. 4 Compound-NSCLC target network. Note: The red hexagons represent compounds of JOEI, and the blue circles represent potential targets

of JOEI against NSCLC
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precise model (accurate <2 A, reliable <4 A) [56]. The pro-
tein structures were prepared using AutoDockTools (ADT)
[57], and this analysis includes removing ligand and water
molecules, computing Gasteiger charges, adding polar hydro-
gens, and merging nonpolar hydrogens. The results were
then saved in MOL2 format. The compounds were also pre-
pared using ADT, and a Gasteiger charge was assigned to
the compounds. The prepared protein structures and com-
pounds were saved in PDBQT format. Molecular docking
was then performed with AutoDock Vina, and the results
were viewed and analyzed using PyMOL (http://www.pymol.
org) [58].

Results

Compound-putative target network

Large-scale text mining identified a total of seven active
components in JOEL After the initial analysis, five active
compounds with structural information and 87 putative
targets were selected for further study. Detailed

information of the five compounds in JOEI is described
in Table 1. The compound-putative target network
(shown in Fig. 2) was constructed with 92 nodes (five
compound nodes and 87 putative target nodes) and 160
edges. In this network, many putative targets were asso-
ciated with multiple compounds (to trigger their bio-
logical effects and vice versa); therefore, the targets that
play a pivotal role in the whole network might be con-
sidered key compounds or targets. The network pharma-
cology analysis of all the compounds revealed that the
compounds with the highest degrees were linoleic acid
and palmitic acid, followed by stearic acid, a-linolenic
acid and oleic acid.

PPI network of NSCLC targets

A total of 406 NSCLC targets were retrieved from the
TTD, DisGeNET, TCGA and GEO databases. As shown
in Fig. 3, the PPI network of NSCLC targets depicts the
interactions between the 292 target proteins ultimately
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identified from the STRING database. The major nodes
were identified by calculating three topological features
for each node in the network.

Note: The red ellipses represent targets obtained from
the TTD. The pink ellipses represent targets obtained

from TCGA-down, GEO and TTD. The blue ellipses
represent targets obtained from the TTD and DisGe-
NET. The green ellipses represent targets obtained from
TCGA-down and GEO. The yellow ellipses represent
targets obtained from TCGA-up and GEO. The orange
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ellipses represent targets obtained from TCGA-up, TTD,
DisGeNET and GEO. The node size has a direct propor-
tional (positive) relationship with the degree.

Identification of core genes and network analysis

To further unveil the therapeutic mechanism of JOEI
resistance in NSCLC, the overlapping genes between
compound and NSCLC targets were identified. We
found five genes in both the list of NSCLC targets and
the list of putative targets (Table 2). As displayed in
Fig. 4, the compound-NSCLC target network involved
10 nodes (five common targets and five corresponding
chemical components) and 11 edges, which indicated
that the 10 nodes might act as potential targets for the
treatment of NSCLC with JOEL

Expression level and correlation analyses of the key targets
The prognostic information for the five key genes is
available for free in the GEPIA database.

We subsequently employed GEPIA to examine the
differences in hub gene expression between NSCLC and
normal tissues, as shown in Fig. 5.

Fatty acid-binding protein 4 (FABP4), ATP-binding
cassette subfamily B member 1 (ABCB1), low-density lipo-
protein receptor (LDLR) and prostaglandin endoperoxide
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tissues was low (Fig. 5). A decrease in FABP4 expression
was strongly correlated with decreases in LDLR and ABCBI,
and a decrease in LDLR was strongly correlated with de-
creased PTGS2 and increased in SDC4 expression (Fig. 6).

GO and KEGG pathway enrichment analyses

To further explore the multiple mechanisms of
JOEI in NSCLC at the system level, we performed a
GO enrichment analysis of five targets in the
compound-NSCLC target network and identified
five enriched GO terms (FDR < 0.01 and P<0.01, as
shown in Fig. 7a). Regarding biological processes,
the potential targets were enriched in regulation of
the response to osmotic stress (GO:0047484), posi-
tive regulation of the inflammatory response (GO:
0050729), response to lithium ion (GO:0010226)
and brown fat cell differentiation (GO:0050873).
The analysis of molecular functions revealed that
ceramide-translocating ATPase activity (GO:0099038) was
particularly enriched.

To elucidate the crucial pathways among the five po-
tential targets in NSCLC treatment, we identified three
pathways based on the criteria FDR <0.01 and P<0.01
(as shown in Figs. 7b, 8 and 9): ovarian steroidogenesis

synthase 2 (PTGS2/COX-2) are highly expressed in NSCLC ~ (KEGG:04913), regulation of lipolysis in adipocytes
tissues, and the expression of syndecan 4 (SCD4) in these (KEGG:04923) and bile secretion (KEGG:04976).
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Figure 10 shows the interactions between chemical
components in JOEI and predictive targets and path-
ways of JOEI against NSCLC.

Cox and survival analyses

The crucial genes were identified from the NSCLC
cohort in TCGA. In both the high-risk group and the
low-risk group, FABP4 and ABCB1 were weakly
expressed, and SDC4, LDLR and PTGS2 were highly
expressed (Fig. 11). The survival analysis showed that
the survival rate of the high-risk group was fairly
lower than that of the low-risk group (p =0.00388).
The AUC obtained from the survival analysis de-
monstrated that the crucial gene model exhibited the
best predictive capacity over 4years (AUC=0.613)
(Fig. 11).

Molecular docking simulation

The mechanism of JOEI in the treatment of NSCLC was
elucidated by investigating the interactions between
compounds and targets. Therefore, the interactions be-
tween four compounds of JOEI (linoleic acid, oleic acid,
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ABCB1, LDLR, PTGS2 and SDC4) were investigated
through molecular docking simulations. The 3D crystal
structures of the five targets were derived from the PDB
database based on their respective PDB codes. The re-
sults showed that four compounds exhibited relatively
high potential for binding to the active sites of the five
targets (Table 3). As shown in Fig. 12, hydrogen bond
interactions were found between four compounds of
JOEI and five targets.

Discussion
Based on histological characteristics, lung cancer can be
divided into small cell lung cancer and NSCLC, and
NSCLC accounts for 85% of all lung cancer cases [4,
59-61]. Despite great advances in the treatment of lung
cancer, the OS rate of patients with NSCLC remains low
[62]. As one of the crucial options for comprehensive
cancer treatment, TCM has long been used to compre-
hensively treat NSCLC due to particular advantages,
such as improving survival benefits, inhibiting tumor
growth, and relieving postoperative symptoms and
complications [63].

Explaining the mechanisms through which TCMs, as a
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Fig. 11 Heatmap of the five targets in patients in the low- and high-risk groups and prognostic validation of the core targets in the NSCLC cohort
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Table 3 Docking information of five targets with their
corresponding compounds

Target PDB code Ligand Binding affinity
(kcal/mol)
FABP4 5YOF Linoleic acid —6.3
FABP4 5YOF Oleic acid -58
FABP4 5YOF Palmitic acid =59
FABP4 5YOF Stearic acid -59
ABCB1 6COV Palmitic acid —48
ABCB1 6COV Stearic acid -43
LDLR 50YL Stearic acid =31
PTGS2 5KIR Linoleic acid —4.2
SDC4 6EJE Linoleic acid —49

therapy, achieves its special therapeutic effect on the
biological network of body systems is difficult [64, 65].
Favorably, network pharmacology presents a new
perspective for cooperating with a new realization of
the mechanisms of drugs and has become an dynamic

(2020) 20:174
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method that incorporating systems biology, bioinformatics,
and polypharmacology [22, 23, 66]. This approach updates
the “one target, one drug” model to the “multi-component
and multi-target” model, better elucidates the complex
interactions among genes, proteins and metabolites
during the drug treatment of diseases from a network
perspective and provides evidence at the molecular
biology level [67-69].

In this study, we implemented network pharmacology
to identify bioactive components and targets of JOEI
with the aim of identifying common targets in NSCLC
and understanding and evaluating the underlying mech-
anism of JOEI in the treatment of NSCLC through
expression level, correlation, enrichment, Cox, survival
and molecular docking analyses.

According to the compound-NSCLC target network,
five nodes are likely to be the core targets in NSCLC
treatment. A previous study demonstrated that the
FABP4 levels ae higher in NSCLC tissues than in normal
tissues and that these high FABP4 levels have an
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Fig. 12 Detailed target-compound interactions obtained from the docking simulation
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unfavorable impact on the OS of NSCLC patients. Thus,
the detection of FABP4 is helpful for predicting the
prognosis of patients with NSCLC [70]. ABCBI report-
edly plays an important role in overcoming ABCBI-
mediated docetaxel resistance in lung cancer [71].
Another study observed that ABCBL1 is highly expressed
in patients with stage I lung adenocarcinoma and that
the expression of this protein is associated with poor
survival, which indicates that ABCB1 expression is useful
for predicting the prognosis of patients with lung adeno-
carcinoma [72]. Yang et al. identified ABCB1 as a vital
downstream target of the chromosomal helicase/ ATPase
DNA-binding protein 1-like gene in NSCLC cells. The
knockout of ABCB1 and ectopic expression of the
chromosomal helicase/ATPase DNA-binding protein 1-
like gene enhanced the effect of cisplatin on NSCLC cell
apoptosis [73]. Regarding LDLR, Yang et al. demon-
strated that T lymphocytes (LMPs) exert antiangiogenic
and proapoptotic effects that lead to inhibition of lung
carcinoma by decreasing the vascular endothelial growth
factor levels, and the knockdown of LDLR reduces the
uptake of LMPs by Lewis lung carcinoma cells and at-
tenuates the inhibitory effects of LMPs on cell growth
and vascular endothelial growth factor expression. These
results show that LMPs portray a new treatment proto-
col for treating lung carcinomas and indicate that LDLR
plays an important role [74]. With respect to PTGS2/
COX-2, Jiang et al. indicated that PTGS2/COX-2 might
promote cisplatin resistance in NSCLC by favoring
epithelial-mesenchymal transition through activation of
the AKT signaling pathway [75]. Previous studies have
shown that the inhibition of PTGS2 might play a benefi-
cial role in the treatment of NSCLC, such as improving
the overall response rate of advanced NSCLC and sup-
pressing the metastasis of lung cancer cells [76-79].
Some data suggest that PTGS?2 is likely a potential prog-
nostic marker for unresectable NSCLC [80]. Concerning
SCD4, high Toll-like receptor 7 expression is associated
with the overexpression of SDC4 in patients with adeno-
carcinoma, which suggests that its expression is related
to metastasis. SDC4 also plays a role in the occurrence
and metastasis of renal cell carcinoma [49, 81, 82].
Repressor of silencing 1 (ROS1) protein-tyrosine kin-
ase fusion proteins are expressed in 1-2% of NSCLC
patients [83]. For NSCLC patients with tumors
expressing the ROS1 fusion gene, ROS1 inhibition
might be an effective treatment protocol, and SDC4
plays a vital role as a common ROS1 fusion partner
[84, 85].

The compound-putative target network included lino-
leic acid, a-linolenic acid, palmitic acid, stearic acid and
oleic acid. We found that linoleic acid induces the
expression of PTGS2 in retinal pigment epithelial cells
at the mRNA and protein levels in a time- and dose-
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dependent manner [86]. PTGS2 expression is a powerful
predictor of NSCLC [87]. In NSCLC, an allele of chromo-
some 3p is often lost, which confirms the existence of can-
cer suppressor genes in this chromosomal region. We
found that a Fusl peptide inhibits ABL tyrosine kinase
in vitro. The repressive Fusl sequence stems from a de-
leted region of the mutant Fusl gene detected in lung can-
cer cell lines, and notably, a stearic acid-modified form of
this peptide is required for inhibition [88]. Epidermal
growth factor receptor (EGFR) tyrosine kinase inhibitors
are effective in the treatment of NSCLC patients with EGF
mutations, but resistance is inevitable. The cytotoxic effect
of both gefitinib and osimertinib in EGFR-activated mu-
tant cell lines can be inhibited by oleic acid [89]. The
FABP4 inhibitor inhibited cell growth induced by oleic
acid, leptin, vascular endothelial growth factor, and DHA
(P <0.05). The levels of FABP4 protein in these cells are
increased by oleic acid vascular endothelial cells and leptin
[90]. An increase in the miR-146b-5p level is related to de-
creased FABP4 expression, glucose metabolism and
FABP4 mobilization. In partial agreement with these find-
ings, palmitic acid lead to decreased miR-146a levels
in vitro; thus, FABP4 is associated with palmitic acid [91],
which is consistent with the results of our study.

In this study, we performed enrichment analyses to clar-
ify the multiple mechanisms of JOEI in the treatment of
NSCLC at the system level. We found that the pathways
directly related to lung cancer were ovarian steroidogene-
sis, regulation of lipolysis in adipocytes and bile secretion.
The production of ovarian steroidogenesis is vital for the
normal function of the uterus, the establishment and
maintenance of pregnancy and the development of the
mammary gland; it also demands cooperative interactions
between the theca and granulosa cells within the follicle
[92]. Morphological examinations play important roles in
the assessment of ovarian steroidogenesis, particularly in
patients with ovarian tumors associated with abnormal
sexual steroids [93]. Increased lipogenesis is one of the
most important metabolic characteristics of cancer cells.
Recent findings have revealed that breast and liposarcoma
cancers have both de novo fatty acid synthesis pathways
and lipoprotein lipase-mediated extracellular lipolysis.
Nonetheless, recent studies have shown that the prolifera-
tion and survival of cancer cells are affected by fatty acids,
and some cancer cells/tissues can obtain fatty acids
through adipogenesis and lipolysis [94—96]. Bile nor-
mally functions to emulsify and facilitate the intestinal
absorption of dietary fats, protect the organism from
enteric infections by excreting immune globulin A
and inflammatory cytokines, and stimulate the innate
immune system in the intestine. Bile secretion plays a
vital role in the health of an organism, and therefore,
disrupted bile secretion can eventually result in liver
failure or death [97].
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Conclusion

In conclusion, the current study explored and predicted
the molecular mechanism of JOEI against NSCLC using
a network pharmacology and bioinformatics approach.
We hope that our study will lay a good foundation for
further experimental studies and contribute to the appli-
cation of network pharmacology for exploring the poten-
tial mechanisms of complex diseases. However, because
this study was based on data analysis, further experimen-
tal data from in vitro and in vivo experiments are needed
to verify the findings and optimize the method.
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