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Abstract

Background: The popularity of fermented foods such as kefir, kuniss, and tofu has been greatly increasing over the
past several decades, and the ability of probiotic bacteria to exert anticancer effects has recently become the focus
of research. While we have recently demonstrated the ability of the novel kefir product PFT (Probiotics
Fermentation Technology) to exert anticancer effects in vitro, here we demonstrate its ability to inhibit Ehrlich
ascites carcinoma (EAC) in mice.

Methods: Mice were inoculated intramuscularly with EAC cells to develop solid tumors. PFT was administered
orally (2 g/kg/day) to mice 6 days/week, either 2 days before tumor cell inoculation or 9 days after inoculation to
mice bearing solid tumors. Tumor growth, blood lymphocyte levels, cell cycle progression, apoptosis, apoptotic
regulator expression, TNF-a expression, changes in mitochondrial membrane potential (MMP), PCNA, and CD4+ and
CD8+ T cells in tumor cells were quantitatively evaluated by flow cytometry or RT-PCR. Further studies in vitro were
carried out where EAC cells along with several other human cancer cell lines were cultured in the presence of PFT
(0-5mg/ml). Percent cell viability and ICsq was estimated by MTT assay.

Results: Our data shows that PFT exerts the following: 1) inhibition of tumor incidence and tumor growth; 2)
inhibition of cellular proliferation via a marked decrease in the expression of tumor marker PCNA; 3) arrest of the
tumor cell cycle in the sub-G0/G1 phase, signifying apoptosis; 4) induction of apoptosis in cancer cells via a
mitochondrial-dependent pathway as indicated by the up-regulation of p53 expression, increased Bax/Bcl-2 ratio,
decrease in the polarization of MMP, and caspase-3 activation; and 5) immunomodulation with an increase in the
number of infiltrating CD4" and CD8™ T cells and an enhancement of TNF-a expression within the tumor.

Conclusions: PFT reduces tumor incidence and tumor growth in mice with EAC by inducing apoptosis in EAC cells
via the mitochondrial-dependent pathway, suppressing cancer cell proliferation, and stimulating the immune
system. PFT may be a useful agent for cancer prevention.
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Background

Cancer remains the largest cause of mortality in the
world. Cancer develops from the uncontrolled growth of
a proliferating cellular clone due to acquisition of self-
sufficiency in growth signals, insensitivity to anti-growth
signals, the ability to evade apoptosis, and limitless repli-
cative potential [1]. Conventional treatments for cancer,
such as chemotherapy, can be effective, but these drugs
have high toxicity and can lower patients’ quality of life.
Thus, there is an urgent need to develop alternative
treatments with fewer side effects that can improve
patient health.

One of the most promising current developments for
treatment is actually a method that has been used to im-
prove health for over 100 years: the consumption of pro-
biotic products containing lactic acid bacteria (LAB).
LAB is composed of a group of bacteria that degrade
carbohydrates (e.g., via fermentation) with the produc-
tion of lactic acid. Over a century ago, Metchnikoff ac-
knowledged that the regular consumption of LAB in
fermented dairy products such as yogurt was associated
with enhanced health and longevity [2]. Probiotics have
been used as therapies for digestive health for over a
century, and their potentially beneficial effects on bacter-
ial flora in the body have led to an increasing number of
studies of probiotics and/or Lactobacillus strains on di-
gestive and gynecological pathologies. A probiotic ther-
apy (VSL#3) has been shown to be effective against
pouchitis [3-5], a probiotic preparation containing Bifi-
dobacterium infantis has been shown to reduce irritable
bowel syndrome symptoms [6], S. boulardii and LABs
significantly decreased the incidence of antibiotic-
associated diarrhea [7-9], and many Lactobacillus
strains hold promise for treating bacterial vaginosis [10]
and recurrent urinary tract infections [11]. Recent stud-
ies have also revealed that kefir, a LAB-rich fermented
milk drink made from kefir grains, can have several posi-
tive bioactivities, including antioxidant, antimicrobial,
anti-inflammatory, and healing activities [12, 13], as well
as improvement of bone mass in an ovariectomized rat
model of postmenopausal osteoporosis [14].

More significantly, increasing evidence has been
mounting of the anticancer effects of LAB in many
in vivo, in vitro, and epidemiological studies [15-24].
Such studies have shown probiotics to be effective
against many cancers such as colorectal [18], intestinal
[19], colonic/rectal [20], oral [21], and breast cancer [22,
23]. Epidemiological studies have found an inverse cor-
relation in humans between the frequency of yogurt
consumption and the risk of breast cancer, indicating
that probiotic bacteria might reduce the risk of cancer in
humans [24]. One potentially beneficial probiotic prod-
uct is PFT (Probiotics Fermentation Technology). PFT is
a novel kefir grain product composed predominantly of
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LAB strains: ~90% Lactobacillus kefiri P-IF along with
2-3% of another L. kefiri compound and three yeast
strains [25, 26]. PFT has already been shown to exert an-
ticancer effects in vitro against multidrug-resistant
(MDR) human myeloid leukemia cells (HL60/AR) cells
[26] and human gastric cancer cells [27]. This data is in
support of other work that has also shown Lactobacillus
strains to have effects in vitro against bladder [28] and
gastric cancer [29], as well as inhibitory effects in ani-
mals with breast [22, 23, 30], intestinal [19], colon [20],
and oral cancer [21] and in humans with colon [31],
liver [32], and breast cancer [24].

These results motivated this study’s investigation of
PFT’s action in vivo and its exploration of PFT’s mecha-
nisms of action. LAB has been demonstrated to exert anti-
cancer effects through several different mechanisms,
including the inhibition of potential pathogens and car-
cinogenesis in the gut by binding to and degrading carcin-
ogens, enhancement of antioxidant activities, production
of antitumorigenic or antimutagenic compounds, and en-
hancement of the host’s immune response [33, 34]. Pro-
biotics have also been shown to induce apoptosis in many
different cancer cell lines such as monocytic leukemia-cell
line THP-1 [35], chronic myeloid leukemia-derived cells
[36], and colon cancer cell line SNUC2A [37].

In this study, we aimed to evaluate the anticancer effect
of PFT against animal bearing Ehrlich ascites carcinoma
(EAC) and to investigate the potential mechanisms of ac-
tion. Furthermore, we supported our study of EAC in
mice with a study of PFT’s action against EAC in vitro,
along with several other human cancer cell lines.

Methods

Probiotics Fermentation Technology (PFT) kefir grain
product

PFT is a mixture that contains primarily (~ 90%) a heat-
killed freeze-dried form of L. kefiri P-IF. PFT also con-
sists of ~2-3% of the following: one bacterial strain L.
kefiri P-B1, and yeast strains Kazachstania turicensis,
Kazachstania unispora and Kluyveromyces marxianus.
P-IF is a specific LAB strain with a unique DNA se-
quence, and PET scans show a 99.6% homology with
regular kefiries. The characteristics of P-IF have been re-
ported [25, 26]; the exact chemical composition is under
active investigation. The yeast strains are not
intentionally added, but rather are present in large
amounts when obtaining the product from the Caucasus
mountains and are filtered out in order to maximize the
kefiri levels. PFT was provided by Paitos Co., Ltd., Yoko-
hama, Kanagawa, Japan.

Preparation of EAC cells and tumor transplantation
EAC is a well-established murine model used over the
last four decades for studying breast cancer. It is
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originally hyperdiploid and an undifferentiated carcin-
oma with unique characteristics such as 100% malig-
nancy, short life span, high transplantable capability, and
rapid proliferation [38—41]. In this study, murine EAC
cells were obtained from the National Cancer Institute,
Cairo University, Egypt. Cells were maintained in vivo in
female Swiss albino mice via weekly intraperitoneal pas-
sage of cells. Mice were inoculated intramuscularly in
the right thigh of each mouse with 0.2 ml of EAC con-
taining 2.5 x 10° viable cells in PBS to develop solid tu-
mors. Tumor cell viability was found to be 95%, as
examined by Trypan blue dye exclusion method.

Preparation of human cancer cell lines

The current study used three human tumor cell lines for
in vitro study: liver carcinoma cell line (HepG2), breast car-
cinoma cell line (MCF-7), and colon carcinoma cell line
(CACO-2). Tumor cells were purchased from American
Tissue and Culture Collection, Manassas, VA, USA. These
cells were maintained in a complete medium consisting of
RPMI-1640 that was supplemented by 10% fetal calf serum,
2 mM glutamine, and a mixture of 100 pg/ml streptomycin
and penicillin. Cells were permitted to grow in tissue cul-
ture flasks (Corning, USA) and were incubated at 37 °C in a
humidified atmosphere of 5% CO, and 95% air.

Animals

Sixty-nine female Swiss albino mice were purchased for
this study from the National Cancer Institute, Cairo Uni-
versity, Egypt. They weighed between 19 and 21g and
were 2 months old. Mice were kept in alternating 12-h
light and dark cycles at constant temperature (24 + 2 °C)
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and 10% relative humidity. They were given water and
standard cube pellets ad libitum. Pellets consisted of
wheat flour (80%), casein (12.5%), bran (3.3%), olive oil
300 (2.3%), fats (1.0%), DL-methionine (0.5%), vitamins
and salt mixture (0.2%), and water (0.2%). The total cal-
orie breakdown was 9% fat, 73% carbohydrate, and 18%
protein. Pellets were purchased from Misr Oil & Soap
Company, Cairo, Egypt. All animal protocols were
followed in compliance with the Guide for the Care and
Use of Laboratory Animals at the University of Man-
soura, Egypt, and the study was approved by the Com-
mittee on the Ethics of Animal Experiments of the
University of Mansoura, Egypt, on January 4, 2015.

Experimental design
Mice were divided randomly into five groups: Group-1,
the vehicle, (Normal Control): Mice without tumor in-
oculation and untreated with PFT; Group-2 (PFT Con-
trol): Control mice treated with PFT without
inoculation; Group-3 (Inocul Control): Mice bearing
tumor without PFT treatment; Group-4 (PFT pre-
inocul): Mice treated with PFT 2 days prior to tumor in-
oculation, PFT treatment continued until day 30; and
Group-5 (PFT post-inocul): Mice treated with PFT 9
days post tumor inoculation, PFT treatment continued
throughout the experiment (30 days). PFT was adminis-
tered orally six times per week over the course of the
study. The dose utilized was 2 g/kg/day, based on earlier
findings by others [42]. Fig. 1 illustrates the experimental
design and the different treatment groups.

Parameters under investigation were as follows: tumor
growth, cell cycle progression, apoptosis, apoptotic and

Female Swiss albino mice

Tumor inoculation

Animal Sacrifice
Samples Taken

Day 0 Day 30
Da;( -2 | Daly 9 |
Normal Control: Not inoculated; no PFT N
PFT Control: PFT treatment starts on Day 0; not inoculated ;
Inocul Control: Inoculated on Day 0; no PFT R
PFT Pre-Inocul: PFT treatment starts on Day -2; Inoculated on Day 0 R

PFT Post-Inocul: Inoculated on Day 0; PFT treatment starts on Day 9

L 2

Fig. 1 Experimental design
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cell cycle regulators expression, changes in mitochon-
drial membrane potential (MMP), PCNA, and CD4+
and CD8+ T cells in tumor cells, blood lymphocytes
level, and TNF-a expression.

Change in body weight (BW)

Mice in the five groups were assessed for changes in
body weight: (initial BW on Day 0, last and net final
BWs on day 30). Net final BW = (final BW - tumor
weight). We determined BW gain as the difference
between initial and net final BW.

Tumor incidence and tumor growth evaluation

The potential antitumor effects of PFT was examined by
checking daily for palpable tumors and measuring any
changes in tumor volume (TV/mm?®) and tumor weight
(TW/g). Measurements of TV (3 days/week) was carried
out via digital Vernier calipers. Measurements were
taken from day 9 to day 30 post tumor cell inoculation.
Data gathered was analyzed to obtain tumor volume
using the following formula: TV (mm?) = 0.52AB%, where
A and B are the minor and major axis, respectively. Per-
centages of tumor growth inhibition in mice receiving
PFT were calculated. At the end of the experiment, solid
tumors were excised to determine TW/g.

Sample collections

Sample collections were drawn at day 30. Mice were then
weighed and anesthetized using sodium pentobarbital (40
mg/kg BW, ip.). Blood was drawn from the abdominal
aorta using heparinized plastic syringes, before being
transferred into anticoagulation test tubes in order to
measure lymphocytes levels. Mice were euthanized by cer-
vical dislocation and afterward were dissected in order to
obtain solid tumor. Tumor tissues were immediately fro-
zen in preparation for our various investigations.

Flow cytometric analysis

Cell preparation for flow cytometry

Excised tumor tissues were taken from mice bearing
solid Ehrlich carcinoma (SEC). Tissue samples were
diced and rubbed through fine nylon gauze (40-50 mesh
count/cm, HD 140 Zuricher Buteltuch fabrik AG). After-
ward, samples were washed through the gauze with
Tris—ethylenediaminetetraacetic acid (Tris-EDTA) buffer
at pH7.5 [0.47 g of 0.005 M Tris-EDTA; 1.022 g of 0.07
M HCl; 3.029g of 0.1 M Tris-(hydroxymethyl amino-
methane)]. Cells were subsequently suspended in PBS,
centrifuged at 200-300g for 5min, and then resus-
pended in sterile PBS (cell density=1x10° cells/ml).
Cells were then fixed and permeabilized with ice-cold
70% methanol in PBS. Until used, the cells were stored
at -20°C.
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Cell cycle analysis by propidium iodide

Suspensions of tumor cells were centrifuged. Cell pellets
were then resuspended in a 1 ml solution of propidium
iodide (PI) in the dark for 30 min. Cells were subsequently
examined via flow cytometry (Becton Dickinson, San Jose,
CA). Data was analyzed using the MODFIT program
(Verity Software House, Inc., Topsham, ME, USA) for
DNA analysis. The computer software was used to calcu-
late the coefficient of variation around the peak in GO/G1,
along with each sample’s percentage of cells in each of the
DNA cell cycle phases (GO/G1, S, and G2/M). If a distinct
peak separate from the G1 diploid peak deviated by over
10% from the diploid internal standard, or if the G1 peak
deviated from a corresponding G2/M peak more than
10%, then an aneuploid cell population was classified as
present. Calculations were also performed to obtain the
apoptosis index (AlI)/proliferation index (PrI) ratio.

Detection of apoptosis by AnnexinV/PI double staining

The ability of PFT to induce apoptosis in tumor cells
was identified and quantified via flow cytometry. This
study used the Annexin V conjugated alexafluor 488
apoptosis detection kit (BD Biosciences, San Jose, CA);
manufacturer’s instructions were followed. The study
also conducted FACS analysis using Cell Quest 3.3 soft-
ware. Early apoptotic cells fluoresce green when stained
with Alexa488 and, on the fluorescence-activated cell
sorting histogram, they show up in the lower right (LR)
quadrant. Late apoptotic cells, when stained with both
Alexa488 and PI, give red-green fluorescence and
present in the upper right (UR) quadrant of the histo-
gram. Necrotic dead cells, when stained with PI only,
present in the upper left (UL) quadrant.

Effect of PFT on mitochondrial membrane potential (MMP)
MMP variations during apoptosis were examined using
3,3"-Dihexyloxacarbocyanine iodide (DOC6(3)) (Molecu-
lar Probes, Eugene, OR, USA). 5 x 10° cells/ml were in-
cubated with 0.5 mM DOC6(3) for 30 min at 37 °C. Cells
were subsequently transferred onto ice for FACS ana-
lysis. Forward and side scatters were employed to gate
and exclude cellular debris using a FACScan. Cells were
then excited at 488 nm before green fluorescence was
collected on FL1 at 530 nm. Five thousand cells were an-
alyzed. Data was acquired and then analyzed using Cell
Quest software (Becton Dickinson).

Expression of cell cycle progression, apoptosis and cell
proliferation related protein

Mouse monoclonal antibodies against P53 (sc-7480),
Bcl-2 (sc-7382), Bax (sc-7480), caspase-3 (sc-7272), p21
(sc-6246), p27 (sc-1641), PCNA (sc-56) protein, and
other reagents were purchased from Santa Cruz Biotech-
nology, Inc., Dallas, Texas USA. Tumor cells (1 x 10°)
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taken from PFT-treated mice were incubated using the
appropriate antibody for 1h and then incubated again
with FITC-conjugated goat anti-rabbit antibody. After-
wards, cells were thoroughly washed with PBS with BSA
and then analyzed using a flow cytometer.

T helper cells (CD4+) and T cytotoxic cells (CD8+)

FACS analysis of CD4+ and CD8+ T cells infiltrating tumor
tissues was performed using mouse anti-CD4+ FITC (clone
GK1.5) and mouse anti-CD8+ FITC (clone 53-6.7), (BD
Pharmingen, San Diego, CA). Tumor cells were suspended
in PBS at a concentration of 1 x 10° cell/ml. Cells were pre-
pared as described above before being centrifuged. The
supernatant was discarded. Cell pellets were then re-
suspended in 500 pl PBS before 1 ml of suspension was dis-
pensed in flow cytometric tube. Cells were incubated with
25 ul of anti-CD4+ or anti-CD8 in dark for 30 min at 4 °C.
After the supernatant was discarded, the cells were washed
twice by PBS, pH 7.2. Two hundred microliter paraformal-
dehyde solution was then added to each tube, mixed well,
and kept in dark at 4°C till FACS analysis was conducted
according to the manufacturer s instructions.

Detection of TNF-a relative gene expression by reverse
transcription-polymerase chain reaction (RT-PCR)

Total RNA extraction was carried out using a GF-TR-050
Total RNA Extraction Kit (Vivantis Technologies SDN.
BHD., Malaysia) according to the manufacturer’s instruc-
tions. The total RNA was reverse transcribed (RT) into
¢DNA by using FastQuant RT Kit (Tiangen Biotech
(Beijing) Co., Ltd) in line with manufacturer’s guidelines.
The kit contained gDNase, which can remove genomic
DNA by incubation at 42 °C for 3 min to protect the total
RNA from genomic DNA interference. Real-time RT-PCR
was conducted using Maxima SYBR Green qPCR Master
Mix (2X) Kit (Thermo Scientific). The reaction conditions
and data analysis were conducted in compliance with the
manufacturer’s instructions. 5ul of ¢cDNA in a total
volume of 25 ul containing 12.5 ul Maxima SYBR Green
qPCR Master Mix (2X), Forward Primer 0.3uMol,
Reverse Primer 0.3uMol (TNF-a: 5-TGAACTTCGGGG
TGATCGGT-3; 5-GGTGGTTTGTGAGTGTGAGGG-3.
B-actin: 5-CAGGATTCCATACCCAAGAAG-3; 5-AAC
CCTAAGGGCAACCGTG-3.), ROX Solution 10nM/
100nM, up to 25 pl by Water nuclease-free. Thermal cyc-
ling condition 95°C for 10 min, followed by 40 cycle of
95°C for 15, 58 °C for 30's, 60 °C for 30s. Reactions were
run on an PIKO REAL 96 Real-Time PCR system
(Thermo Scientific). TNF-a was designed by (Biolines,
USA). Gene expression differences between groups were
calculated using the AAC Ct (cycle time, Ct) method ac-
cording to Livak and Schmittgen [43]. These differences
were normalized against S-actin and expressed as relative
mRNA levels, as compared to controls.
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Evaluation of the in vitro cytotoxic effect of PFT on
cancer cell lines by MTT assay

For in vitro study, we used four tumor cell lines: murine
EAC, human HepG2, human MCF-7, and human CACO-
2. Tumor cells (1 x 10*/well) were incubated with ascending
concentrations of PFT (0.6, 1.25. 2.5 and 5 mg/ml) in 96-
wells. The final volume of medium in each well after the
addition of PFT was 200 pl. The cultures were then incu-
bated at 37 °C, 5% CO2 with 98% relative humidity for 24
and either 48 or 72h. Afterwards, 50 mg of MTT were
added and the cultures were incubated for an additional 4
h. The plates were then centrifuged before the medium was
carefully removed. The formazan crystals were then solubi-
lized with acid alcohol and the plates were read at 590 nm
by using an ELISA plate reader (Molecular Devices, Menlo
Park, CA, USA). The 50% inhibitory concentration (IC50)
was determined as the drug concentration resulting in a
50% reduction of cell viability. The IC50 was determined by
plotting the logarithm of the drug concentration versus the
survival rate of the treated cells.

Statistical analysis

Reported data values are mean * standard error (SE).
Analysis was conducted with ANOVA (one-way analysis
of variance) followed by Dunnett’s post-hoc test in order
to identify the significance for multiple comparisons.
Statistical significance was determined at the p<0.05
level. With regard to the Results section shown later, 8
mice per group were utilized for statistical analysis for
Fig. 5. However, only 6 of these mice from each group
were usable for all other biochemical analyses, due to a
shortage of tumor samples. The sample size of 6 was still
large enough to yield statistically significant information.

Results
Several parameters in vivo were carried out at 30 days
post treatment with PFT.

Effect of PFT on body weight

The body weight of EAC bearing mice without treat-
ment decreased by 22.3% relative to their initial body
weight (data not shown). This final body weight was sig-
nificantly lower when compared against the final body
weights of the normal control and PFT-treated control
groups. On the other hand, treatment with PFT pre-
vented this body weight loss due to cancer, an effect that
was observed for both pre- and post-inoculation groups.

Effect of PFT on tumor growth

Mice receiving PFT before EAC inoculation (the PFT pre-
inocul group) showed tumor incidence in 76.5% (13/17) of
the animals recorded on day 9, and complete tumor regres-
sion was noticed in three mice (3/13). Mice in this group also
showed a significant percentage of tumor volume (TV)
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inhibition, detected at day 9 and maximized (75%) at day
30 (Fig. 2a), while mice that received PFT after EAC in-
oculation (the PFT post-inocul group) showed a signifi-
cant inhibition in TV by 67% at day 30 relative to the
untreated control group. Similar trends in tumor weight
(TW) post-treatment with PFT were noted. Fig. 2b shows
a 64.6 and 48.6% decrease in TW for pre-and post-
inoculation groups, respectively (p < 0.01).

Effect of PFT on cell proliferation

The expression of proliferating cell nuclear antigen
(PCNA) post-treatment with PFT was examined. As
shown in Fig. 3, pretreatment with PFT resulted in a de-
crease of 68.7% in levels of PCNA expression, while
posttreatment with PFT showed a decrease of 38.9% as
compared to the inoculated control group.

Effect of PFT on cell cycle progression

Data in Fig. 4a show that the percentage of sub-G1 phase
hypodiploid cells were significantly increased for those
groups that received PFT before (166%) or after (126%)

tumor inoculation (p <0.01), as compared to the inocu-
lated control group. On the other hand, treatment with
PFT caused a reduction in the percentage cell population
in other phases relative to the inoculated control group,
with pretreatment and posttreatment of PFT, respectively:
GO/GL1 (56, 43%), S (63, 46%), and G2/M (69, 56%). The
effect of PFT on Apoptosis index/ Proliferation index ratio
(AI/Prl) was also examined. Pretreatment with PFT in-
creased the AI/Prl ratio by 242% while posttreatment with
PFT resulted in an increase of 140% (p <0.01), as com-
pared with the inoculated control group (data not shown).

Quantitative determination of apoptosis by AnnexinV/PI
staining

Quantitative flow cytometric analysis of apoptosis was per-
formed by AnnexinV/PI double staining. As shown in Fig.
4b, pretreatment with PFT caused a large decrease in the
percentage of viable cells (- 61%, p < 0.01), while posttreat-
ment with PFT showed —44% (p < 0.01) as compared to the
inoculated control group. On the other hand, pretreatment
and posttreatment with PFT significantly increased early
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Fig. 3 Effect of PFT treatments on PCNA expression in tumor tissues as determined by flow cytometry. Values represent the mean + SE of 6 mice/
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while the necrotic dead cells were in the upper left (UL) quadrant of the histogram. One representative histogram is shown from 6 individual mice/group
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apoptotic population by +385% and +310%, p < 0.01, re-
spectively, as compared to the inoculated control group.
Similar pattern of PFT treatment was shown on late apop-
totic cells for pretreatment and posttreatment groups
recorded +578% and+421%, p<0.01, respectively,
relative to the inoculated control group. In
addition, necrotic population of pretreatment and

posttreatment with PFT recorded -65% and - 47%,
p < 0.01, respectively, of the inoculated control group.

Effect of PFT on cell cycle and apoptotic regulators

The percentage of cell cycle and apoptotic regulators in
tumor tissues were examined (Table 1). Results showed
that PFT induced apoptosis in vivo in cancer cells via

Table 1 Effect of PFT on cell cycle and apoptotic regulators in tumor tissues of the different groups as determined by flow

cytometry

Groups Inocul PFT (pre- PFT (post-
Control inocul) inocul)

Parameter

P53 expression 17.55+0.95 6346+ 6.72" 4205+ 668"

% change from inocul control - +261% +139%

P21 expression 12,03+ 092 5529+ 168 3960+ 4.717*

% change from inocul control - +359% +229%

P27 expression 2311+ 161 6046+ 152" 3596+ 1.37°F

% change from inocul control - +161% +55%

Bax expression 1215+ 062 5266+ 3.16° 3062+ 1.34°F

% change from inocul control - +333% +152%

Bcl2 expression 66.89+2.34 36474089 47.15+168"F

% change from inocul control - -45% -29%

Bax/Bcl2 ratio 0.17+0.008 14340075 06440038

% change from inocul control - +741% +276%

Caspase-3 expression 20.98+1.63 46.89+2.32" 3967+066 "

% change from inocul control - 123.50% 89.00%

MMP 71.14+327 15.86+3.69" 4306365 "

% change from inocul control - -77.7% -39.5%

Each value represents the mean+SE of 6 mice/group. P < 0.01 vs. inocul control group; P < 0.05 vs. pre-inocul group; *p < 0.01 vs. pre-inocul group
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the mitochondrial-dependent pathways. This was indi-
cated by a significant increase in p53 expression by 261
and 139% for pre- and posttreatment, respectively. Be-
sides, treatment with PFT significantly increased P21
and P27 expression as compared with the inoculated
control group. The effect of PFT was higher in mice re-
ceiving PFT before tumor inoculation than mice receiv-
ing PFT post inoculation. Furthermore, results showed
that Bax expression increased by 333 and 152%, Bcl2 ex-
pression decreased 45 and 29%, Bax/Bcl2 ratio increased
741 and 276%, and caspase-3 increased by 123.50 and
89.00% for pre- and posttreatment, respectively, as com-
pared with control untreated mice.

Effect of PFT treatment on the MMP was also exam-
ined. Results indicate that pre- and posttreatments with
PFT caused significant decrease in mitochondrial
polarization, 77.7 and 39.5%, respectively.

Immunological effects of PFT treatment
The effect of PFT on several immunological parameters
in tumor tissues was examined.

Percentage of CD4+ T and CD8+ T cells infiltrated in the
tumor tissue

Figure 5a show that mice that received PFT treatment
demonstrated a significant increase in the levels of
CD4+ T cells infiltrating the tumor: a 2.3-fold and 1.7-
fold increase for mice with pretreatment and posttreat-
ment, respectively. A similar pattern of increased levels
of CD8+ T cells infiltrating in the tumor tissue in mice
treated with PFT was also noted but to a lower extent.

Percentage of lymphocytes in the blood

Results in Fig. 5b show that mice in the inoculated con-
trol group demonstrated significant decrease in the per-
centage of lymphocytes (60.9%), relative to normal
control mice. Mice with PFT pretreatment or posttreat-
ment maintained the percentage of lymphocytes within
the values of normal control mice.
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Relative gene expression of TNF-a

Figure 5c¢ shows results of the effect of PFT on relative
gene expression of TNF-a in tumor tissues of EAC-
bearing mice as determined by RT-PCR. Treatment
with PFT shows remarkable increase in the relative gene
expression. Pretreatment with PFT resulted in 5.7-fold
increase and posttreatment with PFT showed 3.9-fold in-
crease in the relative gene expression as compared to
the inoculated control group.

Evaluation of the in vitro cytotoxic effect of PFT on
various tumor cell lines

The in vitro cytotoxic effect of PFT on several tumor cell
lines was examined by MTT assay. These cell lines in-
cluded mouse EAC and three human cancer cell lines:
breast cancer MCEF-7, hepatocellular carcinoma HepG2,
and colon cancer CACO-2. PFT induced cytotoxicity
against EAC cells at 24 h and increased over time. The
IC50 values at 24 and 48 h were 1.3 and 1.1 mg/ml, re-
spectively (Fig. 6a). Similarly, PFT also exhibited cyto-
toxic effect against the human cancer cell lines at 24 h
and increased over time. (Fig. 6b-d). Results show that
there was a gradation in the sensitivity of human cancer
cell lines toward the toxic effect of PFT: HepG2 > CACO-
2 > MCEF-7. Similar trends in results for all cell lines was
detected by trypan blue assay (data not shown).

Discussion

Results of the current study demonstrate that PFT in-
duces chemoprotective effects against mice bearing Ehr-
lich ascites carcinoma (EAC). Treatment with PFT prior
to tumor inoculation prevented tumor growth in 23.5%
of the mice, and complete tumor regression was re-
corded in 23% of mice (3/13) after day 21. PFT treat-
ment also resulted in a decrease in tumor volume, with
pretreatment showing 75% decrease and posttreatment
showing 67% decrease. This data is in accordance with
earlier studies by others which showed that treatment
with probiotics causes significant suppression in growth
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Fig. 5 Effect of PFT treatment on immunological parameters. a) CD4+ and CD8+ infiltrating tumor tissue of different groups. Each value

represents the mean + SE of 6 mice/group. b) Effect of PFT on percent lymphocytes in the blood of the different groups. Each value represents
the mean + SE 6 animals/group. c) Effect of PFT on relative gene expression of TNF-a in tumor tissues of different groups as determined by RT-
PCR. Each value represents the mean + SE of 5 tumor samples /group. *, P < 0.01 vs. inocul control group; %, P < 0.01 vs. pre-inocul group; €, P <
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of multiple types of cancers in experimental animals
[44]. Probiotics have been shown to be effective against
colorectal and intestinal [18—20], oral [21], and breast
cancer [22-24]. Most of these studies used chemically-
induced tumors; however, in the current study, tumors
were initiated through inoculation of Ehrlich ascites car-
cinoma (EAC) in mice. These studies suggest that LABs
have the ability to suppress tumor growth regardless of
the tumor initiators.

Our earlier in vitro studies showed that PFT probiotic
exerts anticancer effect on various cancer cells via differ-
ent mechanisms. For example, PFT induced apoptosis in
murine metastatic breast cancer (4 T1) cells and in mye-
loid leukemia cells via a hole-piercing mechanism [36,
43], as well as in AGS human gastric cancer cells via de-
creasing the polarization of MMP and Bcl2 expression
[27]. In the current study, flow cytometry study showed
PFT acts as a potent apoptotic agent in EAC cells
in vivo, as indicated in the sub-G1 phase by cell cycle ar-
rest with a marked increase in the hypodiploid cell
population. Furthermore, marked increases were re-
corded in the apoptosis index/proliferation index (Al/

PrI) of 3.4- and 2.4-fold for mice supplemented with
PFT prior to EAC inoculation and post EAC inoculation,
respectively, relative to the inoculated control group. An
earlier study also revealed that waste milk whey sup-
presses tumor cell proliferation by interfering with the
cell cycle [45]. Analysis revealed a dramatic up-
regulation in the percentage of protein levels of p53,
p21, and p27 in tumor cells of animals treated with PFT.
p53 has the ability to induce cell cycle arrest and apop-
tosis [46], while p21 and p27 bind to cyclin-CDK com-
plexes to inhibit their catalytic activity and induce cell
cycle arrest [47].

In addition, our data showed that PFT induced a
modulation of apoptotic regulators, including up-
regulation of p53 and Bax expression, down-regulation
of Bcl2 expression, and increased Bax/Bcl2 ratio. We
also noted a significant decrease in mitochondrial
polarization and over 2-fold increase in caspase-3 ex-
pression posttreatment with PFT. Taken together these
data suggest that PFT induces apoptosis via the
mitochondrial-dependent pathway. These results are in
accordance with other studies showing that other
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probiotics such as Propionibacterium freudenreichii [48]
and conjugated linoleic acid, a functional lipid produced
from Lactobacillus plantarum, have an apoptotic effect
via the mitochondrial-dependent pathway in different
cancer cell lines [49].

In the current study, the level of PCNA expression in
untreated mice significantly increased. Conversely, a
down-regulation of percent PCNA level was observed in
mice supplemented with PFT prior to EAC inoculation
and post EAC inoculation by 68.7 and 38.7%, respect-
ively, as compared to inoculated control mice. Suppres-
sion of cellular proliferation may represent one of the
mechanisms through which probiotic PFT exerts its che-
mopreventive effects. Similar results were noted in stud-
ies of the probiotic Dahi, produced by L. lactis, which
showed suppressed PCNA expression in colorectal tissue
of Wistar rats [50].

The anticancer effect of probiotics is heavily investi-
gated in cancers of the gastrointestinal tract (GI tract)
[18-20]. However, its effect in other types of cancer is
less studied. In the current study, PFT was administered
orally, and its ability to exert an anticancer effect on can-
cers not in the GI tract is of special interest. The effects
of bioactive molecules secreted by probiotics may repre-
sent another mechanism by which probiotics exert their
effects. A few of these bioactive molecules have been dis-
cussed in the literature, including parasporin-2Aal (from
Bacillus thuringiensis strain A1547) [51], epsilon-poly-L-
lysine (from marine Bacillus subtilis SDNS) [52], and
polyphosphate (poly P) (from L. brevis SBL8803) [53].

Immunomodulation may represent another important
mechanism by which probiotics exert their anticancer
activity. In the current study, supplementation with PFT
for mice bearing tumor resulted in: 1) significant in-
crease in the percentage of CD4+ T and of CD8+ T cells
infiltrating tumor tissue, 2) recovery of the percentage of
lymphocytes in the blood, and 3) substantial increase in
the relative gene expression of TNF-a. The mechanisms
by which PFT enhances the response of T cells may in-
clude the action of activated dendritic cells (DCs). Our
earlier study showed the ability of PFT to activate DCs
to induce CD4+ T and CD8+ T cell responses in vitro
[54], with PFT-activated DCs upregulating CD103 and
CD107a expression and increasing Granzyme-B’s granu-
lar content in CD8+ T cells. CD103+ CD8+ T cells have
been shown to increase tumor necrosis and prevent
cancer progression in mice [55], and CD107a and
Granzyme-B expression by CD8+ T cells is known to be
a hallmark of cytotoxic T cells that can help eliminate
cancer cells [56, 57]. Other studies have also shown the
potential of probiotics as immune modulators. These in-
clude the ability of LABs to enhance the number of total
T cells, NK cells, MHC class I+ cells, and CD4-CD8+ T
cells in mice [58] and increase the phagocytic activity of
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macrophages in mice bearing tumor [59]. In addition,
daily intake of L. casei Shirota for 3 weeks significantly
increased NK cell activity of cigarette smokers [60].

The data in Fig. 6 shows that PFT has an anti-cancer ef-
fect against multiple types of cell lines in vitro, including
HepG2 (human liver cancer), MCF-7 (human breast can-
cer), and CACO-2 (human colorectal cancer). However,
we noticed that there is a differential response among
these cell lines toward the cytotoxic effect of PFT. These
cytotoxic effects of PFT are in accordance with others
who showed that probiotics promote anti-proliferative or
proapoptotic activities in various human cancer cells/cell
lines, including colonic and gastric cancer cells [37, 61,
62], blood cancer cells such as chronic myeloid leukemia-
derived and monocytic leukemia cells [27, 35, 36], breast
cancer cells [63], and cervical cancer cells [64].

Cachexia has been shown to be a major cause of mor-
tality and morbidity in cancer patients [65] and resulting
weight loss can affect the quality of life of patients with
advanced cancer [66]. Animal studies have shown that
as soon as the tumor is palpable, adipose tissue wasting
can occur [67]. In the current study, mice bearing tumor
showed a significant decrease in body weight, as com-
pared to normal control. However, treatment with PFT
prevented body weight loss due to cancer. This data is in
accordance with earlier studies that have shown other
probiotics can similarly help maintain body weight in
the presence of cancer [68, 69].

The current definition of probiotics associates them
with live cells, and therefore viability is considered to be
a fundamental property of probiotics. However, the
current study, along with the work of others, shows that
heat-killed probiotics have the ability to generate benefi-
cial biological responses [70]. For example, dietary sup-
plementation of cell-wall preparation of Enterococcus
faecalis strain EC-12 exerts an immunostimulatory effect
in chicks [71], heat-killed Enterococcus faecalis FK-23
preparation (FK-23) stimulates the non-specific immune
responses in healthy dogs [72], and heat-killed bifidobac-
teria enhances cytokine production in clonal murine
macrophage and Tcell lines [73]. In addition, the effect-
iveness of both viable probiotics [74] and heat-killed L.
acidophilus 1B [75] have been reported for the treat-
ment of diarrhea. These studies suggest that probiotics
induce their effects in both alive and heat-killed forms.

Conclusions

We conclude that Lactobacillus kefiri PFT may have chemo-
preventive potential to reduce tumor incidence and tumor
growth by inducing apoptosis in EAC cells via the
mitochondrial-dependent pathway, suppressing cancer cell
proliferation, and stimulating the immune system. These re-
sults may suggest the applicability of PFT for cancer preven-
tion and/or treatment in clinical trials.
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