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Abstract

Background: For decades, bioprospecting has proven to be useful for the identification of compounds with
pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public
health problem of dengue—a disease caused by the dengue virus (DENV)—in the present study, we evaluated the
anti-DENV effects of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast, and 5
fractions and 5 compounds derived from Psidium guajava.

Methods: The cytotoxicity and antiviral effect of 12 ethanolic extracts derived from plants collected in the
Colombian Caribbean coast was evaluated in epithelial VERO cells. Five fractions were obtained by open column
chromatography from the ethanolic extract with the highest selectivity index (SI) (derived from P. guajava, SI: 128.2).
From the fraction with the highest selectivity (Pg-YP-I-22C, SI: 35.5), five compounds were identified by one- and
two-dimensional nuclear magnetic resonance spectroscopy. The antiviral effect in vitro of the fractions and
compounds was evaluated by different experimental strategies (Pre- and post-treatment) using non-toxic
concentrations calculated by MTT method. The DENV inhibition was evaluated by plate focus assay. The results
were analyzed by means of statistical analysis using Student’s t-test. Finally the antiviral effect in Silico was
evaluated by molecular docking.

Results: In vitro evaluation of these compounds showed that three of them (gallic acid, quercetin, and
catechin) were promising antivirals as they inhibit the production of infectious viral particles via different
experimental strategies, with the best antiviral being catechin (100% inhibition with a pre-treatment strategy
and 91.8% with a post-treatment strategy). When testing the interactions of these compounds with the viral
envelope protein in silico by docking, only naringin and hesperidin had better scores than the theoretical
threshold of − 7.0 kcal/mol (− 8.0 kcal/mol and − 8.2 kcal/mol, respectively). All ligands tested except gallic acid
showed higher affinity to the NS5 protein than the theoretical threshold.

Conclusion: Even though bioprospecting has recently been replaced by more targeted tools for identifying
compounds with pharmacological potential, our results show it is still useful for this purpose. Additionally,
combining in vitro and in silico evaluations allowed us to identify promising antivirals as well as their possible
mechanisms of action.
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Introduction
Dengue is a growing public health problem worldwide,
mainly in tropical and subtropical regions [1]. In the last
five decades, on the American continent, the incidence
of dengue has increased 30 fold and is the cause of ap-
proximately 390 million infections per year, of which 96
million have clinical manifestations [2]. In 2013, in
America, the largest number of cases in the history of
the disease was reported, with a total of 2.3 million
cases, an alarming figure [3, 4]. In most cases, dengue
presents as an asymptomatic disease, however, it can
presented with a wide range of clinical manifestations,
including fever, headache, pain in various parts of the
body, and prostration, among others. Few patients
present with serious life-threatening manifestations. This
wide clinical variety permits classified dengue in three
groups: asymptomatic patients, symptomatic patients
(with or without alarming symptoms) and patients with
severe dengue (patients with hemorrhage and/or hypo-
volemic shock)”) [5].
The etiological agent that causes this disease is the

dengue virus (DENV), a member of the Flaviviridae
family, which belongs to the arboviruses (viruses trans-
mitted by arthropods). This virus is classified into four
serotypes (DENV 1–4) according to genetic and anti-
genic differences [6]. Although any serotype is equally
able to cause dengue, serotype differences have been
postulated to lead to differences in pathogenesis [7] such
as the case for DENV-2 which have been related with
sever dengue [8]. The DENV genome consists of a
strand of positive-sense Ribonucleic Acid (RNA) of ap-
proximately 1 kb with a m7GpppAmp cap at its 5′ end
and no poly (A) tail at its 3′-end [9]. Moreover, it has a
single reading frame that codes for three structural pro-
teins (C, PrM, and E) and seven nonstructural proteins
(NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5), which
are mainly involved in viral replication [10, 11].
The replication cycle of DENV begins with the E protein

binding to receptors on the cell membrane. After this
binding, there is a clathrin-mediated endocytosis followed
by the formation of an endosome leading to the pH-
dependent fusion (viral envelope/endosome). The acidic
pH of the endosome favors the release of the viral RNA in
the cytoplasm to be transcribed and translated into ribo-
somes associated to the endoplasmic reticulum, resulting
in a single viral polyprotein which is cleaved by cellular
and viral proteases. The replication complex (formed by
RNA, NS5, other nonstructural proteins and cellular fac-
tors) is formed in association with intracellular mem-
branes. Finally, the assembly of viral proteins with new
genomes occurs in the lumen of the endoplasmic
reticulum, followed by the passage of the new virions
through the Golgi apparatus (where the maturation viral
process occurs) to be released the virions by exocytosis

[12]. Although all steps of the viral replication cycle are
likely to be inhibited, most studies have focused on the
evaluation of compounds that inhibit the attachment and
entry of virus into the cell, among them are heparin [13]
and sulfated polysaccharides [13]. Moreover, other com-
pounds are able to inhibit the viral genome replication by
blocking the synthesis of nucleoside triphosphates. Ribavi-
rin and mycophenolic acid [14] are two good examples of
such inhibitors. Finally, other compounds, including casta-
nospermine [15] and the Lovastatin [16] inhibit steps in
the replication cycle after entry and replication of DENV,
possibly affecting the assembly process.
Despite the large number of possible antiviral candi-

dates [17], to date, only a few have been tested in clinical
trials, such as balapiravir, chloroquine, lovastatin, pred-
nisolone, and celgosivir [18]. However, none of these
compounds is being used as an effective anti-dengue
therapy. Thus, there remains an important need to iden-
tify effective and tolerable medications for treatment of
DENV-infected patients both in the early phase, to pre-
vent progression to fatal outcomes, and to minimize
deaths after patients develop severe complications [19].
For this reason, the agenda of research priorities pro-
posed by the World Health Organization proposed, a
decade ago, that included searching for antivirals (either
second-use drugs or natural product derivatives), is still
valid today [20]. Moreover, other of the main reasons for
the high incidence of the DENV worldwide is that thus
far, only one licensed vaccine exists for use in a few
countries [21]. This vaccine was produced by Sanofi Pas-
teur (CYD-TDV) is composed of four attenuated vac-
cines (CYD-1–4) is a life recombinant vaccine, based on
a yellow fever vaccine 17D (YFV 17D) backbone [22].
Plants have been used as medicinal sources to treat

many diseases for thousands of years. Ancestral commu-
nities could empirically identify plants to fight infections,
passing many of these findings from generation to gen-
eration until today [23]. Ethnobotany has proven useful
for preserving such knowledge in communities that use
plants to treat diseases has encouraged bioprospecting
studies, which allow the identification of compounds
with pharmacological potential [24]. However, is import-
ant highlight that in some cases the communities, with-
out scientific knowledge, use plants included in the
IUCN Red List of Threatened Species [25] to treat dis-
eases, and for these reason is important encourage to
preserve, protect and promote the traditional knowledge
but with scientific support.
Due to the diversity of chemical compounds present

in plants, they are an important source of pharmaco-
logical candidates. Several studies have identified po-
tential plant derived candidates compounds as a
potential of new drugs candidates that inhibit the ac-
tivity of viruses such as herpes virus [26], hepatitis C
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virus, [27], human immunodeficiency virus type I [28],
rotavirus [29], influenza virus, [30], chikungunya virus
[31], and DENV [32]. Specifically, for DENV, the anti-
viral effects of some compounds has been demon-
strated, inhibiting both, infectivity and/or viral spread
in vitro and in vivo, such as glabranine (derived from
Tephrosia madrensis) [33], panduratin (derived from
Boesenbergia rotunda L.) [34], and castanospermine
(derived from Castanospermum australe) [15]. Re-
cently, inhibitory activity against DENV-2 infection
has been identified in ethanolic extracts of Colombian
plants such as Cassia grandis and Tabernaemontana
cymosa (T. cymosa), with 99.9% inhibition observed
for the T. cymosa extract [35]. Moreover, several com-
pounds derived from Mammea americana (couma-
rins) and T. cymosa (lupeol and voacangine) that can
inhibit infection in vitro at percentages greater than
50% have been reported [36].
Given the great variety of Colombian plants, the

present study evaluated the anti-DENV effect of 12 etha-
nolic extracts obtained from selected plants based on an
ethnobotanical survey conducted in the city of Cartagena
(in the Colombian Caribbean coast). The ethanolic ex-
tract with the highest selectivity (derived from Psidium
guajava) was fractionated, and the anti-DENV effect of
each fraction was tested. Moreover the results of in vitro
assay were contrasted with the in silico assays to postu-
late promising antivirals.

Methodology
Plant selection
Vegetal material was selected based on data obtained
from an ethnobotanical survey conducted in the city of
Cartagena (Colombia) in 2009 (unpublished results) and
from a literature search on plant extracts with reported
antiviral activity against viruses that cause febrile illness.
In total twelve plants were included: Ambrosia cuma-
nensis Kunt (A. cumanensis), Cavanillesia platanifolia
Bonpl (C. platanifolia), Chenopodium ambrosioides L.
(C. ambrosioides), Chrysobalanus icaco L. (C. icaco),
Croton malambo Karst (C. malambo), Cymbopogon
citratus Stapf (C. citratus), Diospyros inconstans Jacq (D.
inconstans), Mammea americana L. (M. americana),
Momordica charantia L. (M. charantia), Psidium gua-
java L. (P. guajava), Sarcostemma clausum Jacq (S. clau-
sum), and Trichilia hirta L. (T. hirta), that were
collected between 2009 and 2016 in Cartagena city
(Colombia, South America). The collection of most
plants was done with the permission of the CARDIQUE
(Corporacion Autonoma Regional del Canal del Dique,
resolution 0751. June 27/2014). Moreover, the com-
pounds derived from Psidium guajava are subject of the
contract for access to genetic resources and derived
products No. 130 of 2016 (RGE0176) signed with the

Ministry of Environment and Sustainable Development
of the Republic of Colombia.

Obtaining extracts and fractions
Weighed amounts (1000 g) of each plant material were
collected for testing (phytochemical and biological exami-
nations) and for identification at the herbarium of the
Universidad de Antioquia (HUA) (Medellín, Colombia)
and at the herbarium of the Universidad Nacional de
Colombia (COL) (Bogotá, Colombia). Moreover, the ma-
terial was identified by authorized personnel at the Jardín
Botanico Guillermo Piñeres in Cartagena (JBC), Colombia
(voucher number JBC 1209). The collected plant material
was dried at room temperature, weighed, ground, and
macerated with 95% ethanol for 72 h. Each sample was
then filtered and concentrated in a rotary evaporator. Each
dried extract was suspended in a mixture of ethanol-
distilled water and subjected to liquid-liquid partitioning
with solvents of increasing polarity in the following order:
dichloromethane, ethyl acetate, and butanol, as shown in
Fig. 1. For the preliminary phytochemical screening of
each extract, identification tests were performed for differ-
ent secondary metabolites according to the method de-
scribed in [37].

Isolation and purification of the compounds present in
the active fractions
The fractions were subjected to several column chromato-
graphic procedures using silica gel and Sephadex and to
normal-phase preparative thin-layer chromatography
(PTLC), depending on their polarities, molecular size, and
complexity. Final purification was performed using normal
or reverse-phase high-performance liquid chromatography
(HPLC) as necessary. The structures of the compounds
present in the most active fraction of P. guajava (Pg-YP-I-
22C) were elucidated using standard analytical methods, in-
cluding melting point determination, co-chromatography
with reference compounds, and 1H nuclear magnetic reson-
ance (NMR) and 13C NMR spectroscopy techniques in one
and two dimensions, such as the attached proton test
(APT), distortionless enhancement of polarization transfer
(DEPT), correlation spectroscopy (COSY), nuclear Overhau-
ser effect spectroscopy (NOESY), heteronuclear multiple-
quantum correlation spectroscopy (HMQC), and heteronuc-
lear multiple-bond correlation spectroscopy (HMBC).

Virus and cell maintenance
Epithelial VERO cells (Cercopithecus aethiops) were ob-
tained from the American Type Culture Collection
(ATCC), and C6/36HT cells (from Aedes albopictus mos-
quito larvae) were donated by Dr. Guadalupe Guzmán,
Department of Virology, Pedro Kouri Institute (Havana,
Cuba). C6/36HT cells were used to produce the viral
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stocks and the VERO cells were used to made the antiviral
assays.
The cells and the virus strain were maintained accord-

ing to the protocols described previously [38] . Briefly,
the VERO cells were maintained in Dulbecco’s Modified
Eagle’s medium (DMEM; Gibco®) supplemented with 2%
fetal calf serum (FCS, Gibco®) and were incubated at
37 °C in a 5% CO2 atm. The C6/36HT cells were main-
tained in DMEM (Gibco®) supplemented with 10% FCS
(Gibco®) at 34 °C. The DENV 2/NG strain, which was
used for all biological assays, was donated by Dr. Jorge
Osorio, Department of Pathobiological Sciences, Univer-
sity of Wisconsin (Madison, WI, United States).

Determination of the selectivity index (SI)
The SI of each ethanolic extract, fraction, or com-
pound was calculated from the relationship between
the cytotoxic concentration 50% (CC50) and effective
concentration 50% (EC50) [39]. The CC50 was deter-
mined via the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphe-
nyl-2H-tetrazolium bromide) (MTT, Sigma-Aldrich)
method. For this, 2.5 × 104 VERO cells were seeded in
96-well plates for 24 h. Subsequently, serial dilutions
of the ethanolic extracts (7.8 μg/mL to 1000 μg/mL),
fractions (6.25 to 400 μg/mL), and characterized com-
pounds (6.25 to 400 μg/mL) were performed and incu-
bated with the cells for 48 h. After the incubation
period, an MTT solution (0.5 mg/mL) was added to
the cultures, which were then incubated for an add-
itional 3 h at 37 °C. Finally, dimethyl sulfoxide was
added, and the absorbance was read at 450 nm in a
Bio-Rad Benchmark® microplate reader. Cultures with-
out extract, fractions, or compounds were processed
as positive controls for viability. The CC50 was calcu-
lated as the extract concentration that reduced cell

viability by 50% using regression analysis (Probit soft-
ware). Each experimental condition was tested in trip-
licate in two independent experiments (n = 6). To
calculate the EC50, 2.5 × 104 VERO cells were seeded
in 96-well plates for 24 h. At 24 h, serial dilutions of
each ethanolic extract (7.8 μg/mL to 1000 μg/mL),
fraction (6.25 to 400 μg/mL), and characterized com-
pound (6.25 to 400 μg/mL) were mixed with the
DENV-2/NG strain (at a multiplicity of infection
(MOI = 1) and added to the cell monolayers for 2 h. At
2 h post-inoculation (hpi), the mixtures were removed,
and the same serial dilutions of the extracts, fractions,
or compounds were added again and incubated for 24
h. Finally, the supernatants were collected and stored
at − 70 °C until performing the multiwell plate focus
assay [40].

Multiwell plate focus assay
A total of 2.5 × 104 cells/well were seeded in 96-well
plates. The cells were inoculated the following day with
serial dilutions (10− 1 to 10− 6) of the supernatants from
the EC50 experiments for 2 h. Next, the inoculum were re-
moved, and 1.5% carboxymethylcellulose (Sigma-Aldrich)
prepared in DMEM (Gibco®) supplemented with 2% FCS
(Gibco®) was added, followed by incubation at 37 °C in a
5% CO 2 atmosphere. On the third day, the cells were
fixed with a methanol-acetone (1:1) solution for 10min,
washed three times with PBS, and permeabilized with
0.1% Triton X-100 for 30min, after which nonspecific site
blocking was performed with 10% FBS in PBS. Then,
DENV anti-envelope monoclonal antibody (mAb) was di-
luted 1:500 with PBS containing 10% FCS (Gibco®) was
added, followed by incubation for 1 h at 37 °C. After wash-
ing with PBS, the plates were incubated for 30min with
an anti-mouse IgG secondary antibody conjugated to

Fig. 1 Fractionation of the ethanolic extract of P. guajava bark. Open column chromatographic fractionation of the active fraction Pg-YP-I-22C
obtained from the total ethanol extract of P. guajava bark using Sephadex G10 as a stationary phase
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peroxidase. Finally, the reactions were stained with 3-
amino-9-ethylcarbazole (AEC, Sigma-Aldrich), and the
number of foci in each well were counted.

Determining the antiviral effects of the fractions and
compounds on virus cell entry
A total of 2.5 × 104 VERO cells were seeded in 24-well
plates for 24 h, and the fractions (100 μg/mL) or charac-
terized compounds (50 μg/mL) were then added and in-
cubated with the cells for an additional 24 h (pre-
treatment strategy) [16]. Subsequently, treatment was
withdrawn, and a viral inoculum (DENV-2/NG at an
MOI = 1) was added and incubated for 2 h. Subse-
quently, the virus was removed, and fresh medium was
added for an additional 48 h, after which the superna-
tants were collected and stored at − 70 °C until further
processing via the multiwell plate focus assay. For each
fraction and compound, two independent experiments
were performed each with two replicates (n = 4). Heparin
(Sigma-Aldrich) served as the positive control for viral
inhibition [41].

Determining the antiviral effects of the fractions and
compounds after virus cell entry
A total of 2.5 × 104 VERO cells were seeded in 24-well
plates for 24 h, and a viral inoculum (DENV-2/NG at an
MOI = 1) was then added and incubated for 2 h. Subse-
quently, the inoculum was removed, and the fractions
(100 μg/mL) or characterized compounds (50 μg/mL)
were added and incubated with the cells for an add-
itional 48 h (post-treatment strategy) [16]. Next, the su-
pernatants were collected and stored at − 70 °C until
further processing via the multiwell plate focus assay.
For each fraction or compound, two independent experi-
ments were performed each with two replicates (n = 4).
Suramin served as the positive control for viral inhib-
ition [41].

Viral inhibition assay in VERO cells
A total of 2.5 × 104 VERO cells were seeded in 24-well
plates, and a viral inoculum was added at 24 h, followed
by incubation for 2 h. Subsequently, the inoculum was
removed, and the cells were treated with a single noncy-
totoxic concentration of each of the five fractions and
compounds obtained from the fraction with the highest
selectivity. At 48 h, the supernatants were removed and
stored at − 70 °C until further processing via the multi-
well plate focus assay. Suramin served as the positive
control for viral inhibition [41].

Indirect immunofluorescence
Some cell monolayers were washed with Phosphate Buff-
ered Saline pH 7.4 (PBS, Gibco® and fixed with 3.8%
paraformaldehyde (PFA, Sigma-Aldrich) in PBS at 37 °C

for 30 min. The cells were then treated with 50mM
NH4Cl for 10 min at room temperature and perme-
abilized with 0.3% Triton X-100, after which the nonspe-
cific sites were blocked with 5% FBS. To detect the E
protein, the monolayers were incubated sequentially
with an anti-DENV-2 envelope primary mAb and an
anti-mouse secondary antibody conjugated to Alexa 488.
Finally, the plates were examined using a NIKON
Eclipse TS100 microscope.

Molecular docking
For molecular docking, the structures of the isolated
compounds and that of suramin were downloaded from
the DrugBank database or were constructed from
SMILES strings using CHIMERA [42]. The three-
dimensional structures of two viral proteins, the struc-
tural envelope protein (E, PDB: 3UZV) and the non-
structural protein 5 (NS5, PDB: 2J7U), were obtained
by using the Protein Data Bank (PDB) database. Struc-
tures with a resolution equal to or less than 2.5 Å were
considered. The 3D models of interest were prepared
for docking using the Autodock tools package, remov-
ing both the water molecules and co-crystallized mole-
cules not part of the target protein and adding
Gasteiger charges and nonpolar hydrogens. To deter-
mine the active sites or binding sites of the protein
molecules, the CASTp tool was used [43]. According to
this, a grid box coordinates were defined as follows:
center x = − 23.889, center y = − 4.278, and center z = −
30.778 for E and center x = 22.029, center y = 68.945,
and center z = 22.667 for NS5, with both boxes having
1 Å spacing and a number of points in xyz = 30 and be-
ing evaluated with an exhaustiveness of 10. Finally,
Autodock Vina software (Version 1.1.2) was used to de-
termine the best interactions between the viral proteins
and compounds [44], For Autodock Vina running, a
configuration file including the name of the protein
with the extension *pdbqt, the ligand name with the
same extension, the grid box center and the exhaustive-
ness, was prepared as a CONF file. Best interations
were identified based on a score from 0 to − 7.0 kcal/
mol [43], with scores equal to or less than − 7.0 kcal/
mol corresponding to the best affinities. The generated
interactions were analyzed using LigPlot+ v1.4.5 [45].

Statistical analysis
To determine the CC50 and EC50, a regression analysis
was performed with Probit Software. The SI of each
molecule was determined from the relationship between
the CC50 and EC50, using the formula SI = CC50/EC50.

To compare the number of infectious viral particles re-
leased between the cells treated with each fraction or
compound (for both the pre- and post-treatment strat-
egies) and the untreated cells, Student’s t-test was used.
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All statistical analyses were performed using the Prism®
7.01 for Windows™ package (GraphPad Software, San
Diego, CA), considering differences statistically signifi-
cant at p < 0.05 in all cases. Each experimental condition
was tested in triplicate in two independent experiments
(n = 6) to guaranty the statistical analysis and the figures
show the average of those experiments.

Results
Antiviral effects of the ethanolic extracts
Overall, the cytotoxicity of the extracts was low (all had
CC50 values greater than 100 μg/ml). The extract with the
highest CC50 was derived from the bark of P. guajava
(CC50 = 1000 μg/mL), and the extract with the lowest
CC50 was from the leaves of A. cumanensis (CC50 =
112.4 μg/mL). Considering antiviral effectiveness, we
found a wide range of effective concentration values. The
extract with the highest EC50 was derived from the bark of
D. inconstans (EC50 = 538.6 μg/mL), and the extract with
the lowest EC50 was from the bark of P. guajava (EC50 =
7.8 μg/mL). Finally, the extracts were classified into four
groups based on their SI values (calculated according to
the CC50/EC50 ratio). The first group contained nonselec-
tive extracts (SI < 2.0), including those derived from the
leaves of C. citratus (SI = 0.5), the leaves of S. clausum
(SI = 1.2), the bark of D. inconstans (SI = 1.4), and the
seeds of C. icaco (SI = 1.7). The second group comprised
extracts with low selectivity (SI ≥ 2.0 and < 5), including
those from the seeds of T. hirta (SI = 3.4), the bark of C.
malambo Karst (SI = 4.1), and the leaves of A. cumanensis
Kunt (SI = 4.2). The third group contained extracts with
moderate selectivity (SI ≥ 5 and < 10), including those
from the leaves of C. ambrosioides (SI = 5.3), the fruit of
C. platanifolia Bonpl (SI = 5.8), the seeds of M. charantia
(SI = 7.9), and the leaves of M. americana (SI = 8.4). Fi-
nally, the group with high selectivity (SI ≥ 10) included the
extract from the bark of P. guajava (SI = 128.2). Based on
these results (Table 1), the bark extract of P. guajava was
further investigated via fractionation.

Preliminary phytochemical screening of the Psidium
guajava bark fractions
From the bark extract of P. guajava, five fractions were
obtained: Pg-YP-I-22A, Pg-YP-I-22B, Pg-YP-I-22C, Pg-YP-
I-22D, and Pg-YP-I-22E. Phytochemical characterization
showed that alkaloids and tannins were present in all frac-
tions except for Pg-YP-I-22A. Flavonoids were found in
Pg-YP-I-22C, Pg-YP-I-22D, and Pg-YP-I-22E; glycosides in
Pg-YP-I-22C and Pg-YP-I-22D; triterpenes in Pg-YP-I-
22A and Pg-YP-I-22B; and sterols in Pg-YP-I-22A, Pg-YP-
I-22B, and Pg-YP-I-22C. Finally, coumarins were detected
only in Pg-YP-I-22D, and saponins or quinones were not
detected in any of the fractions. Table 2 shows these
results.

Antiviral effects of the fractions obtained from the P.
guajava extract
Overall, the cytotoxicity of the fractions was low with CC50

values greater than 100 μg/mL,the least toxic fraction was
Pg-YP-I-22C (CC50 = 625.7 μg/mL). Considering anti-DENV
effectiveness, we found that most fractions were effective at
low concentrations (EC50 values of less than 100 μg/mL) ex-
cept for Pg-YP-I-22A (EC50 = 134.4 μg/mL). Finally, SI
values were calculated for the fractions, which were then
classified into the same four groups as those for the extracts.
Accordingly, Pg-YP-I-22A was nonselective (SI = 1.0), Pg-
YP-I-22D had low selectivity (SI = 3.2), Pg-YP-I-22E was
moderately selective (SI = 6.1), and Pg-YP-I-22B and Pg-YP-
I-22C were highly selective (SI = 11.7 and 35.4, respectively).
Table 1 shows these results. Considering the cytotoxicity re-
sults, a nontoxic concentration (100 μg/mL) was chosen to
evaluate the antiviral effects of said fractions via an inhib-
ition test, which examined the production of infectious viral
particles (Fig. 2). Only Pg-YP-I-22C and Pg-YP-I-22D signifi-
cantly inhibited infection compared to the control without
treatment (p < 0.05; the inhibition rates were 78.2 and
63.7%, respectively). After evaluating the SI values and virus
replication inhibition percentages, Pg-YP-I-22C was chosen
for further testing as its selectivity was high (SI: 35.4) and
viral replication inhibition rate of 78.2%.

Identification of the compounds in the Pg-YP-I-22C
fraction
Compounds 22CK001, 22CK002, 22CK003, 22CK004,
and 22CK005 were isolated from the Pg-YP-I-22C frac-
tion. Table 3 shows the results of the open column chro-
matography experiments. Next, the compounds were
identified by one- and two-dimensional NMR spectros-
copy (1D and 2D NMR) techniques and through com-
parisons with data reported in the literature (Fig. 3).
Compound 22CK001 exhibited the following physical

and spectral properties: white solid. MP 251 °C. 1H
NMR (300MHz, MeOD) δ 7.07 (2H, s, H-2/H-6). 13C
NMR (75MHz, MeOD) δ 170.40 (s, COOH), 146.38 (d,
C-2/C-6), 139.58 (s, C-1), 121.94 (s. C-4), 110.30 (s, C3/
C5). This compound was identified as gallic acid (Fig. 3a)
by comparing its 1H-NMR and 13C-NMR physicochemi-
cal and spectral data (Fig. 3b and c, respectively) with
those reported in the literature.
Compound 22CK002 exhibited the following physical

and spectral properties: amorphous solid. MP 85 °C. 1H
NMR: δ 1.29 (3H, d, J = 6.0 Hz, 5″′-CH3), 2.74 (1H, dd,
J = 18.0, 3.0 Hz, H-3ax), 3.14 (1H, dd, J = 15.0, 3.0 Hz, H-
3 eq), 3.06–3.19 (2H, 3.13 (dd, J = 10.3, 10.2 Hz), 3.12
(dd, J = 10.3, 10.2 Hz)), 3.24–3.34 (2H, 3.26 (dd, J = 3.5,
2.9 Hz), 3.31 (dd, J = 10.2, 3.5 Hz)), 3.35–3.50 (3H, 3.41
(dt, J = 10.3, 6.5 Hz), 3.42 (t, J = 10.2 Hz), 3.45 (dd, J =
10.3, 10.2 Hz)), 3.80–3.84 (2H, 3.82 (d, J = 6.5 Hz), 3.82
(d, J = 6.5 Hz)), 4.03 (1H, dq, J = 10.3, 6.7 Hz), 5.10 (1H,
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d, J = 6 Hz, H1″′), 5.25 (1H, bs, H-2″), 5.37 (1H, dd, J =
12.0, 3.0 Hz), 6.13 (1H, d, J = 3.0 Hz, H-8), 6.15 (1H, d,
J = 3.0 Hz, H-6), 6.83 (2H, d, J = 9.0 Hz, H-3′/ H-5′), 7.31
(2H, d, J = 9.0 Hz, H-2′/ H-6′). 13C NMR (75MHz,
MeOD) δ 198.54 (s, C-4), 166.58 (s, C-7), 166.50, 165.00,
164.95, 164.66, 164.63, 159.12, 130.76, 129.18, 116.34,
104.89, 102.58, 102.51, 99.36, 99.31, 97.85, 96.74, 80.72,
79.17, 79.02, 78.95, 78.11, 73.90, 72.15, 71.21, 69.98,
64.73, 62.25, 43.95 (t, C-3), 18.22 (q, C-6). This com-
pound was identified as naringin (Fig. 3d) by comparing
its 1H-NMR and 13C-NMR physicochemical and spectral
data (Fig. 3e and f, respectively) with those reported in
the literature.
Compound 22CK003 exhibited the following physical

and spectral properties: yellow needles (from methanol).
MP 316 °C. 1H NMR [300MHz, CD3OD, δ (ppm)]: 1H
NMR (300MHz, MeOD) δ 7.73 (d, J = 3.0 Hz, H-2′),
7.61 (dd, J = 3.0 Hz, 9.0 Hz, H-6′), 6.88 (d, J = 8.4 Hz, H-

Table 2 Phytochemical screening of the P. guajava bark
fractions

Metabolite Pg-YP-22A Pg-YP-22B Pg-YP-22C Pg-YP-22D Pg-YP-22E

Alkaloids – +++ +++ +++ +++

Tannins – + +++ +++ +++

Flavonoids – – +++ ++ ++

Glycosides – – + ++ –

Triterpenes ++ ++ – – –

Sterols ++ ++ + – –

Coumarins – – – + –

Saponins – – – – –

Quinones – – – – –

Table 1 Cytotoxic concentration 50% (CC50), effective concentration 50% (EC50), and selectivity index (SI) values of the evaluated
ethanolic extracts, fractions, and compounds in VERO cells infected with DENV-2/NG

Type of compound Scientific name Family Voucher number Plant part CC50 CE50 SI

Ethanolic extracts Cymbopogon citratos Staf Poaceae JBC 12015 Leaves 155.1 343.1 0.5

Sarcostemma clausum Jacq Asclepiadaceae JBC 2502 Leaves 565.7 458.7 1.2

Diospyros inconstans Jacq Ebenaceae JBC 1438 Bark 727.1 538.6 1.4

Chrysobalanus icaco L Chrysobalanaceae JBC 934 Seeds 550.8 325.8 1.7

Trichilia hirta L Meliaceae JBC 917 Seeds 213.6 62.9 3.4

Croton malambo Karst Euphorbiaceae JBC 12008 Bark 127.3 31.3 4.1

Ambrosia cumanensis Kunt Asteraceae COL 538448 Leaves 112.4 26.7 4.2

Chenopodium ambrosioides L Chenopodiaceae JBC 4005 Leaves 131.6 24.8 5.3

Cavanillesia platanifolia Bonpl Bombacaceae JBC 47576 Almond 252.6 43.5 5.8

Momordica charantia L Cucurbitaceae JBC 793 Seeds 125.3 15.9 7.9

Mammea americana L Calophyllaceae JBC 467 Leaves 440.7 52.3 8.4

Psidium guajava L Myrtaceae JBC 1209 Bark 1000.0 7.8 128.2

Fractions Psidium guajava L – HUA 140931 Pg-YP-I-22A 130.5 134.4 1.0

Pg-YP-I-22B 308.9 26.5 11.7

Pg-YP-I-22C 625.7 17.7 35.4

Pg-YP-I-22D 177.9 56.1 3.2

Pg-YP-I-22E 102.2 16.7 6.1

Compounds Pg-YP-I-22C – – Gallic Acid 543.4 25.8 21.1

Naringin 646.8 47.9 13.5

Quercetin 659.8 19.2 34.3

Catechin 833.3 33.7 24.8

Hesperidin 413.8 225.8 1.8

Group A: No selectivity, SI < 2.0
Group B: Low selectivity, SI ≥ 2.0 and < 5
Group C: Moderate selectivity, SI ≥ 5 and < 10
Group D: High selectivity, SI ≥ 10
• The plants Cymbopogon citratos Staf, Sarcostemma clausum Jacq, Diospyros inconstans Jacq, Chrysobalanus icaco L, Trichilia hirta L and Croton malambo Karst,
Chenopodium ambrosioides L, Cavanillesia platanifolia Bonpl, Momordica charantia L, Mammea americana L, Psidium guajava L were identified at the Jardin Botanico
de Cartagena (JBC)
• The plant Ambrosia cumanensis Kunt was identified at the Herbarium of the Universidad Nacional de Colombia (COL)
• The plant used to obtain the fractions from Psidium guajava L was identified at the Herbarium of the Universidad de Antioquia (HUA)
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5′), 6.38 (d, J = 3.0 Hz, H-8), 6.18 (d, J = 3.0 Hz, H-6). 13C
NMR (75MHz, CD3OD) δ 177.27 (C-4); 165.51 (C-7),
162.45 (C-5), 158.17 (C-2), 148.71 (C-4′), 147.93 (C-3′),
137.18 (C-3), 124.10 (C-6′), 121.64 (C-1′), 116.18 (C-2′),
115.95 (C-5′), 104.48 (C-10), 99.19 (C-6), 94.37 (C-8).
This compound was identified as quercetin (Fig. 3g) by
comparing its 1H-NMR and 13C-NMR physicochemical
and spectral data (Fig. 3h and i, respectively) with those
reported in the literature.
Compound 22CK004 exhibited the following physical

and spectral properties: Orange amorphous solid. 213 °C.
1H NMR (300MHz, CD3OD) δ 4.59 (d, J = 6.0 Hz, H-2),
4.01 (ddd, J = 9.0, 6.0, 6.0 Hz, H-3), 2.52 (dd, J = 15.0, 6.0
Hz, H-4b), 2.84 (dd, J = 15.0, 6.0 Hz, H-4a), 5.93 (d, J =
3.0 Hz, H-6), 5.85 (d, J = 3.0 Hz, H-8), 6.85 (d, J = 1.5 Hz,
H-2′), 6.79 (d, J = 9.0 Hz, H-5′), 6.72 (dd, J = 1.5, 9.0 Hz,
H-6′). 13C NMR (75MHz, CD3OD) δ 82.85 (C-2), 68.81
(C-3), 28.52 (C-4), 157.58 (C-5), 96.26 (C-6), 157.83 (C-
7), 95.48 (C-8), 156.91 (C-9), 100.80 (C-10), 132.20 (C-

1′), 115.24 (C-2′), 146.24 (C-3′), 146.22 (C-4′), 116.07
(C-5′), 120.04 (C-6′). This compound was identified as
catechin (Fig. 3j) by comparing its 1H-NMR and 13C-
NMR physicochemical and spectral data (Fig. 3k and l,
respectively) with those reported in the literature.
Compound 22CK005 exhibited the following physical

and spectral properties: amorphous solid. MP 250–
253 °C. 1H NMR (DMSO-d6, 300MHz) δ 12.02 (1H, br
s, 5-OH), 6.93 (1H, d, J = 2.0 Hz, H-2′), 6.86 (1H, J = 8.0
Hz, H-5′), 6.83 (1H, dd, J = 8.0, 2.0 Hz, H-6′), 6.13 (1H,
d, J = 2.0 Hz, H-8), 6.11 (1H, d, J = 2.0 Hz, H-6), 5.43
(1H, dd, J = 11.0, 5.0 Hz, H-2), 4.96 (1H, d, J = 7.2 Hz, H-
1″), 4.54 (1H, br s, H-1), 3.80 (3H, s, 4-OCH3), 3.20–
3.63 (6H, m, H-2″ to H-6″), 3.20–3.63 (3H, m, H-2 to
H-6), 3.08 (1H, dd, J = 17.0, 11.0 Hz, H-3a), 2.74 (1H, dd,
J = 17.0, 5.0 Hz, H-3b), 2.48 (1H, d, J = 6.0 Hz, H-5), 1.06
(3H, d, J = 6.0 Hz, H-6); 13C NMR (DMSO-d6, 75MHz)
δ 197.4 (s, C-4), 165.2 (s, C-7), 163.0 (s, C-5), 162.7 (s,
C-9), 147.8 (s, C-4′), 146.2 (s, C-3′), 131.0 (s, C- 1′),

Fig. 2 Inhibition of infectious particle production by the P. guajava fraction. Cultures were infected (MOI = 1) and then treated for 48 h with each
of the five fractions (100 μg/mL). The error bars correspond to the SEM. The asterisks indicate cases with statistically significant differences
(Student’s t-test; p < 0.05) in relation to the control without treatment. N = 4

Table 3 Open column chromatographic fractionation of the active fraction Pg-YP-I-22C obtained from the ethanolic extract of P.
guajava bark

Fraction code Mobile phasea Weight (mg) Performance (%)

22CK001 MeOH:Acetic acid 0.1% (10:90) 77.5 7.8

22CK002 MeOH:Acetic acid 0.1% (15:85) 17.5 1.8

22CK003 MeOH:Acetic acid 0.1% (20:80) 22.0 2.2

22CK004 MeOH:Acetic acid 0.1% (25:75) 44.5 4.5

22CK005 MeOH:Acetic acid 0.1% (25:75) 27.9 2.8
a Stationary Phase: Sephadex G10. Ratio sample/Sephadex: 1:20
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117.9 (s, C-6′), 114.2 (d, C-2′), 112.0 (d, C-5′), 103.1 (s,
C-10), 100.7 (d, C-1), 99.3 (d, C-1″), 96.1 (d, C-6), 95.4
(d, C-8), 78.3 (d, C-2), 76.4 (d, C-5″), 75.4 (d, C-3″),
73.0 (d, C-4), 72.3 (d, C-2″), 71.02 (d, C-4″), 70.3 (d, C-
3), 69.3 (d, C-2), 68.6 (d, C-5), 66.4 (t, C-6″), 55.5 (q, 4-
OCH3), 42.4 (t, C-3), 18.12 (q, C-6). This compound
was identified as hesperidin (Fig. 3m) by comparing its
1H-NMR and 13C-NMR physicochemical and spectral
data (Fig. 3n and o) with those reported in the literature.

Anti-DENV effects of the compounds obtained from the
Pg-YP-I-22C fraction
The toxicity of the compounds was very low with CC50

values greater than 400 μg/mL; catechin was the least
toxic (CC50 = 833.3 μg/mL). For antiviral effectiveness,

we found that four of the five compounds were effective
at concentrations lower than 100 μg/mL, with the most
effective being quercetin (EC50 = 19.2 μg/mL); hesperidin
was effective only at a higher concentration (EC50 =
225.8 μg/mL). Finally, the SI was calculated for each
compound. Hesperidin was the only compound not con-
sidered selective, as it had an SI value less than 2.0 (SI:
1.8); all of the other compounds were considered highly
selective, with quercetin being the most selective (SI:
34.3). Table 1 shows these results.

Anti-DENV effects of the compounds on some steps of
the DENV replication cycle
Using noncytotoxic concentrations of each compound,
two different experimental strategies were performed

Fig. 3 1H-NMR- and 13C-NMR-derived structures and spectra of the compounds isolated from the Pg-YP-I-22C fraction. The five compounds
isolated from the Pg-YP-I-22C fraction were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy (1D and 2D NMR)
techniques and through comparisons with data reported in the literature. a, d, g, j, and m. Chemical structures. b, e, h, k and n. Proton spectra of
each compound. c, f, i, l, and o. 13C spectra of each compound. a-c. Gallic acid. d-f. Naringin. g-i. Quercetin. j-l. Catechin. m-o. Hesperidin
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(pre- and post-treatment strategies) to evaluate their
effects on processes before or after viral entry. In the
pretreatment strategy, only gallic acid, quercetin, and
catechin decreased infection in a statistically signifi-
cant way (with viral inhibition percentages of 52.6,
50.0, and 100%, respectively). Conversely, in the post-
treatment strategy, all the compounds except for hes-
peridin inhibited infection in a statistically significant
way; the viral inhibition percentage was highest in the
cultures treated with quercetin (100.0%), followed by
catechin (91.8%), naringin (64.5%), and gallic acid
(67.3%) (Fig. 4). These results were confirmed by de-
creases in viral antigen in the infected cultures treated
with each compound (Fig. 5).

In silico analysis of binding between the compounds and
viral proteins
The docking energy of the five flavonoids and suramin
was examined using Autodock Vina. In this study, domain
III of the E protein and the polymerase domain of the
NS5 protein were used. All ligands showed favorable bind-
ing energies, and the interactions with the E protein were
mediated by hydrogen bonds in addition to at least one
hydrophilic amino acid (Ser192 and/or Lys361); only two
of the five compounds, naringin (− 8.0 kcal/mol) and hes-
peridin (− 8.2 kcal/mol), had better scores than the theor-
etical threshold of − 7.0 kcal/mol with the E protein
(Table 4). The control compound suramin interacted to
the E protein with a binding energy of − 7.9 kcal/mol,

forming four hydrogen bonds with Val2, Lys3, Tyr106,
Lys361, and to the NS5 protein with a binding energy of
− 12.0 kcal/mol forming six hydrogen bonds (Fig. 6); all li-
gands tested except for gallic acid (− 5.3 kcal/mol) had
docking energies above the theoretical threshold when
interacting with the NS5 protein (Table 4), and their inter-
actions were mediated by 1 to 7 hydrogen bonds. Among
the compounds, although the hesperidin-NS5 interaction
had the highest number of hydrogen bonds, the shortest
distance to a hydrogen bond between the ligand and target
protein appeared in the catechin-NS5 interaction (2.73 Å).
The amino acids Trp477 and Gln601 participated in the
interaction with gallic acid, naringin, and quercetin, while
the amino acids Asn609, Asp663, and His798 were in-
volved in the interaction with catechin and hesperidin, as
well as suramin (Table 4, Fig. 6).

Discussion
At present, due to the lack of a specific antiviral drug,
different strategies are being used to control symptoms
in patients with dengue, such as the administration of
fluids and corticosteroids and the transfusion of blood
derivatives [46]. Considering the agenda of research pri-
orities proposed by WHO as well as the biodiversity of
plants in Colombia, we searched for antivirals derived
from natural products that could be evaluated in preclin-
ical/clinical studies in the medium/long term.
This study first determined the selectivity of 12 ethanolic

extracts derived from plants collected in the Colombian

Fig. 4 Antiviral effects of the compounds derived from the Pg- YP-I-22C fraction on some steps of the DENV replication cycle. The cells were
treated with the compounds for 48 h and then infected with DENV (MOI = 1). This infection strategy (pre-treatment) is represented by the dark
bars. In addition, independent cell cultures were infected with DENV (MOI = 1) and then treated with the compounds (post-treatment strategy;
indicated by clear bars). The error bars correspond to the SEM. The asterisks indicate cases with statistically significant differences (Student’s t-test;
p < 0.05) in relation to the control without treatment
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Caribbean coast. According to the SI values, the extracts
were classified into four groups (Table 1). The group of
nonselective extracts (SI < 2.0) comprised three plants. In
contrast to our results, extracts of C. citratus have been re-
ported to inhibit DENV infection by less than 50% [47].

The differences in the results could be due to the serotype
tested as well as the low specificity of the technique used in
the previous report (a qualitative technique based on the
cytopathic effects produced by DENV-1). An inhibition of
less than 50% could indicate low selectivity, which would

Fig. 5 Immunodetection of viral antigen (E Protein) in cultures of VERO cells. Representative images of cultures infected and later treated with
each of the compounds isolated from the Pg-YP-I-22C fraction. a. Control without treatment. b. Gallic acid. c. Naringin. d. Catechin. e. Quercetin.
f. Hesperidin

Table 4 Docking scores for the interaction between P. guajava compounds and DENV E and NS5 proteins

Target Compound Binding
energy
(Kcal/mol)

Hydrogen
bonds

Minimum
distance between
H bonds (Å)

Residues forming H
bonds

Residues participating in hydrophobic interactions

E SURAMIN - 7.9 5 2.88 Val2, Lys3, Tyr106,
Lys361

Leu4, Pro179, Lys181, Leu182, Glu191, Ser192, Asp362

GALLIC
ACID

- 4.9 3 2.97 Tyr106, Ser192, Lys361 Ala105,Lys181, Glu191, Ile194, Asp362

NARINGIN - 8.0 9 2.71 Lys3, Tyr106, Trp107,
Lys175, Glu191, Ser192,
Lys361

Ala105, Gln178, Pro179, Pro180, Lys181, Ile194, Asp362

QUERCETIN - 6.6 2 2.86 Lys361 Leu4, Ala105, Ty106, Trp107, Pro179, Lys181

CATECHIN - 6.4 4 2.70 Pro179, Pro180, Glu191,
Ser192

Ala105, Tyr106, Lys181

HESPERIDIN - 8.2 11 2.83 Lys3, Ala105, Trp107,
Ser192, Gly330, Ser331,
Lys361

Pro180, Lys181, Glu191, Asp329

NS5 SURAMIN - 12 7 2.80 Gly536, Thr539, Asn609,
Ser661, Asp663, His798

Gln350, Phe354, Val358, Ala535, Asp538, Gln597,
Arg598, Ser600, Thr605, Tyr606, Gly662, Lys689, Cys709,
Trp795, Ser796, Ile797

GALLIC
ACID

- 5.3 4 2.87 Trp477, Lys578, Gly601 Val450, Arg481, Lys575, Val576, Val577, Gly599, Gln602

NARINGIN - 8.4 5 2.80 Trp477, Gln597, Gly601,
Gln602

Trp302, Gln350, Phe354, Val358, Val450, Arg481, Asp538,
Thr539, Lys578, Val576, Val577, Val579, Arg598, Ser600

QUERCETIN - 7.8 1 2.92 Trp477 Val353, Phe354, Val358, Arg481, Lys577, Val577, Val579,
Gly599, Gly601, Gln602

CATECHIN - 7.2 6 2.73 Ser600, Tyr606, Asn609,
Ser661, Asp663, His798

Thr605, Gly662, Ile797

HESPERIDIN - 8.8 7 2.86 Asp533, Asp538, Asn609,
Asp663, Lys689, Arg729,
His798

Tyr606, Gly662, Asp664, Cys709, Ser710, His711, Thr794,
Ser796, Ile797

Trujillo-Correa et al. BMC Complementary and Alternative Medicine          (2019) 19:298 Page 11 of 16



be consistent with our results. Antiviral activity has not
been reported for the other plants in Group A, but antioxi-
dant activity has been reported for extracts from D. incon-
stans [48], and antitumor [49] and antifungal activities [50]
have been documented for extracts from Ch. icaco. For the
three plants in Group B (low selectivity, SI ≥ 2.0 and < 5),
this study is the first to report anti-DENV activity. How-
ever, antitumor activity has been reported for C. malambo
[51] and A. cumanensis [52], and lymphocyte proliferative
activity has been documented for extracts from T. hirta
[53]. The third group included plants whose extracts had
moderate selectivity (SI ≥ 5 and < 10) and included Ch.
ambrosioides, C. platanifolia, M. charantia, and M. ameri-
cana. Previous reports of antibacterial and insecticidal [54],
antileishmanial [55], and antimalarial activities have been
described for C. ambrosioides L. [56]. Extracts of this plant
have also been reported to increase nitric oxide production
[57], which would favor its possible antiviral activity as in-
creases in nitric oxide are known to lead to a decrease in

DENV-2 replication [58]. For M. charantia, anti-DENV-1
activity has been reported for both extracts [47] and
MAP30 protein derived from the plant [59]. Anti-DENV-2
activity has been described for two coumarins derived from
M. americana [36]. This report is the first to document bio-
activity for C. platanifolia. It is important to clarify that we
decide to evaluate extracts from this plant, because the re-
sults from an ethnobotanical survey conducted in the city
of Cartagena (Colombia) in 2009. Finally, the fourth group
included the P. guajava extract, which was the only one
with high selectivity (SI ≥ 10).
P. guajava (which belongs to the Myrtaceae family and

Myrtoideae subfamily) is a tree that grows in tropical
America and tropical & subtropical regions of Asia. It is
recognized mainly for its fruit, the guava [60]. The bio-
activities of some parts of the P. guajava have been de-
scribed for several viral infections. For example, extract
from P. guajava leaves inhibits approximately 50% of hu-
man and simian rotavirus infections in vitro [61], and

Fig. 6 Protein interactions with the compounds isolated from the Pg-YP-I-22C fraction. a. Interactions of viral Protein E with the compounds. b.
Interactions of viral Protein NS5 with the compounds. Hydrogen bond interactions are represented by dashed lines in green, and their distances
are indicated (Å). Hydrophobic interactions are represented as red eyelashes. The names and numbers in the residues correspond to the target
proteins. Images obtained using LigPlot+ v.1.4.5
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aqueous and methanol extracts can inhibit murine
leukemia virus retrotranscriptase at percentages greater
than 50% [62]. In our study, the extract of this plant
proved to be highly selective (SI = 128.2) with a percent-
age of inhibition greater than 90% (data not shown). The
inhibitory effect of leave extracts from P.guajava in cul-
ture infected with DENV has been reported previously
showed a IS of 153.18 μg/mL (very similar to our results)
[63]. By other hand, some studies have shown that ex-
tracts derived from P. guajava are effective against dia-
betes mellitus due to its antihyperglycemic activity via
inhibition the enzyme α-glucosidase [64].
Accordingly, the anti-DENV effect of the P. guajava ex-

tract could be linked to the inhibition of this enzyme, as it
has been described as essential for the correct folding of viral
glycoproteins and for virion assembly [65] during the repli-
cation cycle. Moreover, it has been reported that other frac-
tions derived from P. guajava can have benefits in patients
infected with Dengue. For example, in culture of HepG2
cells the trombinol, a bioactive fraction of Psidium guajava,
induced the thrombopoietin production, and the authors
postulate that this production could be considered as an al-
ternative treatment in patients infected with dengue [66].
In this study, five fractions were isolated from an

ethanolic extract of P. guajava bark, which showed a
high content of tannins, alkaloids, and flavonoids
(Table 2), in accord with the phytochemical compos-
ition described by other authors for this plant [67].
Only four of the five fractions showed selectivity, with
the most selective being Pg-YP-I-22C (SI = 35.4). This
value was almost four times lower than that obtained
with the crude ethanolicic extract (SI = 128.2), which
could indicate that the greater effectiveness of the ex-
tract may be due to synergy.
From the most selective fraction (Pg-YP-I-22C), five

compounds were isolated and identified (Table 3 and
Fig. 3). The first of these, gallic acid, is a polyphenolic
compound [68] with diverse biological activity. Our results
showed that gallic acid significantly inhibited viral activity
via both the pre- and post-treatment strategies (percent-
ages of inhibition greater than 50%). Previously, a cocktail
(containing several compounds including gallic acid) de-
rived from plants in the Phyllanthaceae family was shown
to have an antiviral effect against DENV [69], unfortu-
nately our results cannot be compared with those previ-
ously reported, as the effect of one compound alone is not
comparable to that produced by the synergy of several
compounds. However, recently has been reported that the
isobutyl gallate (a gallic acid derivative) is an antiviral
against DENV-2, with a SI = 25.6 in Huh 7 cells quite
similar to our results in VERO cells (SI = 21.1) [70]. The
second compound, naringin, is also a flavonoid with di-
verse biological activity [71]. In our study, naringin signifi-
cantly inhibited DENV-2 infection only it was added to

cells after viral inoculation (post-treatment). The anti-
DENV activity of naringin has been previously demon-
strated [72], but such inhibition occurred only when viral
inoculation of the cells was performed in the presence of
the compound (a method we did not use, thus making the
results incomparable). This previous report did not inves-
tigate viral inhibition when the treatment was performed
after inoculation, in contrast with our results. However, it
is important to note that the concentrations we used were
higher than those previously reported without being cyto-
toxic and that our SI (SI = 13.5) was ten times higher than
that previously reported (SI = 1.3). The third compound,
quercetin, is another flavonoid with diverse biological ac-
tivity [73], including anti-DENV activity [72]. Although
our results agree with those previously reported, we
emphasize that the previously demonstrated selectivity
(SI = 7.5) is much lower than that reported by us (SI =
34.3), which may be because we tested a higher concentra-
tion than that used previously. Quercetin has been postu-
lated to directly inhibit the viral NS3 protein (a protein
with multiple roles in DENV replication) [74], and it could
interrupt virus entry by inhibiting fusion [75], making this
compound a very promising antiviral. Catechin, the fourth
compound isolated, is a polyphenol that is mainly derived
from green tea [76]. Of the five compounds identified in
this study, catechin is the one that induced the best viral
inhibition when added before (100% inhibition) or after
inoculation (91.8%). Recent molecular docking studies
have shown that catechin has a high binding affinity for
the NS4B protein of DENV [77], which is an important
protein in the formation of the viral replication complex
(together with NS4A) in the endoplasmic reticulum of
host cells [78]. Finally, the fifth compound, hesperidin, is a
flavonoid [79] of which no antiviral effect has been re-
ported, agreeing with our results. It was the only nonselec-
tive compound (SI = 1.8) and did not inhibit infection in
any of the experimental strategies used.
In addition to the in vitro studies, we used computa-

tional tools to explore the possible mechanisms involved
in viral inhibition. For this, the E and NS5 proteins were
selected as targets for the compounds tested, as in vitro
inhibition was found for pre- and post-entry steps and
their three-dimensional structures were available for in
silico tests. Using computational methods, new antiviral
molecules targeting the NS3 protease have already been
reported that, when evaluated in vitro, inhibited DENV-
2 infection up to 1 log PFU/mL [80], demonstrating the
power of these methods in facilitating the search for new
antiviral molecules.
In our study, for the E protein, the structure used

corresponded to domain III of DENV-2; however, the
crystal structure probably corresponds to the mature
protein, as it was co-crystallized with the variable por-
tion of monoclonal antibody 4E11 [81]. Nonetheless,
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based on the in vitro experiments, the molecules
tested might influence the immature protein, possibly
affecting the interaction by molecular docking. For the
NS5 protein, even though the crystal structure corre-
sponds to the catalytic domain [82], the binding
pocket was defined using computational tools; thus,
the docking energy values could vary. However, the
negative docking energy values suggest that all the in-
teractions were favorable [83]. Notably, the interaction
of suramin with both proteins was favorable, but the
best docking energy was found for its interaction with
NS5 (− 12.0 kcal/mol), which was mediated by six
hydrogen bonds (Fig. 6). This result is consistent with
the data from the in vitro experiments in which better
inhibition was observed for this compound via the
post-treatment strategy (Fig. 4), suggesting that this
compound acts on viral polymerase.
The docking energy values depend not only on the bind-

ing site but also on the virus type, target protein, and lig-
and source. A consensus model of the NS5 protein from
four DENV serotypes was used previously against natural
compounds obtained from the PubChem database22 and
the SuperNatural II database2, yielding binding energies
of < − 10.5 kcal/mol [84]; conversely, the compounds
tested herein were obtained by conventional bioprospect-
ing methods. The hydrogen bonds and hydrophobic inter-
actions between the target protein and ligands determine
the molecular docking score [85], and the distance be-
tween the atoms that are part of the bond is of great bio-
logical importance, especially if they range between 2.5
and 3.5 Å, as those with small distances are more relevant
[83]. Such is the case of the hesperidin-E interaction,
which has 11 theoretical hydrogen bonds compared to the
four theoretical hydrogen bonds formed in the catechin-E
interaction (Table 4).However, the shortest distance be-
tween the atoms forming a hydrogen bond in the protein-
ligand pairs was obtained in the catechin-E interaction
(2.70 Å). The distance between atoms was also the lowest
(2.73 Å) in the catechin-NS5 interaction compared to
those of the other interactions evaluated. Similar studies
have reported that catechin can interact with other viral
proteins such as NS4B from DENV-2 with negative dock-
ing scores (− 4.06 kcal/mol), which suggests that this inter-
action would be viable [77]. Other factors that can affect
the docking score are ligand size and the number of atoms
forming bonds. Consequently, smaller ligands such as
gallic acid, quercetin, and catechin have lower docking
scores and lower numbers of hydrophobic interactions
compared to those of naringin and hesperidin (Table 4).
In spite of the importance of ENV and NS5 proteins for

viral replication, well-conserved non-structural proteins
such as NS1, NS3/NS2B have been also evaluated against
phytochemicals reported in literature, and the evaluated in-
teractions were favorable with scores ranging from − 6.71

to − 32.24 Kcal/mol according to MOE Dock tool [86]
Similarly, NS3 was evaluated against the compounds de-
rived from the medicinal plant Vetiveria zizanioides, and
one compound showed favorable interactions according to
the scores obtained with Surflex-dock, mediated by Hydro-
gen bonds with 2.72 Å being the lowest distance found me-
diating this interactions [87].
Although bioprospecting has been replaced by more

targeted tools, it is still useful for identifying antiviral
compounds, as we have shown in this study. Addition-
ally, combining in vitro and in silico tests allowed us not
only to identify promising antivirals but also to suggest
their possible mechanisms of action.

Conclusions
Our results showed that four compounds derived from
P. guajava highly selectively inhibited DENV-2 replica-
tion. Catechin is the most promising compound with
viral inhibition percentages of greater than 90% in the
two different experimental strategies. Studies are in pro-
gress that will allow us to elucidate the antiviral mecha-
nisms of these compounds.
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