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Abstract

antioxidative stress-induced skin aging.

Background: Oxidative stress plays a crucial role in aging-related phenomenon, including skin aging and photoaging.
This study investigated the protective role and possible mechanism of Terminalia catappa L. methanolic extract (TCE) in
human fibroblasts (Hs68) against hydrogen peroxide (H,O,)-induced oxidative damage.

Methods: Various in vitro antioxidant assays were performed in this study. The effect and mechanisms of TCE on
oxidative stress-induced oxidative damage were studied by using western blotting.

Results: The ICs of TCE was 8.2 ug/mL for 1,1-diphenyl-2-picrylhydrazy! radical scavenging, 20.7 ug/mL for superoxide
anion radical scavenging, 173.0 ug/mL for H,O, scavenging, 44.8 ug/mL for hydroxyl radical scavenging, and
4276 pg/mL for ferrous chelation activities. Moreover, TCE inhibited the H,0O,-induced mitogen-activated protein
kinase signaling pathway, resulting in the inhibition of c-Jun, c-Fos, matrix metalloproteinase (MMP)-1, MMP-3, MMP-9,
and cyclooxygenase-2 expression. TCE also increased hemeoxygenase-1 expression inhibited by H>O,. Finally, TCE was
demonstrated reverse type | procollagen expression in fibroblasts after H,O, treatment.

Conclusions: According to our findings, TCE is a potent antioxidant and protective agent that can be used in
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Background

Aging can be divided into two basic processes: intrinsic
aging, which is related to age, and extrinsic aging, which
is generally due to long-term exposure to environmental
factors, including ultraviolet (UV) light and pollutants.
Oxidative stress plays a crucial role in aging-related dis-
orders, including atherosclerosis, cardiovascular diseases
and skin aging [1]. High levels of reactive oxygen species
(ROS), such as hydrogen peroxide (H,O,), superoxide
anion, and singlet oxygen, can cause oxidative damage
to cellular DNA, protein, and lipids, resulting in the ini-
tiation or development of various disorders and diseases
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such as cardiovascular diseases, type 2 diabetes mellitus,
and cancer [2]. In addition, free transition metal ions
combine with H,O, and can cause extensive oxidative
damage to biomolecules such as lipids, proteins, and nu-
cleic acids, leading to age-related disorders [3].

Skin aging is characterized by a sagging appearance,
wrinkles, and pigmentary changes, and principally mani-
fests as the degradation of extracellular matrix (ECM) pro-
teins, including type I collagen, elastin, proteoglycans, and
fibronectin [4, 5]. Type I collagen is the most abundant
structural protein in skin connective tissue and is primar-
ily synthesized by fibroblasts, whereas collagen in the der-
mis is responsible for skin strength and resiliency [6, 7].
Oxidative stress or inflammation can cause collagen deg-
radation resulting in wrinkle formation and sagging skin
[8]. In addition, ROS activate the mitogen-activated pro-
tein kinase (MAPK) pathway, which subsequently induces
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the expression and activation of matrix metalloproteinases
(MMPs) in human skin [9]. The activation of MAPK
and MMPs may cause damage and aging of the skin
[10, 11]. Agents that can elevate ECM protein levels or
downregulate collagen-degrading enzymes, such as MMPs,
may prove useful in the development of effective antiaging
agents [12, 13].

Terminalia catappa L. belongs to the family Combretaceae,
and in Southeast Asia, it is commonly used as a folk medicine
for treating hepatoma and hepatitis [14, 15]. The leaf
and bark extracts of T. catappa have been reported to
exhibit chemopreventive, antioxidant, hepatoprotective,
and anti-inflammatory activities [16, 17]. T. catappa in-
cludes the phytochemicals of flavanoids (rutin, isoorien-
tin, vitexin, and isovitexin), tannins (chebulagic acid,
punicalagin, punicalin, and terflavins A and B), and tri-
terpenoids (asiatic acid and ursolic acid) [14, 18]. In
addition, the T. catappa extract exhibits antifungal and
antidepressant activities [19, 20]. Topical application of
ointment containing 7. catappa was shown to promote
wound healing in rats [21], and our previous study
demonstrated that the T. catappa L. hydrophilic extract
exerts protective effects on UVB-induced photoaging
by inhibiting MMPs expression and upregulating type I
procollagen expression [22]. However, the activity and
related mechanisms of 7. catappa against oxidative
stress-induced skin damaging are unclear. Therefore,
this study investigated the effects of T. catappa metha-
nolic extract (TCE) on H,O,-induced skin damage and
on the protein expression of MAPKs, which activate
protein-1 (AP-1), MMPs, and type I procollagen in hu-
man skin fibroblasts (Hs68).

Methods

Chemicals

Fetal bovine serum (FBS), penicillin-streptomycin, trypsin-
EDTA, and Dulbecco’s Modified Eagle’s Medium (DMEM)
were purchased from Gibco, Invitrogen (Carlsbad, CA,
USA). The Bradford reagent was supplied by Bio-Rad
Laboratories (Hercules, CA, USA), and Tris and MTT were
purchased from USB (Cleveland, OH, USA). Methanol, di-
methyl sulfoxide, doxycycline hyclate, calcium chloride
(CaCl,), DPPH, DL-dithiothreitol, and all other reagents
used in this study were purchased from Sigma-Aldrich
Chemicals (St. Louis, MO, USA).

Preparation and quantitation of TCE

T. catappa leaves were collected in Wufeng, Taichung
City, Taiwan, as previously described [22]. The leaves were
identified by Professor KC Wen, a professor in Department
of Cosmeceutics, China Medical University and a voucher
specimen of this material (FCRDSAL-Plants-0003) has
been deposited in Functional Cosmeceutics Research &
Development and Safety Assessment Laboratory, China
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Medical University, Taiwan. The dried leaves (150 g) were
ground and then extracted twice with 2 L of methanol for
1 h by using ultrasonication. The extraction liquid was
filtrated, and the filtrate was evaporated to dryness in a
vacuum to obtain TCE.

The total phenolic content of TCE was measured using
the Folin—Ciocalteu reaction, as previously described [23].
Briefly, TCE was mixed with the Folin—Ciocalteu phenol
reagent and sodium carbonate, and absorbance was
measured at 760 nm. The phenolic content is expressed as
microgram GAE/microgram T. catappa leaf dry weight
herein.

The total flavonoid content of TCE was determined
using the aluminum chloride colorimetric assay, as de-
scribed elsewhere [23]. Briefly, TCE was mixed with
aluminum chloride hexahydrate, potassium acetate, and
deionized water, and the absorbance of the mixture was
measured at 405 nm on an enzyme-linked immunosorbent
assay (ELISA) reader (Tecan, Grodig, Austria). The flavon-
oid content is expressed as microgram QE/microgram
T. catappa leaf dry weight herein.

DPPH radical scavenging activity assay

DPPH was mixed with various concentrations of TCE. The
mixture was added to a 96-well microplate and incubated
at room temperature for 30 min in the dark. Subsequently,
absorbance was measured at 492 nm on the ELISA reader.
Ascorbic acid was used as a positive control [24, 25].

Superoxide anion radical scavenging activity assay
Dihydronicotinamide-adenine dinucleotide, phenazine-
methosulfate, and nitroblue tetrazolium were prepared
in 0.1 M phosphate buffered saline (PBS), after which
TCE was added. Absorbance was measured at 560 nm
on the ELISA reader.

Determination of peroxide scavenging activity

The peroxide scavenging activity of TCE was spectrophoto-
metrically detected using a previously described method
[23, 26]. H,O, was prepared in PBS and mixed with various
concentrations of TCE. Then, after incubation, absorption
was measured at 230 nm on the ELISA reader.

Hydroxyl radical scavenging activity assay

The hydroxyl radical scavenging activity assay was
performed by mixing TCE, ascorbic acid, deoxyribose,
iron (III) chloride, EDTA, H,0,, a monopotassium
phosphate—potassium hydroxide buffer, and distilled
water; the mixture was then incubated at 100 °C for
15 min and centrifuged. The absorbance of the super-
natant was subsequently measured at 532 nm on a micro-
plate reader (BioTek, Winooski, VT, USA). Mannitol
was used as a positive control, and the hydroxyl radical
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scavenging activity of TCE was obtained as the percentage
inhibition of deoxyribose degradation [3, 27].

Ferrous ion chelating activity assay

Various concentrations of TCE were mixed with an iron
(I1) chloride solution. The reaction was initiated after fer-
rozine was added. Absorbance was then spectrophotomet-
rically measured at 562 nm on the microplate reader. The
results are expressed as the percentage inhibition of the
generation of the ferrozine—ferrous complex herein [24].

Measurement of reducing power

The reducing power of TCE was determined using a pre-
viously described method [24, 28]. Various concentrations
of TCE were mixed with ferrocyanate and trichloroacetic
acid. After centrifugation, the supernatant was mixed with
ferric chloride and absorbance was measured at 700 nm.
Ascorbic acid and distilled water were used as the positive
and negative controls, respectively.

Cell cultures

Hs68, HaCaT cells, and B16F0 cells were purchased
from the Bioresource Collection and Research Center in
Hsinchu, Taiwan. These cells were maintained in DMEM
containing 10% FBS, 100 U/mL penicillin, and 100 U/mL
streptomycin in an incubator set at 37 °C.

Cell viability assay for three skin cell lines

To understand the cytotoxicity of TCE on the skin, Hs68,
HaCaT cells, and B16FO cells were applied to study the cell
viability. The cells were seeded in the plate, allowed to at-
tach overnight, and were treated with 1 mL of various
concentrations of TCE dissolved in DMEM for 24 h. The
cytotoxicity of TCE was then evaluated using the MTT
assay, as described elsewhere [22].

Fluorescence assay for IntracellularROS generation in
fibroblasts

Intracellular ROS generation was measured using a pre-
viously detailed method [22]. In brief, fibroblasts were
added to a 24-well plate and then incubated with various
concentrations of TCE for 24 h. The cells were washed
with PBS and incubated with 150 uM H,O, for 1 h.
Subsequently, the cells were incubated with 10 pM
DCFDA in DMEM for 30 min, after which they were
examined under a fluorescence microscope (Leica DMIL,
Wetzlar, Germany). Fluorescence (emission wavelength:
520 nm; excitation wavelength: 488 nm) was measured
on a microplate reader (Thermo Electron Corporation,
Vantaa, Finland).

Western blotting
The cells were incubated with TCE (5-50 pg/mL) for 4 h,
followed by incubation with 150 uM H,O, for 1 h. The
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cells were collected and lysed with protein extraction
buffer, as previously described [22]. An equal amount of
protein was loaded, separated on 10% sodium dodecyl
sulfate polyacrylamide gels, and then electrophoretically
transferred to a polyvinylidene difluoride membrane. The
membrane was incubated with specific antibodies against
MMP-1, -3, and - 9; type I procollagen; HO-1; MAPKs;
c-Jun; c-Fos; and COX-2 (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA). The blots were then incu-
bated with anti-immunoglobulin G-horseradish peroxid-
ase and chemiluminescent detection reagent (Amersham
Biosciences, Buckinghamshire, United Kingdom). Finally,
immunoreactive bands were detected using a chemilumin-
escent detection system (LAS-4000, Fujifilm, Tokyo, Japan),
and the density of the bands was determined using a
densitometric program (Multi Gauge V2.2, Fujifilm,
Tokyo, Japan).

Statistical analyses

Values are presented as the mean + standard deviation of
at least three independent experiments. The results were
analyzed using one-way analysis of variance, followed by
Scheffe’s test. Statistical significance was set at p < 0.05.

Results

Extraction yield and quantitation of TCE

The extraction yield of TCE from leaves was 11.5%. The
total phenolic content of the extract was determined using
the Folin—Ciocalteu method, and the regression coefficient
of the calibration curve was 0.9995. Specifically, the total
phenolic content of TCE was 220.2 + 0.2 pg/mg gallic acid
equivalent (GAE). Additionally, the total flavonoid content
of TCE was determined using the aluminum chloride
colorimetric method, and the regression coefficient of the
calibration curve was 0.9991. The total flavonoid content
was 109.0+0.8 pg/mg quercetin equivalent (QE). The
content of gallic acid was 74.62 pug/mL by HPLC/UV ana-
lysis (Additional file 1: S1).

The antioxidant activity of TCE

The antioxidant activity of TCE was study by using free
radical scavenging assay and chelating assay. Figure la
shows the DPPH radical scavenging activity of TCE and
10 pg/mL ascorbic acid (positive control). The results
indicated that 10 pug/mL TCE exhibited a scavenging
activity of 70.4% + 4.9%, and that the activity was
99.0% + 1.6% for the same concentration of ascorbic
acid. The ICsy of TCE for DPPH scavenging activity
was 5.6 pg/mL; in other words, TCE preparations exhibited
potent DPPH free radical scavenging activity. As shown in
Fig. 1b, the superoxide anion radical scavenging activity
was 49.5% + 0.2% for 250 pg/mL beta hydroxyl acid (BHA)
(positive control), and ranged from 73.9% +2.1% to
92.4% + 2.0% for 50-1000 pg/mL TCE. The ICsy of TCE
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for superoxide anion radical scavenging was 20.6 pg/mL.
Thus, the superoxide anion radical scavenging activity of
TCE was superior to that of BHA. The peroxide scavenging
activities of TCE (50-1000 pug/mL) and the positive control
BHA (250 pg/mL) are shown in Fig. 1lc. Specifically, the
peroxide scavenging activity ranged from 4.2% +1.2% to
111.8% + 1.3% for various concentrations of TCE, and
was 80.4% + 1.8% for BHA. Notably, the peroxide scaven-
ging activity of TCE was superior to that of BHA
(IC50=166.1 pg/mL). The hydroxyl radical scavenging ac-
tivities of TCE (50—1000 pg/mL) and the positive control
mannitol (15 mM) are shown in Fig. 1d. Specifically,
the hydroxyl radical scavenging activity ranged from
55.7% +2.6% to 85.3% +0.1% for various concentrations
of TCE, and was 62.0% + 0.9% for mannitol. The ICs, of
TCE for hydroxyl radical scavenging was 39.6 ug/mL.

Figure le shows the metal chelating activities of
TCE and the positive control ethylenediaminetetraace-
tic acid (EDTA). The activities ranged from 7.5% + 2.1%
to 80.0% +2.3% for various concentrations of TCE
(50-1000 pg/mL), and was 99.4% +0.1% for EDTA
(100 uM). The ICsq of TCE was 427.6 pg/mL for
metal chelation. The reducing power ranged from
20.1% + 1.0% to 101.7% + 1.2% for 50-1000 pg/mL TCE,
whereas the reducing power for 100 pg/mL ascorbic acid
(positive control) was 62.6% + 3.5% (Fig. 1f). The ICsq of
TCE was 128.5 pg/mL.

TCE inhibited H,0, Induced cytotoxicity and intracellular

ROS generation

Human fibroblasts (Hs68), human keratinocytes (HaCaT),
and mouse melanoma cells (B16F0) were treated with
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various concentrations of TCE (5-100 pg/mL), and their
cell viability was measured using the 3-(4,5-dimethylthiazo-
1-2-y1)-2,5-diphenyltetrazolium bromide (MTT) assay. As
shown in Fig. 2a, the results indicated that TCE did not ex-
hibit cytotoxic effects in the three skin cell lines; these con-
centrations were thus applied in subsequent experiments.

As shown in Fig. 2b, cell viability was 67.6% + 1.7% after
H,0, treatment. Cell viability ranged from 72.7% + 1.8%
to 81.9% +3.9% for 5-50 pg/mL TCE. These results
indicated that TCE protects the skin from oxidative
stress-induced cytotoxicity.

The 2',7 -dichlorofluorescin diacetate (DCFDA) fluor-
escence assay was used to qualitatively characterize intra-
cellular ROS generation. As shown in Fig. 2c, ROS levels
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were markedly higher in H,O,-exposed fibroblasts than in
control cells. Moreover, this increase in ROS generation
was attenuated in H,O,-exposed fibroblasts pretreated
with various concentrations of TCE (5-50 pg/mL). ROS
generation in H,O,-exposed fibroblasts increased to
1.7-fold compared with control cells, and significantly
decreased to 1.3-fold compared with control cells. TCE at
50 ug/mL decreased H,O,-induced intracellular ROS gen-
eration by 23.1%. Thus, TCE protects the skin from ROS
damage.

Inhibition of MAPK phosphorylation through TCE
As shown in Fig. 3a, H,O, induced the phosphorylation
of p38, extracellular signal-regulated kinase (ERK), and
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c-Jun N-terminal kinase (JNK). TCE (5-50 pg/mL)
dose-dependently inhibited the phosphorylation of
ERK, and the effect was significant in the cells treated
with > 20 pg/mL TCE. Similar to the effect on ERK, TCE
inhibited JNK and p38 activation, which were significantly
suppressed when TCE concentration was 20 pg/mL.

TCE inhibited phosphorylation of AP-1 in Hs68
As shown in Fig. 3b, HyO, increased c-Jun and p-c-Jun
expression to 1.5- and 2.9-fold that of the control,

respectively, whereas >5 pg/mL TCE significantly re-
duced the effect. In addition, H,O, induced c-Fos ex-
pression, but TCE reduced the effect. These results
further indicated that TCE protects the skin from oxida-
tive stress-induced damage.

Effect of TCE on MMP expression in Hs68

To examine whether TCE protects H,O,-exposed Hs68
from oxidative stress-induced damage, the expression of
cellular MMP-1, - 3, and — 9 proteins was measured. As
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depicted in Fig. 3c, H,O, significantly elevated the ex-
pression of MMP-1, -3, and - 9 proteins by 1.3-, 1.2-,
and 1.2-fold compared with controls in Hs68, respect-
ively. By contrast, TCE attenuated H,O,-induced MMP
expression. Specifically, treatment with >5 pg/mL TCE
significantly reduced H,O,-induced MMP-1, -3, and -9
expression. These results indicated that TCE prevents the
H50,-induced elevation of MMP-1, — 3 and - 9 levels, thus
protecting the skin from oxidative stress-induced damage.

Effect of TCE on H,0,-induced Hemeoxygenase-1
expression

The hemeoxygenase (HO)-1 gene and protein play a pivotal
role in the modulation of antioxidant, anti-inflammatory,
and antiapoptotic activities. This study revealed that H,O,
significantly reduces HO-1 protein expression in Hs68,
whereas TCE treatment dose-dependently increases HO-1
expression (Fig. 3d).

Effect of TCE on H,0,-induced Cyclooxygenase-2
expression in Hs68

Cyclooxygenase (COX)-2 levels were 1.3-fold higher in
fibroblasts exposed to 150 puM H,O, than in control
cells (Fig. 3e). In addition, various concentrations of
TCE (5-50 pg/mL) reduced COX-2 expression; the ef-
fect was significant in the cells treated with >5 pg/mL
TCE. These results further confirmed that TCE protects
the skin from damage by inhibiting inflammation.

Reversal of H,0,-induced upregulation of type |
procollagen expression in Hs68 through TCE

After treatment with 150 puM H,0,, the expression of
type I procollagen increased to 1.3-fold compared with
that in control cells, whereas TCE inhibited this effect
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(Fig. 3f). Notably, treatment of the cells with 50 pg/mL
TCE decreased type I procollagen expression to a level
similarly expressed in the control cells.

Discussion

Polyphenols are the second most abundant metabolic
products in plants. Notably, plants with high poly-
phenolic content exhibit potent antioxidant activity [29].
Free radical scavenging activity is related to the polyphe-
nic and flavonoid content of plants. In a previous study,
the total phenol content of Rosa hemisphaerica was
138.3 pg/mg GAE [30]. In the present study, the total
phenolic content was 220.2 pg/mg GAE dry leaves, the
total flavonoid content was 109.0 pg/mg QE dry leaves,
and the ICsy of TCE for DPPH radical scavenging was
5.6 pg/mL. In addition, TCE exhibited strong scavenging
activity for ROS including superoxide, peroxide, and hy-
droxyl radicals. Peroxide is the primary product of initial
oxidation, and it can react with ferrous ions, producing
more toxic hydroxyl radicals. Iron also has high reactivity
and is the pivotal factor in lipid peroxidation catalyzed by
transition metals [3]. Furthermore, TCE exhibits potent
metal chelating activity and reducing power attenuating fea-
tures; in the present study, TCE attenuated H,O,-induced
metal chelation, reducing power, ROS generation, and free
radical scavenging. Our results suggest that the high poly-
phenic and flavonoid content of TCE contribute to it potent
antioxidant activity.

Molecules such as glutathione, catalase, and HO-1
provide cells, and the body overall, with defense systems
against intrinsic and extrinsic oxidative stress. Nuclear fac-
tor E2-related factor 2 (Nrf2) and Keap1 are redox-sensitive
transcription factors and key intracellular modulators of
antioxidant defense against environmental stresses. For
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example, Nrf2 has been reported to protect skin cells from
UV- and pollutant-induced oxidative damage and cellular
dysfunction [31]. On exposure to oxidative stress, Nrf2 is
translocated to the cell nucleus and binds to antioxidant el-
ements, activating phase II detoxification enzymes such as
HO-1 and glutathione [32]. In the present study, H,O, was
found to reduce HO-1 expression; however, TCE treatment
increased HO-1 expression, alleviating H,O,-induced oxi-
dative stress in the skin cells. In other words, TCE may re-
pair or protect skin from the damage caused by superoxide
peroxide and hydroxyl radicals.

Exposure of the skin to UV induces ROS generation
and regulates the expression of genes and proteins,
resulting in photodamage and photocarcinogenesis [7].
In addition, H,O, has been reported to cause skin aging
by inducing oxidative stress and MMP expression [33],
while UVB-induced ROS generation triggers ERK, JNK,
and p38 phosphorylation, AP-1 activation, and MMP ex-
pression, leading to collagen degradation [7]. In addition,
H,0, disrupts transforming growth factor beta transduc-
tion and subsequently inhibits collagen biosynthesis, indu-
cing skin aging [8]. In the present study, H,O, was
determined to upregulate the phosphorylation of MAPKs,
c-Jun, c-Fos, and MMP-1, -3, and - 9 proteins, whereas
TCE inhibited these effects. This finding suggests that
TCE activity is dependent on this signaling transduction.
MMPs mediate degradation of ECM and play an import-
ant role in tissue homeostasis and remodeling including
angiogenesis and tissue repair. Over suppression of MMPs
may cause abnormal accumulation of ECM.

The results are consistent with those of our previous
study, in which the T. catappa water extract protected skin
from photodamage by inhibiting the MAPK/AP-1/MMP
pathway [22]. UVB rays inhibited collagen synthesis and
induced collagen degradation, whereas T. catappa water
extract elevated the collagen content in Hs68 [22]. Simi-
larly, in the present study, H,O, was found to increase the
collagen content in Hs68, whereas TCE reversed the effect.
One previous study showed that H,O, also reduces mRNA
expression of type I collagen (COL1A1) in fibroblasts [34],
although these results are inconsistent with those reported
elsewhere. For example, researchers demonstrated that
H,0, induces oxidative stress damage to cells and the body,
which can trigger the repair process of the skin, thereby in-
creasing the collagen content. However, excessive collagen
synthesis may cause collagen fibrosis and scleroderma [35].
Overall, our results here indicate that TCE can regulate the
collagen content within a normal range.

Conclusion

The present study indicated that TCE with high poly-
phenic and flavonoid content exhibits potent free radical
scavenging and antioxidant activity. Specifically, we de-
termined that TCE protects against H,O,-induced skin
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damage by inhibiting the protein expression of MMP,
AP-1, MAPKs, and COX-2 (Fig. 4). The antioxidant and
antiaging activities of TCE make it suitable for application
in skin care products.

Additional file

Additional file 1: S1. The active components in Terminalia catappa L.
methanolic extract (TCE). (DOCX 134 kb)
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