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Abstract

Background: Berberine (BBR) is a traditional antimicrobial herbal medicine. Recently, BBR has gained popularity as a
supplement to lower blood lipids, cholesterol and glucose. Bile acids (BAs) are known to regulate blood levels of
triglycerides, cholesterol, glucose and energy homeostasis, and gut flora play an important role in BA metabolism.
However, whether BBR alters BAs metabolism or dose-response effect of BBR on gut flora is unknown.

Methods: In this study, the effects of various doses of BBR on the concentrations of BAs in liver and serum of male
C57BL/6 mice were determined by UPLC-MS/MS, and the expression of BA-related genes, as well as the amount
of 32 of the most abundant gut bacterial species in the terminal ileum and large intestine of male C57BL/6
mice were quantified by RT-PCR and Quantigene 2.0 Reagent System, respectively.

Results: Unconjugated BAs and total BAs were significantly altered by BBR in serum but not in liver. Increased
primary BAs (BMCA, TBMCA and TUDCA) and decreased secondary BAs (DCA, LCA and the T-conjugates) were
observed in livers and serum of mice fed BBR. The expression of BA-synthetic enzymes (Cyp7al and 8b1) and
uptake transporter (Ntcp) increased 39-400 % in liver of mice fed the higher doses of BBR, whereas nuclear
receptors and efflux transporters were not markedly altered. In addition, Bacteroides were enriched in the

terminal ileum and large bowel of mice treated with BBR.

Conclusion: The present study indicated that various doses of BBR have effects on BA metabolism and related
genes as well as intestinal flora, which provides insight into many pathways of BBR effects.
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Background

Bile acids (BAs) are important natural detergents that
form micelles to facilitate the absorption of dietary fat
and lipid soluble vitamins from the gastrointestinal tract.
BAs are also the driving force for bile formation, and
can reduce bacteria in the biliary tract and intestine [1].
In addition, BAs are important metabolic and inflam-
matory signaling molecules as they regulate lipid- and
energy-related nuclear hormone receptors, such as far-
nesoid-X-receptor (FXR) and transmembrane G-protein-
coupled receptor 5 (TGR5 or GPBAR1) [2, 3].

Primary BAs are synthesized in the liver and are con-
verted to secondary BAs by bacteria in the intestine. Sec-
ondary BAs are more toxic than primary BAs, possibly
because of their higher hydrophobicity [4]. For instance,
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deoxycholic acid (DCA) and lithocholic acid (LCA),
which are secondary BAs produced by bacteria, are
thought to play roles in colorectal cancer, liver cancer,
and cholesterol gallstones [5-8].

BAs are synthesized and circulate in the liver and in-
testine, which is orchestrated by feedback loops [6]. The
liver synthesizes primary BAs, namely cholic acid (CA)
and chenodeoxycholic acid (CDCA) from cholesterol. In
rodents, CDCA is further hydroxylated to alpha-muricholic
acid (aMCA), and then epimerized to beta-muricholic acid
(BMCA). The rate-limiting enzyme of primary BA synthesis
is Cytochrome P450 (Cyp) 7al (cholesterol 7a-hydroxylase),
which initiates the classic synthetic pathway, whereas
Cyp27al and Cyp7bl are important in the alternative route
of BA synthesis [9]. Primary BAs are conjugated with
glycine (predominant in human) or taurine (predominant
in rodent) in the liver. A portion of the BAs are directly
effluxed into the blood by the efflux transporters on the
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basolateral membrane of hepatocytes, including multiple
drug resistance-related protein (Mrp) 3, Mrp4 and organic
solute transporter (Ost) p. However, most BAs in the liver
are pumped into the biliary tree by the efflux transporters
on the canalicular membrane of hepatocytes, mainly the
bile salt export pump (Bsep). The BAs are stored in the
gallbladder to be further concentrated [10], and thereafter
delivered into the intestine to promote emulsification of
lipids and fat soluble vitamins [11]. In the intestine,
primary BAs are deconjugated, dehydroxylated at C-7,
epimerized, and oxidized to form secondary BAs in
the terminal ileum and large bowel by anaerobic bacteria
[12]. In the ileum, through a BA-activated FXR-dependent
pathway, fibroblast growth factor 15 (FGF15) is secreted
into the blood, and interacts with the fibroblast growth
factor receptor 4 (Fgfr4) in the hepatocytes to inhibit BA
synthesis [13, 14]. In the liver, BAs activate FXR, which in-
duce the expression of small heterodimer partner (SHP)
that represses liver receptor homolog-1 (LRH-1), leading
to decreased transcription of Cyp7al [15]. Thus BAs
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regulate their own synthesis by FXR-Fgf15 in the intes-
tine and FXR-SHP in the liver. CDCA, TCDCA, TCA,
TDCA, DCA and CA are potent activators of FXR ac-
tivity [16, 17], whereas TBMCA and UDCA are natural
antagonists of FXR [14, 18]. However, the entire regulatory
mechanism of BA synthesis is not fully understood.

About 5 % of secreted BAs in the gut are excreted into
feces and is the most important eliminating channel of
cholesterol from the body [19], whereas, the remaining
95 % are reclaimed at the terminal ileum by the apical
sodium-dependent BA uptake transporter (Asbt) into the
ileocytes, followed by Osta/p active transport to the portal
blood. The BAs are then taken up into hepatocytes by the
sodium taurocholate cotransporting polypeptide (Ntcp:
uptake of conjugated BAs) and the organic anion trans-
porting peptide 1b2 (Oatplb2: uptake of unconjugated
BAs) [20]. This entire process is termed the enterohepatic
circulation (EHC) [10] (Fig. 1).

Berberine (BBR) is a quaternary ammonium salt from
the protoberberine group of isoquinoline alkaloids, and
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it is traditionally used for gastrointestinal inflammation
in Chinese and native American medicines [21, 22]. Re-
cently, because its potential cytostatic, antiproliferative,
and antioxidative activities, the raw herb of BBR was
ranked as the sixth most commonly used herbal supple-
ment for children in America [23]. BBR has been reported
to have inhibitory effects against Staphylococcus aureus,
Plasmodium falciparum, cholera, amoebiasis, and viruses,
but also affects the gut microflora including Bifidobacter-
ium longum, Bifidobacterium bifidum, Clostridium perfrin-
gens, and Clostridium paraputrificum [22, 24, 25]. It has
been reported that modulation of the gut microbiota by
BBR may contribute to its antidiabetic effect [26, 27]. BBR
is also becoming widely used as a supplement to prevent
hypercholesterolemia for decreasing cholesterol absorption
from the intestine and stimulating BA synthesis [28, 29].

Antibiotics affect BA metabolism theoretically due to
their ability to alter intestinal bacteria, which play a fun-
damental role not only on the generation of secondary
BAs, but also as a modulator of hepatic BA synthesis
[14, 30]. BBR is also proven to stimulate bile secretion
[31, 32], however, it is not clear if and how BBR affects
BA concentrations, transporters involved in the EHC of
BAs, and the abundance of individual gut microbiota.

To systematically explore the impact of different doses
of BBR on BA profiles in liver and serum and the potential
mechanism for these alterations, in the present study, BBR
were given to mice, and concentrations of total BAs, indi-
vidual BAs, and genes involved in BA homeostasis, as well
as bacteria in the terminal ileum and large intestine were
quantified. Various doses of BBR increased primary BAs,
whereas it decreased secondary BAs, and has effects on
BA metabolism and related genes as well as intestinal
flora, which provides insight into many pathways of BBR
effects.

Methods

Ethics statement

Mice were housed according to guidelines of the Institu-
tional Animal Care and Use Committee at the University
of Kansas Medical Center. Procedures were carried out
in compliance with standards for the use of laboratory
animals. Animal experiments performed in this manuscript
were approved by the Institutional Animal Care and Use
Committee at the University of Kansas Medical Center.

Animals and treatments

Seven-week-old male C57BL/6 mice were purchased from
Charles River Laboratories, Inc. (Wilmington, MA), housed
according to the American Animal Association Laboratory
Animal Care guidance under a standard 12-h dark-light
cycle and humidity-controlled environment with a room
temperature at approximately 25 °C, and acclimated for at
least 1 week before treatment. Mice were arbitrarily divided
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into six groups and had access to Laboratory Rodent Chow
8604 (Harlan, Madison, W1I) and drinking water ad libitum.

Sample collection

BBR (B3251) was purchased from Sigma-Aldrich (USA).
Six doses (0, 3, 10, 30, 100, 300 mg/kg) of BBR were
given to mice by gavage (4-6 for each group) for 2 weeks
after a pilot study. Control animals received the vehicle
(saline; 0 mg/kg) only. Mice were anesthetized, blood
was collected by orbital bleeding, and serum was ob-
tained by centrifuging blood at 6,000 g for 15 min. Livers
with gallbladders removed were harvested from the same
animals, washed, frozen in liquid nitrogen, and stored at
-80 °C. Ileum and large intestine were separated and the
contents of the terminal ileum and large bowel were col-
lected into 3 ml of phosphate buffered saline containing
10 mM dithiothreitol (DTT). All tissues and contents
were stored at -80 °C until use.

UPLC-MS/MS analysis of BAs

Serum and liver samples were prepared and analyzed as
described previously [33] with modification [11]. Individ-
ual bile acids were quantified by ultraperformance liquid
chromatography—mass spectrometry (UPLC-MS/MS) ac-
cording to peak areas and a series of working standard
curves as described previously [11, 33]. The standards in-
cluded unconjugated bile acids, which are cholic acid
(CA), chenodeoxycholic acid (CDCA), a, f and » muri-
cholic acids (MCA), deoxycholic acid (DCA), lithocholic
acid (LCA), ursodeoxycholic acid (UDCA), hyodeoxy-
cholic acid (HDCA), and murideoxycholic acid (MDCA),
as well as taurine (T) conjugates, which are TCA, TCDCA,
TDCA, TLCA, TUDCA, and TMCA. Quantification of
TwMCA and ®«MCA were relative to TaMCA and aMCA
respectively.

Total RNA isolation

Approximately 50 mg of liver or ileum were homogenized
in 1 ml RNAzol Bee reagent (Tel-Test Inc., Friendswood,
TX). Total messenger RNA (mRNA) was isolated accord-
ing to the manufacturer’s protocol, and concentrations
were quantified using a NanoDrop Spectrophotometer
(NanoDrop Technologies, Wilmington, DE) at 260 nm.
Formaldehyde-agarose gel eletrophoresis was used for
evaluating the integrity of these total RNA samples, which
were confirmed by visualization of the 18 s and 28 s rRNA
bands. The diethyl pyrocarbamate (DEPC)-treated double-
distilled water was used to dilute each of the RNA samples
to 50 ng/ul for real-time PCR quantification.

Synthesis of cDNA and real-time PCR quantification

Reverse transcription of RNA to cDNA was performed
using the Applied Biosystems High Capacity Reverse
Transcriptase kit (Applied Biosystems, Foster City, CA).
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Subsequently, quantitative PCR was performed on the
resulting cDNA using SYBR Green PCR Master Mix in
7300HT Fast Real-Time PCR System (Applied Biosystems).
Primers (Additional file 1: Table S1) for RT-PCR were syn-
thesized by Integrated DNA Technologies (Coralville, IA).

Bacterial DNA extraction and quantification

Bacterial DNA was extracted by QIAmp DNA® stool kit
(Qiagen, Valencia, CA) following the instructions, and
then techniques that rely on 16S rRNA gene sequences
were used for the identification and classification of bac-
terial species as described previously [30, 34]. In brief,
intestinal contents were centrifuged at 20,000 g for 30 min
at 4 °C. Total genomic bacterial DNA was extracted from
the pellet. The integrity, concentration, and quality of the
total DNA were assessed by agarose gel electrophoresis,
and determined by absorption at Ajgp, and A,y to Asgg
ratio, respectively. The 16S rDNA gene of 32 bacteria was
quantified in pooled and individual samples using Quanti-
gene 2.0 Reagent System (Panomics/Affymetrix, Fremont,
CA) according to the manufacturer’s protocol.

Statistical analysis

Data are expressed as mean = S.E. (n =4-6). Differences
between mean values were tested for statistical signifi-
cance (P < 0.05) by one-way analysis of variance (ANOVA)
followed by Duncan’s post hoc test. Spearman’s rank test
was conducted to analyze the associations between BBR
concentrations and BA profile, related genes and gut
microbiota in mice (SPSS Inc., Chicago, IL, USA, version
16.0). Statistical significance was set at P<0-05 for all
analyses.

Results

Concentrations of T-conjugated BAs, unconjugated BAs and
total BAs in livers and serum of control and BBR-treated mice
The T-conjugated BAs and total BAs did not change signifi-
cantly in livers of the BBR-treated mice (Fig. 2a), however,
in serum, the unconjugated BAs significantly increased
(P=0.0017) about 90-92 % at the two middle doses of
BBR (10 and 30 mg/kg) while they tended to decrease
after the highest dose. The total BAs in serum had a simi-
lar trend to unconjugated BAs, with a significant decrease
(P =0.006, 62 %) after the highest dose of BBR. There was
no significant change in the T-conjugated BAs in serum of
mice fed the various doses of BBR (Fig. 2b).

Concentrations of individual BAs in livers of control and
BBR-treated mice

Twenty individual BAs were quantified in livers of control
and BBR-treated mice (Fig. 3a—b). Of the 10 primary BAs,
BMCA (P =0.004) and TPMCA (P =0.001) were increased
about 100 % in mice treated with 100 or 300 mg/kg BBR,
and TUDCA was increased 60 % in livers of mice treated
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Fig. 2 Concentrations of T-conjugated BAs, unconjugated BAs and
total BAs in control and BBR-treated mice. T-conjugated, unconjugated
BAs and total BAs in liver and serum were quantified and the amounts
are showed in a and b, respectively. All values are expressed as
mean + S.EM. ANOVA followed by Duncan’s post hoc test were
used, and * means P < 0.05 when compared with controls

with 100 mg/kg BBR (P =0.038), whereas the other BAs
were not significantly changed (Fig. 3a). BBR significantly
decreased the secondary BAs (DCA: P = 0.000006; TDCA:
P =0.000002; LCA: P=0.0009; oMCA: P=0.00027;
TwMCA: P =0.00004; MDCA: P=0.001; TMDCA: P=
0.001; HDCA: P =0.00000003; THDCA: P = 0.000000002.
Fig. 3b). BBR at the highest dose (300 mg/kg) decreased
the concentration of all the secondary BAs in liver. The
second to the highest dose of BBR (100 mg/kg) decreased
DCA, TDCA, LCA, TLCA, and HDCA. Lower doses of
BBR also decreased DCA and TDCA.

Concentrations of individual BAs in serum of control and
BBR-treated mice

Eight primary and four secondary BAs were detected in
serum of control and BBR-treated mice (Fig. 4a—b). BA
concentrations in serum were much lower than that in
liver. Coincident with the rise of primary BAs in liver,
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Fig. 3 Concentrations of individual BAs in livers of control and BBR-treated mice. Twenty individual BAs were quantified in livers of 8-week-old control

and BBR-treated mice. a showed the amounts of 10 primary BAs, and b showed the amount of 10 secondary BAs. All values are expressed as mean +
SEM. ANOVA followed by Duncan’s post hoc test were used, and * means P < 0.05 when compared with controls

BMCA in serum was about 100 % higher (P=0.012) in all BBR (Fig. 4b). The changes of ®MCA in serum was
the BBR-treated mice except for the lowest dose (Fig. 4a).  similar to that of «MCA, that is the intermediate doses
Moreover, BBR increased CA 300-400 % in the 10 and of BBR doubled their concentrations (P = 0.002) in serum.
30 mg/kg groups (P = 0.00006), and the 30 mg/kg increased

CDCA (P =0.007) about 50 %. BBR at 30 mg/kg increased

aMCA about 300 %, however, no aMCA was detected in MRNA expression of major BA-related genes in livers of
the serum after 300 mg/kg (P = 0.003). The secondary BAs  control and BBR-treated mice

in serum, including DCA (P=0.007) and TDCA (P=  To investigate probable mechanisms for the changes of
0.016), decreased about 85 % after the highest dose of BA concentrations in mice treated with BBR, major
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Fig. 4 Concentrations of individual BAs in serum of control and BBR-treated mice. Eight primary (a) and four secondary BAs (b) were detected
in serum of control and BBR-treated mice. All values are expressed as mean + S.EM. ANOVA followed by Duncan'’s post hoc test were used,

genes that are involved in BA synthesis, uptake, efflux
and regulation of the processes were examined (Fig. 5).

Enzymes involved in the classical and alternative path-
ways of BA synthesis were quantified in livers of BBR-
treated mice (Fig. 5a). After BBR treatment, the mRNA of
Cyp7al, which is the rate-limiting enzyme in the classic
pathway increased 200-400 % (P =0.001), and Cyp8bl
mRNA increased up to 100 % (P =0.003). The other en-
zymes involved in BA synthesis had a relatively minor
change.

The mRNA expression of major factors regulating BAs
in liver, including FXR, SHP and Fgfr4 are shown in
Fig. 5b. Induction of FXR was less than 50 % in liver of
mice treated with 300 mg/kg BBR (P =0.001), and there

was no significant difference of SHP or Fgfr4 mRNA ex-
pression in mice fed BBR.

Figure 5c illustrates the mRNA expression of major
uptake transporters on the basolateral membrane of hepa-
tocytes, which includes the Na*-dependent taurocholate
cotransport peptide (Ntcp), and the organic anion—trans-
porting polypeptide (Oatp) 1b2. Ntcp increased less than
50 % (P=0.0003), and Oatplb2 was increased about
100 % after 100 and 300 mg/kg BBR (P = 0.013).

The mRNA expression of major efflux transporters on
the basolateral and canalicular membranes of hepatocytes
is shown in Fig. 5d. The left panel of Fig. 5d demonstrates
the alteration of major efflux transporters on the canalicu-
lar membrane, which transport chemicals into bile. There
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Fig. 5 mRNA expression of major BA-related genes in livers of control
and BBR-treated mice were examined (Fig. 5). BA synthetic enzymes
involved in classical and alternative pathway were quantified in liver
of BBR-treated mice (a). The mRNA expression of major BAs regulating
factors in liver including FXR, SHP and Fgfr4 is demonstrated in (b).
cillustrates the mRNA expression of major uptake transporters on the
basolateral membrane of hepatocyte, which include Ntcp, Oatp1b2.
The mRNA expression of major efflux transporters on the basolateral
and canalicular membrane of hepatocyte are shown in (d). The left
panel in d demonstrates the alteration of major efflux transporters on
the canalicular membrane. The right panel of d shows the change of
major efflux transporters on the basolateral membrane transporting the
bile acids back to the blood after various doses of BBR. All values are
expressed as mean + SEM. ANOVA followed by Duncan’s post hoc test
were used, and * means P < 005 when compared with controls

were no significant changes for most of these transporters
after BBR treatment, however, Mdr2 was increased about
80 % after the highest dose of BBR (P =0.000007). The
right panel of Fig. 5d shows the major efflux transporters
on the basolateral membrane that transport chemicals
from the liver back to the blood. Mrp3 (P=0.018) and
Mrp4 (P =0.020) were decreased about 30 % in mice that
received the highest dose of BBR.

mRNA expression of major regulating factors and
transporters in ileum of control and BBR-treated mice
Because BA concentrations only changed in mice that
were given doses of BBR above 30 mg/kg, mRNA expres-
sion of FXR, Fgfl5, Osta, Ostp and Asbt were quantified
in the mice given the 3 highest doses of BBR (Fig. 6). Al-
though not statistically significant, mRNA expression of
these BA related genes after 100 and 300 mg/kg BBR tended
to decrease. However, mice administered 30 mg/kg BBR
had decreased expression of FXR and Osta (37-39 % sup-
pression) and Fgf15 (68 % suppression) in ileum (P = 0.05).

Bacteria in terminal ileum and large intestinal contents of
control and BBR-treated mice

BBR-induced decreases in the concentration of second-
ary BAs were most evident in mice after the two highest
doses of BBR, therefore, the relative amounts of 16S
rRNA for 32 of the most abundant gut bacterial species
in mice were quantified in pooled samples of control,
100 and 300 mg/kg BBR-treated groups (Fig. 7a), and
validated by 7 bacteria in individual samples (Fig. 7b). In
pooled samples, Bacteroides increased, but other bacteria
decreased with the increasing dosage of BBR. In the in-
dividual samples, Ruminococcus gnavus and Ruminococ-
cus schinkii decreased about 40 % (P =0.007) and 60 %
(P=0.011) in the 100 and 300 mg/kg BBR-treated
groups, respectively. Lactobacillus acidophilus, Lactoba-
cillus murinus and Lactococcus lactis decreased about 60
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to 90 % in the 300 mg/kg BBR treated mice (Lactobacil-
lus acidophilus: P=0.013; Lactobacillus murinus: P =
0.002; Lactococcus lactis: P=0.05). The changes were
similar in the pooled versus the individual samples.

Dose-response of BBR in mice

The associations between BBR concentrations and BA
profile, related genes and gut microbiota in mice were
analyzed, and the P (those are smaller than 0.05) and R
values are shown in Table 1. The primary BAs in livers
and serum, as well as related genes in the livers of BBR-
treated mice including Oatplb2, Bsep, Mdr2, Cyp8bl,
Cyp7al, Ntcp and FXR (in liver) were positively corre-
lated to the increase of BBR concentrations, whereas
secondary BAs and bacteria including Ruminococcus
gnavus, Ruminococcus schinkii, Lactobacillus acidoph-
ilus, Lactobacillus murinus and Lactococcus lactis in ter-
minal ileum and large intestinal contents were negatively
correlated to the increase of BBR concentrations.

Discussion

Although BBR is used as an herbal medicine and supple-
ment for many ailments, including glucose and lipid me-
tabolism disorders, knowledge about the dose-response
of BBR on BAs (which regulate energy homeostasis) and
gut flora (which have roles in BA metabolism) in mice
are unknown. In the present study, effects of various
doses of BBR on BA concentrations in liver and serum,
mRNA expression of BA-related genes, as well as the
amount of 32 of the most abundant interestinal bacterial
species in control mice were examined [30, 34].

Total BAs, including T-conjugated and unconjugated
BAs, were not significantly altered in liver, but a change
in the serum concentration of BAs was observed in mice
treated with BBR. More specifically, unconjugated BAs
increased about 90 % in serum of mice treated with 10
and 30 mg/kg BBR, and there was an increase in primary
BAs (BMCA, TBMCA and TUDCA) and a decrease in
secondary BAs (DCA, LCA and the T-conjugates). With
the highest dose of BBR, there was a marked decrease in
serum BA concentrations. The expression of BA-synthesis
enzymes (Cyp7al and 8b1) and uptake transporters (Ntcp)
increased 39-400 % in livers of mice treated with higher
doses of BBR, whereas nuclear receptors and efflux trans-
porters were not dramatically changed. In addition, Bac-
teroides were exclusively enriched in the terminal ileum
and large bowel of mice treated with the higher doses of
BBR. Thus, this study shows that BBR has effects on
modulating gut microbiota and host BA metabolism.

There are similarities of mice raised in germ-free en-
vironment and mice fed BBR. For example, the total BAs
in liver were not altered in mice treated with 300 mg/kg
BBR (Fig. 2a) or housed in a germ-free environment;
however, the total BAs in serum (Fig. 2b) decreased
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markedly in both experimental groups [14]. As for indi-
vidual BAs, an increase in BMCA and TBPMCA but a de-
crease in secondary BAs was the major phenotype in
liver of both mice given 300 mg/kg BBR (Fig. 3) or
housed in a germ-free environment. However, in serum,
TBMCA increased markedly in germ-free mice [14] but
did not significantly change in mice given 300 mg/kg
BBR (Fig. 4a). In addition, the general expression pattern
of BA-related genes in liver of 300 mg/kg BBR-treated
mice, including increased rate-limiting synthetic enzyme
(Fig. 5a) and uptake transporters (Fig. 5c), as well as de-
creased efflux transporters (Fig. 5d) resembled that in
livers of germ-free mice, but in ileum, the suppression of
Fgfl5 in germ-free mice was not reproduced (Fig. 6) in
the 300 mg/kg BBR-treated mice [14].

The expression of the Cyp7al, the rate-limiting en-
zyme in the synthetic pathway (Fig. 5a), and Cyp8b1, the
12a-hydroxylase responsible for the synthesis of CA, as
well as BA-uptake transporter Ntcp increased in livers of
mice treated with the higher doses of BBR (Fig. 5¢), but
other genes, including the nuclear receptors and efflux
transporters, were not altered (Fig. 5d). The expression

of FXR increased 63 % in livers of mice treated with
300 mg/kg BBR (Fig. 5b), however, neither the expres-
sion of SHP increased nor the BA synthesis enzymes
decreased. But in fact, Cyp7al and 8bl were in-
creased, while the FXR-Fgfl5 pathway was down-
regulated by BBR. Therefore, the decrease in the
inhibition of FXR-Fgfl5 pathway is likely the reason
for the increase of BA synthesis in liver. The changes
of individual BAs in the intestine are likely respon-
sible for the decrease in FXR activation in the intes-
tine, as it has been reported that some BAs are
antagonists (aMCA, PMCA and their T-conjugates as
well as UDCA) and agonists (CDCA, TCDCA, TCA,
TDCA, DCA and CA) of the FXR-Fgfl5 pathways
[14, 16-18]. The most obvious change of the ratio for
aMCA + PMCA + TaMCA + TBMCA + UDCA/CDCA +
TCDCA + TCA + TDCA + DCA + CA exhibited at 30 mg/
kg group. Interestingly, this group also showed the most
dramatic decrease of Fgfl5 (Fig. 6), which means the
EXR signaling activated by BAs in the intestine decreased.
This was consistent with the results observed in germ-free
mice [14].
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Table 1 The associations between BBR concentrations and BA,
related genes and gut microbiota in mice

Name Spearman R value P value (<0.05)
Bile acids in the liver
TLCA -0.7140 0.000003
TDCA —0.6321 0.00008
THDCA —0.5581 0.0007
DCA -0.5574 0.0008
LCA —0.5341 0.001
HDCA -0.4834 0.004
TMDCA —0.4045 0.02
MDCA —0.3991 0.021
TwMCA -0.3918 0.024
UDCA 04347 0.011
TUDCA 0.5034 0.003
TBMCA 0.5898 0.0003
BMCA 0.6153 0.0001
Bile acids in the serum
TDCA —0.5305 0.001
DCA -0.5062 0.003
BMCA 05112 0.002
Bile acids-related genes
Oatp1b2 04137 0.017
Bsep 04611 0.007
Mdr2 0.5812 0.0004
Cyp8b1 0.6047 0.0002
Cyp7al 0.6495 0.00004
Ntcp 0.6510 0.00004
FXR (in liver) 0.6944 0.000007
Bacteria in terminal ileum and large intestinal contents
Lactobacillus murinus —0.9165 0.00003
Ruminococcus gnavus -0.8870 0.0001
Ruminococcus schinkii -0.8574 0.0004
Lactobacillus acidophilus -0.8278 0.0009
Eubacterium desmolans —0.7687 0.003
Lactococcus lactis —-0.6209 0.031
Lactobacillus reuteri -0.5617 0.057

BBR is reported to be a broad-spectrum antibiotic,
which in this study enriched Bacteroides and decreased
Ruminococcus in the terminal ileum and large bowel
(Fig. 7). The present results are consistent with previous
work in mice treated with normal chow and a high-fat
diet co-administrated with 100 mg/kg BBR [26]. Bacter-
oides, which deconjugates T-conjugated BAs [35], were
enriched by BBR. In the current study, this may result in
rapid deconjugation of T-conjugated BAs in the intestine,
and account for the trend of decreasing TaMCA and
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TBMCA concentrations in serum of mice treated with the
higher BBR doses, leading to decreased amounts of these
BAs in the serum. Therefore, the increase of Bacteroides
might be the reason of the difference of TBMCA in serum
between germ-free mice and BBR treatment. However, the
possibility that antibiotics might have a direct effect on BA
metabolism should not be excluded. Further studies by ex-
perimental modulation of the bacteria in the intestine may
help to directly prove the association of gut flora changes
and the alteration of BA composition and quantity in mice
treated with BBR.

Some of the previously reported pharmacological effects
of BBR might be related to the change in amount and
composition of BAs. In mice treated with higher doses of
BBR, the quantity of BMCA and its conjugates were ele-
vated. Moreover, although the increase of UDCA was not
statistically significant, the relative abundance of UDCA
might increase in parallel with the decrease of other BAs
in liver and serum (Figs. 3 and 4). The increase of UDCA,
BMCA and their conjugates might be cytoprotective by
lowering intracellular TCDCA, which is thought to be
cytotoxic due to its hydrophilic nature [36, 37]. BMCA
and (T)UDCA also protect against drug-induced cholesta-
sis, possibly by inducing a signaling cascade by activating
protein kinase C (PKC) [38], or blocking DCA-induced
nuclear factor-kappaB (NF-kappaB) and activator protein-
1 (AP-1) activity, as reported in colorectal HCT116 cells,
which corresponds to the effects of BBR [21, 39-41]. BBR
decreased secondary BAs such as DCA and LCA, which
might decrease the hydrophobicity and toxicity of the BA
pool [8]. Increased DCA can induce nitric oxide mediated
DNA damage [42], and treatment of LCA or its conjugate
to animals causes intrahepatic cholestasis [43, 44]. In
addition, serum levels of DCA in colon cancer patients
have been shown to be consistently higher than that in
healthy subjects [45, 46]. In the present study, BBR treat-
ment decreased DCA, LCA, and their conjugates in liver
and serum of mice (Figs. 3 and 4), which might relate to
the potential of BBR to decrease liver cancer [21]. BAs
with two hydroxyl groups (CDCA and DCA) induce fluid
secretion, increase mucosal permeability, and produce
mucosal damage [47]; thus, a decrease of DCA by BBR
treatment may contribute to its anti-diarrheal effect. In
addition, BAs have metabolic actions in the body resem-
bling those of hormones by acting through TGR5, and the
potency of BAs to activate TGR5 has been reported to be
LCA >DCA >CDCA >CA [30]. BBR is an antibiotic,
which would decrease secondary BAs in mice and the cor-
responding composition of BAs might negatively regulate
TGR5 in BBR-treated mice. However, BBR has been
reported to exhibit similar effects to TGR5 activation
[48, 49]. Therefore, further studies are required to
quantify the expression and activity of TGR5 in mice
treated with BBR. Additionally, determining the effect
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of BA feeding combined with BBR treatment, and the
influence of BBR on genetically modified mouse models
might provide us with clues to the underlying relationship
between BBR and BAs.

Conclusion

The results of the present study showed that various doses
of BBR have effects on BA metabolism and signaling
pathways as well as gut flora, which will provide guidance
for further studies to determine the mechanisms of BBR
effects.
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