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Hepatoprotective effect of Quercetin
supplementation against Acrylamide-
induced DNA damage in wistar rats
Sabah Ansar1*, Nikhat Jamal Siddiqi2, Seema Zargar2, Majid Ahmad Ganaie3 and Manal Abudawood1

Abstract

Background: Quercetin (QR), is a polyphenolic flavonoid compound which is found in large amounts in certain
foods, and protects against oxidative stress. The current study was conducted to determine whether Quercetin can
possibly exert hepatoprotective and antioxidant activity against acrylamide (ACR) induced toxicity in rats.

Methods: Four groups of Wistar rats consisting of six rats each: (i) control group; (ii) ACR treated group (50 mg/kg bw);
(iii) QR group: rats were treated with QR (10 mg/kg bw); (iv) QR (10 mg/kg bw) was given i.p. for 5 days followed by
ACR (50 mg/kg bw) on 5th day (single dose).

Results: ACR caused an elevation in 8-OH guanosine level and a reduction in Glutahione S-transferase (GST) activity.
Administration of QR significantly protected liver tissue against hepatotoxic effect of acrylamide from amelioration of
the marker enzyme (p < 0.05) and DNA damage (p < 0.01) as evident by comet assay and, besides some indices of
histopathological alterations.

Conclusion: It is concluded that QR could protect the liver against DNA damage induced by ACR probably is thus
capable of ameliorating ACR-induced changes in the rat livers.
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Background
Several studies have reported that acrylamide (ACR) is
formed in heat-treated food mainly containing car
bohydrates [1–7]. ACR has been reported to form
acrylamide-protein adducts in laboratory animals [3].
Earlier carcinogenic action of ACR has been reported
in detail [8]. Recently, not only major metabolic path-
ways and enzymes of ACR have been summarized, but
also the inter individual and the interspecies differ-
ences of ACR metabolism among humans, rats and
mice have been reported [9].
Due to ACR exposure damage of biological macromol-

ecules and disruption of normal metabolism leads to
oxidative stress and imbalance in antioxidant activity
[10]. Oxidative stress causes enhanced generation of re-
active oxygen species (ROS) and depletion of antioxidant

defense system in the tissues. ROS can stimulate free
radical chain reactions, leading to the enhancement of
lipid peroxidation [11].
Plants contain numerous polyphenols, which have been

shown to reduce inflammation and thereby increase resist-
ance to disease [12]. Flavonoids are present in high concen-
tration, as polyphenols in vegetables, fruits, and beverages
[13–15]. Flavonoids are known to have anti inflammatory
[16], anti-allergic [17], cardio protective [18], and anti-
cancer activities [19]. Also, flavonoids protect against DNA
damage in certain oxidative stress conditions [20].
Quercetin is one of the most common flavonoids in

the diet and exhibits therapeutic potential, including
hepatoprotection and the inhibition of liver fibrosis,
against many diseases [12, 21, 22]. It contains a number
of phenolic hydroxyl groups that have strong antioxidant
activity [15, 23–26]. Moreover, QR has been shown to pro-
tect against carbon tetrachloride, ethanol, and paracetamol-
induced hepatotoxicity [27]. Our recent studies have shown
that quercetin can restore against oxidative damage against
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acrylamide induced neurotoxicity [28]. Additionally, recent
published reports have shown protective effect of QR
against various toxic insults [29–32]. In this study, the effect
of QR on acrylamide caused hepatotoxicity in rats has been
investigated.

Methods
Chemicals
ACR, QR, and other reagents were bought from Sigma–
Aldrich Chemicals Co., St. Louis, USA. Quercetin (Sigma)
was resuspended immediately before administration in a
2 % tween aqueous solution. ACR was dissolved in saline
and/or distilled water.

Animals and experimental procedures
Male wistar rats weighing approximately 200–220 g were
procured. Animal utilization protocols were performed in
accordance with the guidelines provided by the Experi-
mental Animal Laboratory and approved by the Animal
Care and Use Committee. All the animals used in this
study were placed in cages in an air conditioned room
maintained at 12 h light/dark cycle.
Study design: Twenty-four rats were randomly divided

into 4 groups (6 rats in each group). Group I received
saline (0.85 % NaCl i.p) at 10 ml/kg bodyweight. Group
II received ACR at a dose of 50 mg/kg b.w. Group III re-
ceived pretreatment with QR -10 mg/kg body weight,
and groups IV received the pretreatment with QR
-10 mg/kg body weight. After the last treatment with
QR, the rats of groups IV received a single i.p. injection
of ACR at 50 mg/kg body weight. Forty-eight hours later,
the rats were sacrificed. The dose of QR and ACR used in
the present study was in accordance with previous study,
respectively [33, 34]. The livers were excised, weighed, and
divided for histological and biochemical analyses.

Biochemical analysis
The liver homogenates were centrifuged at 3000 rpm for
10 min at 4 °C. The supernatants were used for the vari-
ous biochemical determinations.
Liver homogenates were analyzed for Glutathione S-

transferase (GST) measured by Biovision assay kit, DNA
damage by comet assay and 8-OH deoxyguanosine (8-
OHdG) by ELISA kit (Abnova, cat: 1221).

Histological examinations
Small pieces of liver tissue were used for histopatho-
logical studies. Fixed tissues were dehydrated in serial
ethanol series, trimmed, embedded in paraffin, sectioned
into 2-μm sections and stained with hematoxylin and
eosin (H&E). Morphological examination was conducted
under a light microscope (Nikon Eclipse E600).

DNA damage assay
The DNA damage evaluation was performed by single cell
gel electrophoresis (comet) assay as described by [35]. For
visualization of DNA damage, observations were made of
Ethedium Bromide -stained DNA using a 40x objective on
a fluorescent microscope. Generally, 50–100 randomly se-
lected cells were analyzed per sample.

Statistical analysis
Results were analyzed using SPSS software and values are
given as arithmetic means standard error of the mean
(S.E.M.). Data was statistically analyzed by using one-way
analysis of variance (ANOVA) followed by Dunnett’s mul-
tiple comparison tests.

Results
Assessment of Glutathione S-Transferase (GST) activity
ACR exposure significantly decreased GST activity in the
liver cells (~30 %), and this was prevented in the QR +
ACR treated group (Table 1). QR pretreatment elevated
the activity of GST significantly (p < 0.05) compared to
the ACR group-2. GST activity was no different between
QR alone and control groups.

Assessment of 8-OH dG levels
The levels of 8-OHdG was significantly elevated in liver
tissues of the rats treated with ACR (p < 0.05). QR signifi-
cantly decreased 8-OHdG levels as compared with ACR-
treated rats (p < 0.05) (Table 1). There was no significant
difference between the control group1 and QR group 3.

Assessment of DNA damage
The DNA damage was expressed as tail length, tail
DNA, and tail moment in the liver Fig. 1, Table 2. DNA
damage was increased significantly in the ACR group
compared to the control (p < 0.05). QR reduced DNA
damage significantly as observed in the ACR +QR group
as compared to the ACR group (p < 0.01). There was no
significant difference in DNA damage between the con-
trol group and the QR + ACR group.

Table 1 The effect of QR on 8-OHDG and Glutathione-peroxidase
activity induced by ACR

Treatment (grps) 8OHDG (ng/ml) Glutathione S-transferase (GST)
(U/100 mg protein)

Control-G1 6.21 ± 0.31 34.32 ± 5.21

ACR-G2 12.28 ± 0.65* 24.47 ± 8.49*

QR-G3 6.44 ± 0.43 33.88 ± 4.12

QR+ ACR-G4 8.89 ± 0.47** 30.17 ± 5.19**

Values were expressed as mean ± SD, n = 6
*P < 0.05 and **P < 0.01
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Histopathological findings
Figure 2 shows liver sections: Control I-A, showing nor-
mal orientation of hepatic parenchyma. Liver sections
show disarrangement and mild degeneration of cells in
cytoplasm from group II-B. Liver sections from group
III-C and group IV-D show normal hepatic cells, and si-
nusoid spaces as compared to group II-B.

Discussion
Food during baking and frying at high temperatures leads
to formation of acrylamide at higher levels [36]. Recent
studies have reported that a fried potato dish as large
contributor to acrylamide exposure [37]. Furthermore,
acrylamide has been reported as a carcinogen showing
hazardous effects [38]. Acrylamide’s mechanism of action
is greatly enhanced as it can be readily absorbed through
the intestinal tract. Present study demonstrates that QR
protects against DNA damage indicating that QR pos-
sesses DNA-protective properties. These findings are in
accordance with other studies that used quercetin or other

antioxidant substances, such as rutin, nacetylcysteine, and
vitamins E and C, all of which decreased the severity of
hepatic fibrosis [39–43].
The GST enzyme catalyzes the conjugation of the re-

duced form of glutathione (GSH) to xenobiotic and
protect cells and tissues against oxidative stress. A re-
duction of GST activity was observed in homogenized
liver in ACR treated group, and this reduction was
blocked after quercetin administration in this study.
These findings support the hypothesis that QR exerted
a protective effect in vivo [29]. The histopathological
profile of liver damage demonstrates that pretreatment
of QR in ACR-treated group exhibits less damage to
the hepatic cells as compared to the rats treated with
the toxic group. It could be suggested that QR scav-
enges free-radical generation and inhibits ACR–in-
duced injury in hepatic tissues.
Results in this study show that ACR induced DNA

damage was significantly decreased after the treatment
of QR. The antioxidant effects of QR may be due to fla-
vonoid’s high diffusion into the membranes allowed it to
scavenge oxy radicals at several sites throughout the
lipid bilayer or its pentahydroxyl flavones structure
allowed it to chelate metal ions via the orthodihydroxy
phenolic structure, thereby scavenging lipid alkoxyl and
peroxyl radicals [19, 44] or flavanoids might be also in-
volved in the indirect induction of detoxifying genes
[25, 27, 45, 46], which might promote detoxification of
ACR and decrease their toxicity. Enhanced chemilu-
minescence studies haves shown antioxidant role of fla-
vonoids and other polyphenols found in tea [47]. Some
recent studies also support the finding that QR has also

Fig. 1 The effects of QR on DNA damage induced by ACR : 1–4 Control; 5–8 ACR; 9–12 QR; 13–16 QR+ ACR

Table 2 The effect of QR on DNA damage induced by ACR

Treatment grps DNA Trail
intensity %

DNA Tail length μm DNA Tail
moment

Control-G1 5 ± 0.41 1.58 ± 0.12 2.82 ± 0.35

ACR-G2 11.5 ± 0.23 3.37 ± 0.23* 12.43 ± 0.32*

QR-G3 6.5 ± 0.51 2.5 ± 0.35 6.22 ± 0.31

QR + ACR + G4 8 ± 0.36 2.62 ± 0.61** 5.95 ± 0.21**

Values were expressed as mean ± SEM, n = 6
*P < 0.05 and **P < 0.01
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been shown to suppress toxicity and oxidative stress
in vivo and in vitro [48–52].
Once ingested ACR can interact with other proteins at

the cellular level and bind to DNA to form adducts [38].
It has been shown earlier that QR as flavanoides may
bind DNA at sites that would normally react with the
active metabolites of carcinogen [18, 20, 53]. Recently,
in vivo genotoxicity assessment of acrylamide has been
shown and it is reported that genotoxicity of ACR is
tissue specific [54]. Acrylamide can cause gene interac-
tions and chromosomal aberrations and has been classi-
fied as being genotoxic.

Conclusions
In conclusion, the study revealed that ACR induces tox-
icity by increasing DNA damage and decreasing the gluta-
thione S transferase activity. QR protects ACR toxicity
indicating that QR possesses a spectrum of antioxidant
and DNA-protective properties. However, further studies
are required to elucidate the precise mechanisms of pro-
tection of QR against ACR toxicity.
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