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Abstract

and mechanism of allicin on the model.

synthase mRNA levels.

Background: Allicin, a primary ingredient of garlic, has been proposed to possess cardioprotective properties,
which are commonly mediated by improved endothelial function.

Methods: To investigate the effect and mechanism of allicin on the apoptosis of human umbilical vein endothelial
cells (HUVECs), we used Propidium iodide (PI) staining and Annexin V/ PI staining assays to establish a model of
oxidative stress apoptosis induced by H,O,. MTT, RT-PCR and western-blot assays were used to detect the effects

Results: Pl staining, Annexin V/ PI staining assays and morphological assessment suggest that the cell death
induced by 0.5 mM H-0, is primarily apoptotic. Conversely, allicin reverses the effect of H,O, on cell death,
suggesting a role in protecting HUVECs from apoptosis. We demonstrated that H,O, activates PARP cleavage,
reduces pro-Caspase-3 levels and activates Bax expression; however, allicin inhibits each of these apoptotic signaling
indicators. Allicin also reduces the levels of malondialdehyde and increases the levels of superoxide dismutase, nitric
oxide release and endothelial nitric oxide synthase mRNA, but has no significant effect on inducible nitric oxide

Conclusion: These results demonstrate that allicin has powerful effects in protecting HUVECs from apoptosis and
suggest that protection occurs via a mechanism involving the protection from H,O,-mediated oxidative stress.
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Background

Cardiovascular diseases (CVDs) are a category of chronic
noncommunicable diseases causing high global mortality
and have been a heavy social burden in many countries
[1,2]. Atherosclerosis - a progressive disease characterized
by the accumulation of lipids and fibrous elements in the
large arteries - constitutes the single most important
contributor to this growing burden of cardiovascular
disease [3]. Endothelial dysfunction is considered an early
indicator of atherosclerosis, preceding angiographic or
ultrasonic evidence of atherosclerotic plaques [4]. In
addition to managing anabolism and exchange of blood
and tissue fluids, endothelial cells also act as an
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endocrine gland. Endothelial cells produce and secrete
multiple biologically active substances that help to
maintain normal angiostasis and balance of blood. Con-
siderable evidence indicates that oxidized low-density
lipoprotein (ox-LDL) can cause the apoptosis of vascu-
lar endothelial cells through multiple pathways [5].
However the production process of ox-LDL is com-
plicated, and it is stable for only 1 month at 4°C.
Conversely, H,O, is economical, simple and practical,
so it is commonly used in injury models to replicate the
effects of ox-LDL [6,7].

Natural antioxidants are important for the prevention
and treatment of atherosclerosis. Garlic has been studied
extensively for its cardioprotective properties with very
promising results [8]. Its primary active ingredient, 2-
propene-1-sulfinothioic acid S-2-propenyl ester (also
known as allicin), has been shown to alter the composition
of fatty acids in mice or rats fed a high fatty acid diet
[9,10]. The aim of present study was to use H,O, instead
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of ox-LDL to establish a model of oxidative stress and
apoptosis in which to observe the intervention effect of al-
licin on endothelial cell apoptosis. The characterization of
a new antioxidant drug may be beneficial as a novel strat-
egy for the treatment of atherosclerosis.

Methods

Cell culture

HUVECs were obtained from Cambrex (Shanghai Bio-
logical Technology Co., Ltd., China) and were grown in
Dulbecco's modified eagle medium (DMEM) supple-
mented with 10% heat-inactivated FBS (Hangzhou Sijiqing
biological engineering materials Co., Ltd., China) at 37°C
in a humidified atmosphere of 5% CO,. Cells were used at
passage 4—6 for all experiments.

Propidium iodide (PI) staining

HUVECs were cultured in 6 well plates (BD Falcon,
USA) at a density of 2.0 x 10° cells/well in DMEM sup-
plemented with 10% FBS. One day after plating, the cells
were washed and incubated in serum-free medium for
12 hours. The cells were then washed again and incubated
with medium containing various concentrations of H,O,
(0.1, 0.5, 1.0 mM) for 12 hours. The cells were trypsinized,
washed with PBS, and centrifuged at 1000 rpm/min for
5 min. The cells were then resuspended at a density of
1 x 10° cells/ml, and the suspensions were fixed with 70%
precooled ethanol at 4°C for 1 h. Next, the cells were
centrifuged at 1000 rpm/min for 5 min, resuspended
in 1 ml diluted PI (Shanghai Biological Technology Co.,
Ltd., China) and incubated in the dark at 4°C for 30 min.
Flow cytometry was performed using a FACSCalibur
(Backmancoulter, USA). Data were analyzed using Cell-
Quest software (Becton—Dickinson). The amount of necro-
sis was determined as the percentage of PI-positive cells.

Annexin-V/Pl assay

Annexin-V/PI assays were performed using a commercial
apoptosis assay kit (Roche, Switzerland) according to the
manufacturer's instructions. Briefly, HUVECs were
cultured in 6 well plates (BD Falcon, USA) at a density
of 2.0 x 10° cells/well and incubated in DMEM supple-
mented with 10% FBS. One day later, the cells were
washed and incubated in serum-free medium for
12 hours. The cells were then washed again and incu-
bated in medium with various concentrations of H,O,
(0.1, 0.5, 1.0 mM) for 12 hours. After incubation, the
cells were trypsinized and washed with PBS. After cen-
trifugation at 1000 rpm/min for 5 min, the cells were
resuspended in 500 pL binding buffer at a concentra-
tion of 1 x 10° cells/ml. The suspensions were trans-
ferred to 1.5-mL tubes, and 5 pL of Annexin V and
10 pL of PI solution were added. The cells were incu-
bated in the dark at room temperature for 20 min, and
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flow cytometry was performed using a FACSCalibur
(Beckmancoulter, USA). Data were analyzed using
CellQuest software (Becton—Dickinson). The amount of
apoptosis was determined as the percentage of annexin
V-positive cells/PI-negative cells.

MTT assay

As a measure of overall levels of cell death, HUVECs
were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) assay. HUVECs were
plated onto 96-well plates and incubated in DMEM sup-
plemented with 10% FBS. One day later, the cells were
washed and incubated in serum-free medium for 12 hours.
The cells were then were randomly divided into 6 groups:
the normal control group (untreated cells), the model con-
trol group (H,O, only), and the H,O, plus allicin (98%
purity, Shaanxi Ciyuan Biotech Co., Ltd, China) groups
(1 pg/mL, 10 pg/mL, 20 pug/mL or 40 pg/mL allicin).
These concentrations of allicin were selected to reflect a
range of biological activities of the drug in HUVECs.
Thirty minutes prior to the end of the incubation period,
MTT was diluted 1:500 in 0.5% FBS DMEM culture
medium and 200 pl was administered to each well. The
plates were wrapped in aluminum foil to protect them
from light and read using an enzyme-labeled instrument
(Biotek ELX 800/FLX800).

Western blot assay

For the extraction of proteins, cells were placed in RIPA
Lysis Buffer (Beyotime Institute of Biotechnology, China)
and centrifuged at 13000 rpm/min for 30 min at 4°C.
Protein concentrations were assayed with a NanoDrop
instrument, and 40 pg of protein from each sample were
run on a 15% SDS-PAGE gels. The separated proteins
were transferred onto PVDF membranes. After blocking
with 5% nonfat dry milk in double-distilled water at
room temperature for 1 h, membranes were washed 3
times with PBS containing 0.05% Tween (PBS-T) and in-
cubated overnight at 4°C with primary mouse monoclo-
nal antibody (anti-PARP, anti-pro-Caspase-3, anti-Bax or
anti-p-actin) (Santa Cruz Biotechnology, USA) at a 1:500
dilution. The membranes were washed 3 times with
PBS-T, followed by 1 h incubation at room temperature
in a 1:5000 dilution of goat anti-mouse-IgG-HRP (Santa
Cruz Biotechnology, USA). After incubation, membranes
were washed 3 times in PBS-T. Antigen-antibody com-
plexes were analyzed by ECL, and protein levels were
quantified by densitometry. Data were normalized to the
B-actin content of the same sample.

Measurement of oxidative activity

The concentrations of malondialdehyde (MDA), sodium
oxide dismutase (SOD) and nitric oxide (NO) were
assessed using dedicated kits (Nanjing Jiancheng
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Biological Engineering Institute, China) according to
the manufacturer’s protocols.

Reverse transcription PCR (RT-PCR) assay

Total cellular RNA was extracted from HUVECs by the
Trizol method (Bio Basic Inc., Canada). PCR ampli-
fication was performed in a 20 pL reaction volume.
The primer sequences were as follows: eNOS forward,
5-CCAGCTAGCCAAAGTCACCAT-3; eNOS reverse,
5-GTCTCGGAGCCATACAGGATT-3’; iNOS forward,
5-AGCGGTAACAAAGGAGATAG-3; iNOS reverse,
5-CCCGAAACCACTCGTATT-3’; GAPDH forward, 5’-
GTCATCCATGACAACTTTGG-3, GAPDH reverse, 5'-
GAGCTTGACAAAGTGGTCGT-3. After an initial
denaturation at 95°C for 5 min, the PCR conditions were
as follows: 35 cycles of denaturation at 95°C for 30 s, an-
nealing at 55°C for 30 s, and extension at 72°C for 30s.
The PCR products were electrophoresed on a 1% agar-
ose, and stained with ethidium bromide solution.

Real-time quantitative PCR assay
Levels of endothelial nitric oxide (eNOS) mRNA expres-
sion were determined by real-time quantitative PCR. Trip-
licate reactions were run in a volume of 20 pL, containing
2 pL cDNA, 10 pL 2 x SYBR Green mix, 6 pL ddH,O,
1 puL PCR forward primer (10 uM), and 1 pL PCR reverse
primer (10 pM). After an initial denaturation at 95°C for
5 min, the PCR conditions were as follows: 35 cycles of
denaturation at 95°C for 30 s, annealing at 55°C for 30 s,
and extension at 72°C for 30s.

The AACt (threshold cycle) method was used to calcu-
late eNOS mRNA expression levels for each sample,
with GAPDH as the reference gene.

Statistical analysis

All data are expressed as mean + SEM. Statistical ana-
lysis was performed using the Student’s t-test and
ANOVA. Significance was accepted at p <0.05.

Results

H,0, promotes apoptotic cell death of HUVECs

To characterize the effects of H,O, in inducing cell
death of HUVECs, we assessed morphological changes
12 h after exposure to a range of doses of H,O,
(0.1 mM, 0.5 mM and 1.0 mM). H,O, promoted clear
morphological changes to the cells, including cell shrink-
age, karyopyknosis, and irregular nuclei. These results
suggest that H,O, induces programmed cell death in
HUVECs.

To determine whether the effects of H,O, on HUVEC
cell death also may be explained in part by an increase
in necrosis, we assessed the percentage of cells that were
positive by PI staining. H,O, caused an increase in PI
positivity, which was most dramatic at the highest dose
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(Table 1). These results suggest that HyO,-induced cell
death of HUVECs is mediated through both apoptotic
and non-apoptotic pathways.

To further verify the effect of H,O, in inducing cell
death we performed AnnexinV/PI staining. This assay
provides a measurement of both the apoptosis rate and a
secondary death rate, which reflects the extent of necrotic
cell death. Our results showed that both the apoptosis rate
and secondary death rate were increased by H,O,, and
that the increases were dose-dependent (Figure 1). How-
ever, that apoptosis rate rose more rapidly than the sec-
ondary death rate at lower H,O, doses.

On the basis of the data in the PI staining and Annexin
V/PI staining assays, we selected 0.5 mM H,0O, as a model
dose that primarily causes apoptosis over necrosis for sub-
sequent studies of apoptotic cell death.

Allicin inhibits H,0,-induced HUVEC cell death

To determine the effect of allicin on H,O,-induced apop-
tosis of HUVECs, we treated HUVECS with 0.5 mM
H,0, and a range of doses of allicin for 6, 12, or 24 h and
then assessed cell death by MTT assay. While H,O,
promoted cell death in a time-dependent manner, allicin
significantly reversed this effect (Figure 2). Because the
dose of H,O, selected for this experiment primarily
causes apoptosis, these findings suggests that allicin
may block an apoptotic pathway.

Allicin inhibits the activation of an apoptotic cell death
pathway by H,0,

Classic apoptotic cell death is enacted through a path-
way that involves the cleavage of PARP and pro-
Caspase-3 and the activation of Bax [11-13]. To deter-
mine whether H,O, activates this pathway and whether
allicin blocks apoptotic signaling, we assessed the levels
of these proteins by Western blotting. HUVECs were
treated with 0.5 mM H,0, and a range of doses of alli-
cin (10, 20, 40 pg/mL) for 24 h prior to analysis. Our
results showed that H,O, induced the cleavage of PARP,
a decrease in pro-caspase-3 levels, and the activation of
Bax expression; conversely, allicin inhibited these effects
(Figure 3). These results further verify that 0.5 mM
H,O, activates an apoptotic pathway and that allicin in-
hibits the H,O,—mediated apoptosis.

Table 1 The positive rate of Pl of HUVEC cells in each
group
Group (n=3)

Necrosis rate (%)

normal HUVECs 25+1.7
0.1 mmol/L H,0, 79 +1.0%
0.5 mmol/L H,0, 8.1 +2.1%
1.0 mmol/L H,0, 257 £2.5%*

Values are presented as mean + SD; **p < 0.01, *p < 0.05 compared with
normal HUVECGs.
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Figure 1 Comparison of mortality rate and secondary death rate of HUVEC cells in each group. The levels of apoptosis (apoptosis rate)
and necrosis (secondary death rate) were determined by Annexin-V/Pl assays 12 h after exposure to H,O, at the indicated doses. Values represent the
percentage of cells undergoing each form of death and are presented as mean + SD; *p < 001, *p < 0.05, *p < 0.05 compared with normal HUVECs.
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Allicin decreases oxidative activity in HUVECS by H,0,
MDA is a biomarker of oxidative stress [14]. To deter-
mine whether allicin functions at the level of oxidative
stress, we measured MDA levels in HUVECs following
treatment with 0.5 mM H,O, and allicin (1, 10, 20,
40 pg/mL) for 6, 12, or 24 hours. Our results showed
that H,O, causes a dramatic increase in MDA levels,
which was reversed by allicin in a dose-dependent man-
ner at all time points (Figure 4A).

To determine whether the effects on oxidative stress
may be mediated by SOD, an enzyme that regulates oxi-
dative stress [15], we measured SOD levels in HUVECs
following H,O, and allicin exposure. H,O, significant
decreased in SOD levels, and these levels were increased
by concomitant allicin exposure (Figure 4B).

The effects of allicin on oxidative activity were further
verified by assessing levels of NO, a free radical signaling
mediator [16]. NO levels were significantly decreased in

H,05-induced HUVECsS, and this decrease was reversed
in a dose-dependent manner by allicin (Figure 4C).

To further verify the effects of allicin on oxidative sig-
naling, we measured levels of mRNAs for eNOS and
iNOS, two enzymes that function in catalyzing the release
of NO [17,18]. eNOS mRNA expression was downregu-
lated by H,O,, and this downregulation was reversed by
allicin; while iNOS mRNA expression remained un-
changed (Figure 5). These results suggest that allicin may
prevent H,O,-mediated apoptosis via the protection from
detrimental oxidative activity mediated by eNOS produc-
tion of NO and decreased SOD levels.

Discussion

Apoptosis, a form of programmed cell death, is directly
or indirectly regulated at the genetic level, as opposed to
necrosis, which is based on extrinsic factors and for
which the cell has no active role [19]. Apoptosis plays an
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Figure 2 Effects of allicin on cell death of HUVEC cells induced by 0.5 mM H,0,. HUVECs were cultured with 0.5 mM H,O, and various
concentrations of allicin (1, 10, 20, 40 pg/mL) for 6, 12, or 24 hours. Thirty minutes prior to the end of the incubation period, MTT assays were
performed to quantify metabolic activity. Each bar represents the mean + SEM. *p <0.05, **p <0.01 compared with normal HUVECs.
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Figure 3 Effects of allicin on the level of PARP, pro-Caspase-3 and Bax. Levels of PARP, pro-Caspase-3 and Bax proteins were determined by
Western blotting 24 h after exposure of HUVECs to 0.5 mM H,0O, and/or allicin as indicated. Membranes were probed with anti-3-actin antibody

important role in tissue remodeling, aging and response,
and irreversible damage; and abnormal apoptosis may be
the cause of many diseases.

Allium sativum (Liliaceae), whose common name is gar-
lic, is an ancient spice and a medicine used for centuries
around the world. Allicin (2-propene-1-sulfinothioic acid
S-2-propenyl ester) is a key molecule of garlic and is
responsible for the pungent smell of garlic [20]. A role
for allicin has been widely demonstrated in cardiovascu-
lar prevention [21-27], but the specific role of allicin as
the compound corresponding to this effect and its
mechanisms have not been elucidated.

H,O, has the same oxidation resistance as ox-LDL, is
easier to produce, and is well established as a common
model for oxidative injury [6,7]. Consequently, we estab-
lished a HUVEC oxidative stress model by using H,O,
instead of ox-LDL to induce HUVEC apoptosis. We de-
termined the effect and mechanism of allicin on apop-
tosis of HUVECs induced by H,O, at 0.1 - 0.5 mM. PI
staining and Annexin-V/PI assay demonstrated that the
apoptosis rate was increased, but an increase in the sec-
ondary mortality was not obvious. When the concen-
tration of H,O, was increased to 1 mM, the apoptosis
rate was increased, but secondary mortality was also
increased significantly. For this reason, we selected
0.5 mM H,O, as an appropriate concentration for in-
ducing optimal apoptosis, with minimal amounts of
secondary necrosis.

MTT assay demonstrated that allicin effectively re-
duces the apoptosis of HUVECs induced by H,O, in a
dose-dependent manner. These results were verified by
Western blotting, which suggests that allicin stabilizes
pro-Caspase-3 protein expression and reduces PARP and
Bax protein expression. Caspases are a well-characterized
group of cysteine proteases, which are related in structure

and reside in the cytosol. A common feature of caspases is
the ability to disconnect the aspartic acid residue peptide
bond. Of the 11 caspases, Caspase-3 is considered the
main terminal cleavage enzyme in the apoptosis process
[28]. Furthermore, Caspase-3 is responsible for the cleav-
age of the DNA repair enzyme PARP, which is another
hallmark of apoptosis [12]. Therefore, our findings that al-
licin reduces the cleavage of Caspase-3 and PARP are con-
sistent with a role for allicin in preventing apoptosis.
Furthermore, Bax is a member of the Bcl-2 family that
regulates apoptosis by controlling mitochondrial mem-
brane channels. Bax was the first pro-apoptotic member
of this family that was identified, and its expression is in-
creased by a variety of well-characterized apoptotic agents,
including H,O, [13]. Therefore, the ability of allicin to re-
duce Bax activation also supports the idea that allicin pro-
tects HUVECs from apoptosis caused by H,O,.

We also demonstrated that allicin effectively reduces
levels of MDA, a biomarker of oxidative stress, while
simultaneously increasing the activity of SOD, an anti-
oxidant enzyme. MDA levels indirectly reflect the sever-
ity of attack in cells by free radicals, and SOD activity
levels indirectly reflect the capability of scavenging oxygen
free radicals [14,15]. Therefore, these findings suggest that
allicin protects HUVECs by preventing oxidative stress. In
addition to increasing antioxidant activity, allicin may be
involved in the scavenging of oxygen free radicals, pre-
vention of lipid peroxidation, and stabilization of the
cell membrane.

Our results further show that H,O, dramatically de-
creases nitric oxide (NO) levels in HUVEC culture
medium, while allicin leads to increased NO. NO is an
endogenous vascular relaxing factor that is produced in
endothelial cells. It serves as a ubiquitin signaling mol-
ecule and regulates angiostasis in blood vessels and
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Figure 4 Effect of allicin on oxidative activity in HUVECs induced by H,O0,. Levels of (A) the oxidative biomarker MDA, (B) the oxidative
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apoptosis in many cells [16]. H,O, also up-regulates the
expression of cell adhesion molecules. Activation of neu-
trophils induces the formation of non-ion-dependent
NOS, and consumes a large amount of L-Arg. H,O, also
prompts an increase in calcium, which generates a large
amount of O to directly inactivate NO by activating
the xanthine/xanthine oxidase system [29]. Therefore,
the increased release of NO by allicin may serve to re-
verse the effects of H,O, and protect cells through its

antioxidant activity. HyO, may also decrease NO release
through its effects on the expression of eNOS, an en-
zyme that activates NO production [17]. We have shown
by both reverse transcription PCR and real-time quanti-
tative PCR that allicin reverses this decrease in eNOS
mRNA expression, which suggests an additional mechan-
ism that may regulate its ability to increase the release of
NO and decrease the apoptosis rate. These results demon-
strate that allicin protects HUVECs from apoptosis and
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elucidate a pathway by which protection is mediated via
the reduction in oxidative stress.

Conclusion

Allicin has powerful effects in protecting HUVECs from
apoptosis. The protection occurs via a mechanism in-
volving the reduction in oxidative stress, as measured by
increased SOD and reduced MDA, NO and eNOS.
There finding suggest that allicin functions as a powerful
antioxidant. Further studies will be necessary to deter-
mine the direct effects of allicin on atherosclerosis.
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