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Abstract
Lung cancer is a malignant tumor with highly heterogeneous characteristics. A classic Chinese medicine, 
Pinellia ternata (PT), was shown to exert therapeutic effects on lung cancer cells. However, its chemical and 
pharmacological profiles are not yet understood. In the present study, we aimed to reveal the mechanism of PT 
in treating lung cancer cells through metabolomics and network pharmacology. Metabolomic analysis of two 
strains of lung cancer cells treated with Pinellia ternata extracts (PTE) was used to identify differentially abundant 
metabolites, and the metabolic pathways associated with the DEGs were identified by MetaboAnalyst. Then, 
network pharmacology was applied to identify potential targets against PTE-induced lung cancer cells. The 
integrated network of metabolomics and network pharmacology was constructed based on Cytoscape. PTE 
obviously inhibited the proliferation, migration and invasion of A549 and NCI-H460 cells. The results of the cellular 
metabolomics analysis showed that 30 metabolites were differentially expressed in the lung cancer cells of the 
experimental and control groups. Through pathway enrichment analysis, 5 metabolites were found to be involved 
in purine metabolism, riboflavin metabolism and the pentose phosphate pathway, including D-ribose 5-phosphate, 
xanthosine, 5-amino-4-imidazolecarboxyamide, flavin mononucleotide (FMN) and flavin adenine dinucleotide 
(FAD). Combined with network pharmacology, 11 bioactive compounds were found in PT, and networks of 
bioactive compound–target gene–metabolic enzyme–metabolite interactions were constructed. In conclusion, this 
study revealed the complicated mechanisms of PT against lung cancer. Our work provides a novel paradigm for 
identifying the potential mechanisms underlying the pharmacological effects of natural compounds.
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Introduction
Lung cancer is a malignant tumor with highly heteroge-
neous characteristics. Lung cancer has the highest preva-
lence and mortality rate of all malignant cancers both in 
China and worldwide [1]. According to the latest data 
from GLOBOCAN2020, the incidence and mortality of 
lung cancer in China account for 37.0% and 39.8% of the 
world’s total, respectively, showing an increasing trend in 
recent years [2]. Therefore, preventing and treating lung 
cancer is a major challenge for preventing and control-
ling malignant tumors. At present, effective treatments 
for lung cancer mainly rely on the development and use 
of targeted drugs, but their clinical benefits are still lim-
ited. Therefore, the clinical prevention and treatment of 
lung cancer by combining multicomponent traditional 
Chinese medicine is highly valuable [3–5]. Many studies 
have shown that traditional Chinese medicine induces 
cell apoptosis and inhibits cell proliferation, which can 
alleviate symptoms, inhibit tumor development, prolong 
survival and improve the quality of life of patients [6–8]. 
Due to the lack of support for large-scale clinical trials 
based on evidence-based medicine and the limitations 
of statistics, traditional Chinese medicine is often used 
as an adjuvant treatment for lung cancer patients. Many 
published reports have shown the results of combining 
TCM with chemotherapy in lung cancer patients [9–11], 
and several natural compounds from traditional Chinese 
medicine formulas, such as resveratrol, curcumin, and 
berberine, have been shown to exhibit anticancer effects 
that inhibit the development, proliferation, angiogenesis, 
and metastasis of lung cancer [12]. Unlike Western medi-
cine of “one target, one drug”, TCM theory emphasizes 
the concept of the integrity of the whole human body. 
Due to the complexity of its components, conventional 
pharmacological approaches for experimentally identify-
ing the unique mechanism of action may not be suitable 
for TCM research [13]. With the rapid development of 
bioinformatics, newly emerging network pharmacology 
based on large databases has become a useful tool for the 
detailed characterization of complex drug system mecha-
nisms from the molecular level to the pathway level [14]. 
Network pharmacology conforms to the key ideas of the 
holistic philosophy of TCM. As a state-of-the-art tech-
nology, this method updates the research paradigm from 
the current “one target, one drug” mode to a new “net-
work target, multicomponent” mode [15–17].

Most lung cancer originates from malignant bronchial 
mucosal epithelium, with a small portion caused by bron-
chial alveolar epithelium or adenoid lesions. Some of lung 
cancer’s typical symptoms are difficulty breathing, cough-
ing and the expectoration of sputum [18]. Therefore, tra-
ditional Chinese medicine experts in the past have paid 
attention to the use of expectorant products in treat-
ment. Pinellia ternata, recorded in “Shen Nong’s Materia 

Medica”, has a long history in treating cough. However, 
the chemical and pharmacological foundations of Pinel-
lia ternata in inhibiting human cancers, especially lung 
cancer, have not been globally evaluated with appropri-
ate approaches. Nonetheless, network pharmacology is 
limited by the use of a single computational method that 
relies on public databases. Network pharmacology alone 
could only predict the possibility of compound-target 
combinations and pathway analysis [16]. Metabolomics, 
the simultaneous analysis of a large pool of endogenous 
metabolites, has been applied in many fields, including 
the diagnosis and treatment of diseases, biomarker dis-
covery, and the exploration of disease pathogenesis [19, 
20]. Therefore, we integrated metabolomics with net-
work pharmacology to analyze the mechanism of action 
of Pinellia ternata. This strategy is expected to help 
researchers better understand the therapeutic principles 
of natural Pinellia ternata compounds in the treatment 
of lung cancer.

In the present study, we used computational tools and 
resources to investigate the effects of the pharmacologi-
cal network of Pinellia ternata on lung cancer to predict 
its active compounds and potential protein targets and 
pathways. In addition, in vitro experiments were also 
conducted to validate the potential underlying mecha-
nism of Pinellia ternata in lung cancer, as predicted by 
a network pharmacology approach. Moreover, metabolo-
mic analysis of lung cancer cells revealed synergistic met-
abolic mechanisms in terms of metabolites and metabolic 
pathways. Subsequently, the targets from network phar-
macology and the metabolites from cell metabolomics 
were jointly analyzed to filter crucial metabolic pathways 
via MetaScape. The detailed technical strategy of the cur-
rent study is shown in Fig. 1.

Materials and methods
Cell experiments
Reagents
The tuber of Pinellia ternata was collected from our 
experimental field at Suzhou University and was authen-
ticated by Professor Jianping Xue at the College of Life 
Sciences, Huaibei Normal University. The geographical 
location of the experimental field of Suzhou University 
was 117° E and 34° N. The collection of tubers of Pinel-
lia ternata was approved by Zhang Xingtao, the dean of 
Suzhou University, and our coauthor. Chemical reagents 
such as ethanol and methanol (analytical grade) were 
purchased from China National Pharmaceutical Group 
Co., Ltd.

Preparation of herb extracts
The extracts of Pinellia ternata were prepared as follows. 
Two kilograms of Pinellia ternata tubers were soaked in 
70% ethanol (1:8, w/v) for 2  h and extracted twice with 
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70% ethanol for 2 h. Later, the extracts were concentrated 
in vacuo, lyophilized into powder and stored at -80  °C 
(the drug extraction ratio was 13.8%).

Cell culture and cell viability assay
The human normal cell Line BEAS-2B, and non-small 
cell lung cancer cell Lines A549 and NCI-H460 were 
purchased from Wuhan Pricella Biotechnology Co., Ltd. 
(item code: CL-0016, CL-0299) and used for subsequent 
experiments. The cells were cultured in DMEM supple-
mented with 10% FBS, 100 U/mL penicillin, and 100 mg/
mL streptomycin and maintained at 37 °C in a humidified 
chamber with 5% CO2.

The human normal lung cell and lung cancer cells 
(5,000 cells/well) were seeded in 96-well plates and incu-
bated for 24 h. After pretreatment with different concen-
trations of PTE (0, 0.0125, 0.025, 0.05, 0.10, 0.20, 0.40, 
and 0.80 µg/µL) for 48 h, 10 µL of 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide solution (MTT, 
5 mg/ml; Sigma, USA) was added to each well, and then 
the cells were cultured at 37  °C for another 4  h. Then, 
the supernatants were discarded, and 100 µL of DMSO 
was added to each well. The absorbance was measured 
at 490  nm using a Multiskan MS microplate reader 

(Labsystems, Finland). The IC50 of PTE in lung cancer 
cells was calculated by using GraphPad Prism 9 software.

Cell wound-healing and transwell invasion assays
For the transwell invasion assay, millicell cell cultures 
inserted in 24-well plates were pretreated with 100 µL 
of cold Matrigel (BD Biosciences, USA, diluted 1:4 with 
cold PBS) for 2 h at 37 °C. Lung cancer cells (1 × 105 cells/
well) were seeded in a chamber with 200 µL of serum-
free DMEM at 37  °C and then incubated with or with-
out PTE at the IC50 for 24 h. The invaded cells were fixed 
with 4% paraformaldehyde for 30 min, stained with crys-
tal violet solution for 2 h and then counted with a light 
microscope.

For the wound-healing assay, lung cancer cells were 
incubated in 6-well plates at 100% confluence. A denuded 
area was scraped from the cell monolayer using a plastic 
pipette tip. The medium was removed, and the mono-
layer was washed 3 times with PBS. Then, medium with 
or without PTE at the IC50 was added to each well, and 
cell movement into the wound area was assessed after 
24 h of incubation under a microscope.

Fig. 1  The technical strategy of the current study
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UPLC‒MS metabolomic analysis
Experimental grouping and sample preparation
A549 and NCI-H460 cells were removed, cultured in 
100 mm Petri dishes and cultured overnight to allow the 
cells to adhere to the wall. The cells were divided into 
a blank control group and an intervention group and 
treated with PTE at a concentration of 0 or the IC50, with 
6 parallel samples in each group. Therefore, the treated 
A549 and NCI-H460 cells were divided into four main 
groups: Control-A, PTE-A, Control-N, and PTE-N. After 
48  h, the Petri dish was washed three times with pre-
cooled PBS and then digested with trypsin for 1–2 min. 
The suspension was centrifuged at 1000 r/min for 5 min, 
the supernatant was discarded, and the cells were col-
lected as samples.

The samples stored at -80 °C were thawed on ice. A 500 
µL solution (methanol: water = 4:1, V/V) containing an 
internal standard was added to the cell sample and vor-
texed for 3  min. The sample was placed in liquid nitro-
gen for 5 min and on dry ice for 5 min and then thawed 
on ice and vortexed for 2  min. This freeze‒thaw cycle 
was repeated three times in total. The sample was cen-
trifuged at 12,000  rpm for 10  min (4  °C). Then, 300 µL 
of the supernatant was collected and stored at -20 °C for 
30 min. The sample was then centrifuged at 12,000 rpm 
for 3 min (4 °C). A 200 µL aliquot of the supernatant was 
transferred for LC‒MS analysis. The pooled quality con-
trol (QC) samples were made by mixing 10 µL aliquots 
from each sample (one per six samples).

UPLC-QTOF/MS analysis
All samples were acquired by the LC‒MS system follow-
ing the manufacturer’s instructions. The analytical condi-
tions were as follows: UPLC: column, Waters ACQUITY 
UPLC BEH C18 1.8 μm, 2.1 mm * 100 mm; column tem-
perature, 40 °C; flow rate, 0.4 mL/min; injection volume, 
2 µL; and solvent system, water (0.1% formic acid): ace-
tonitrile (0.1% formic acid). The column was eluted with 
5% mobile phase B (0.1% formic acid in acetonitrile) at 
0 min, followed by a linear gradient to 90% mobile phase 
B (0.1% formic acid in acetonitrile) over 11 min, held for 
1  min, and then returned to 5% mobile phase B within 
0.1  min, held for 1.9  min, and then rapidly returned to 
the starting conditions.

The data were acquired in information-dependent 
acquisition (IDA) mode using Analyst TF 1.7.1 Soft-
ware (Sciex, Concord, ON, Canada). The source param-
eters were set as follows: ion source gas 1 (GAS1), 50 
psi; ion source gas 2 (GAS2), 50 psi; curtain gas (CUR), 
35 psi; temperature (TEM), 550 °C, or 450 °C; decluster-
ing potential (DP), 60  V, or − 60  V in positive or nega-
tive mode, respectively; and ion spray voltage floating 
(ISVF), 5000  V–− 4000  V in positive or negative mode, 
respectively.

Data analysis
The original data file acquired by LC‒MS was converted 
into mzML format by ProteoWizard software. Peak 
extraction, peak alignment and retention time correc-
tion were performed by the XCMS program. The “SVR” 
method was used to correct the peak area. The peaks 
with detection rates lower than 50% in each group of 
samples were discarded. After that, metabolic identifica-
tion information was obtained by searching the labora-
tory’s self-built database, integrated public database, AI 
database and metDNA. SIMCA-P 14.1 software (Umet-
rics, Sweden) was used to conduct principal compo-
nent analysis (PCA), partial least-squares discriminant 
analysis (PLS-DA), and orthogonal partial least-squares 
(OPLS) analysis of the normalized data. Based on the VIP 
values (VIP > 1) and t tests (P < 0.05), the differentially 
abundant metabolites were selected between the control 
group and the model group and identified according to 
the following online databases: mzCloud (https://www.
mzcloud.org/), HMDB (http://www.hmdb.ca), ChemS-
pider (http://www.chemspider.com), and KEGG (http://
www.kegg.jp) [21]. The Venn diagram was drawn accord-
ing to the guidance method of online software (https://
cloud.metware.cn/#/user/login). Pathway analysis was 
conducted with MetaboAnalyst [22]. Parameters (p 
value < 0.05) were used as indices to determine the most 
relevant pathways.

Network pharmacology analysis
Bioactive component screening
Information on the Pinellia ternata compounds was 
obtained from databases such as TCMSP (http://tcmspw.
com/) [23]. The active compounds were filtered by inte-
grating oral bioavailability (OB) (≥ 30%) and drug simi-
larity (DL) (≥ 0.18) [24]. In addition, compounds with 
definite pharmacological effects, even those with low OB 
or DL values, were selected for further research.

Target protein prediction of drug components in Pinellia 
ternata
The protein targets of the active substances in Pinel-
lia ternata were retrieved from the TCMSP database by 
using the filter search bar of the related targets of the 
compound component. Moreover, the annotated genome 
database platform Gene Cards, the protein database 
UniProt, and the online database KOBAS were used to 
query the human gene names corresponding to the target 
proteins.

Construction of the protein–protein interaction (PPI) network 
and screening of its core targets
The String database (https://string-db.org/Version 10.5) 
was logged online, and the search mode “multiple pro-
tein” box was used. Then, common target proteins of 

https://www.mzcloud.org/
https://www.mzcloud.org/
http://www.hmdb.ca
http://www.chemspider.com
http://www.kegg.jp
http://www.kegg.jp
https://cloud.metware.cn/#/user/login
https://cloud.metware.cn/#/user/login
http://tcmspw.com/
http://tcmspw.com/
https://string-db.org/Version
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Pinellia ternata and lung cancer were entered into the 
String database. The search criteria for the species con-
dition were human (Homo sapiens); the common target 
name was converted; the PPI score was set to > 0.7, and 
a visual interaction map of the PPI relationship network 
was obtained. The free proteins that appeared outside 
the network were manually hidden, and the PPI interac-
tion protein relationship map was exported. According to 
the node degree values, the key core genes of the protein 
interaction network were screened out.

Pathway enrichment analysis
To explore the combination mechanisms of Pinellia ter-
nata against lung cancer, pathway enrichment was per-
formed using the DAVID Bioinformatics Resources 6.8 
server [25], and GO and KEGG pathway enrichment 
analyses of drugs, key chemical components, and disease 
targets were carried out. Pathways with p values less than 
or equal to 0.05 were selected.

Network construction
Combined with the identification and screening of drug 
target proteins in step 2.3.3, the lung cancer target pro-
teins were mapped to each other to obtain common 
target proteins, and then, the related information of the 
drug active ingredient and the common target proteins 
were imported into Cytoscape 3.7.1 software for data 
processing. The visual network of drug-bioactive com-
ponent-disease targets was constructed and obtained. 
Among them, nodes were used to represent key chemi-
cal components and disease targets, and solid lines with 
arrows were used to represent the interactions between 
nodes.

Joint pathway analysis
The targets from network pharmacology and the metab-
olites from cell metabolomics were jointly analyzed to 
select crucial metabolic pathways by MetaboAnalyst [26].

Western blotting
Lung cancer cells were inoculated in 6-well plates (5 × 105 
cells/well). After incubation overnight, cells were treated 
with or without PTE for 48  h. The cells were harvested 
using a micro scraper (Corning). The expression levels of 
GAPDH, p-PI3K p-AKT, MMP9, HIF-1α, TGF-β, BCL-
2, and AKT were examined by immunoblotting. In short, 
the whole cell extracts were lysed on ice with RIPA buf-
fer supplemented with phosphatase inhibitor (1 mM NaF 
and 1 mM Na3VO4) and proteinase inhibitor (0.5% apro-
tinin, 0.5% leupeptin, and 1% PMSF) for 30 min. Then the 
lysates were centrifuged at 14,000 rpm at 4℃ for 10 min. 
The protein concentration was measured using bovine 
serum albumin (BSA; Sigma, MO, USA) as detected 
using bovine serum albumin as the standard. The same 

amount of protein in each sample was resolved by 
sodium dodecyl sulfate-polyacrylamide gel electropho-
resis (SDS-PAGE), and transferred onto a polyvinylidene 
fluoride membrane (PVDF, Biorad, USA). Subsequently, 
the membrane was blocked with 5% BSA at room tem-
perature in Tris buffered saline-Tween 20 buffer (TBST: 
1% Tween 20, 10 mmol/L Tris, 150 mmol/L NaCl, pH 
7.4) for 2 h. Then the blots were incubated with primary 
antibodies (Abcam, UK) overnight at 4ºC. After washing 
three times with TBST buffer, the blots were incubated 
with the secondary antibody (Abcam, UK) at room tem-
perature for 2 h. Immunoreactivity was measured using 
advanced ECL assay kit (GE Healthcare, UK) and visual-
ized using a chemiluminescence imaging system.

Statistical analysis
Each independent experiment was repeated at least three 
times. Statistical analysis between two groups was per-
formed by using Student’s t test with SPSS software (SPSS 
Inc., USA). Variance analysis between multiple groups 
followed by Tukey’s test was used to calculate the statis-
tical significance of the differences. Multiple groups of 
normalized data were analyzed using one-way ANOVA. 
The data are shown as the mean ± standard deviation. 
Unless otherwise specified, a p value less than 0.05 was 
considered to indicate a statistically significant difference.

Results
Pinellia ternata inhibited the proliferation of lung cancer 
cells
To validate the anti-proliferative effect of PTE on lung 
cancer cells, BEAS-2B, A549 and NCI-H460 cells were 
treated with Pinellia ternata extracts at different con-
centrations for 48 h (Supplementary File S1). The results 
showed that PTE has little effect on the proliferation of 
normal lung cells BEAS-2B (Supplementary File S2), but 
the percentage of inhibited A549 and NCI-H460 cells 
increased significantly with increasing PTE concentra-
tion, indicating that PTE had a significant inhibitory 
effect on the growth of lung cancer cells (Fig.  2). The 
IC50 values measured after PTE treatment of A549 and 
NCI-H460 cells were 0.29 and 0.30  µg/µL, respectively. 
For the convenience of subsequent experiments, 0.30 µg/
µL PTE was selected for treatment of both cell lines.

Pinellia ternata inhibited the migration and invasion of 
lung cancer cells
To investigate the effects of PTE on lung cancer cells 
in vitro, cell migration and invasion experiments were 
conducted. As shown in Fig. 3, the wound-healing assay 
indicated that migration was slower in A549 and NCI-
H460 cells treated with PTE, which showed that PTE at 
a concentration of 0.30  µg/µL obviously inhibited lung 
cancer cell migration. Moreover, compared with that 
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in the control group, the invasion rate was lower in the 
PTE-treated A549 and NCI-H460 cell groups (Fig.  4). 
These experiments indicated that PTE could significantly 
reduce cell migration and invasion in vitro.

Results of the metabolomics analysis of lung cancer cells 
treated with Pinellia ternata
Multivariate data analysis
The typical peak intensity chromatograms of the A549 
and NCI-H460 lung cancer cell samples were analyzed 
in both positive and negative modes (Fig. S1). The PCA 
score plots indicated that the model group was separated 
from the control group (Fig.  5A). Moreover, a quality 
control (QC) group was generated, which indicated that 
the instrument was stable (Fig. 5A). Pearson correlation 
analysis was conducted on the QC samples, and the cor-
relation between the QC samples was greater than 0.99 
(Fig. S2), indicating good stability and high data qual-
ity throughout the testing process. As shown in Fig. 5A, 
significant separations between the PTE group and the 

Fig. 3  Effects of PTE on the migration of A549 and NCI-H460 cells. * represents p < 0.05 compared with the control group

 

Fig. 2  Effects of PTE at different concentrations on the viability of lung 
cancer A549 and NCI-H460 cells
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Fig. 5  Principal component analysis and cluster analysis of overall metabolites. (A) PCA-3D score chart of overall metabolites from LC–MS data in positive 
and negative mode. (B) Overall cluster diagram of the metabolites. The data were analyzed via the Pearson correlation method after mean centering and 
unit variance scaling

 

Fig. 4  Effects of PTE on the invasion of A549 and NCI-H460 cells. * represents p < 0.05 compared with the control group
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control group were observed in the PCA score 3D plots, 
suggesting that metabolic disturbances could be obvi-
ously induced by PTE treatment. Compared with those 
in the control group, the metabolic changes in the NCI-
H460 group were more obvious than those in the A549 
group. Further cluster analysis revealed that, after PTE 
treatment, there were significant differences in metabo-
lites among different lung cancer cell lines, with smaller 
individual differences within the same group (Fig. 5B).

Identification of differential endogenous metabolites
The levels of 2068 metabolites in the lung cancer cells 
of the 4 groups were determined after data preprocess-
ing (Supplementary File S3). To identify the potential 
metabolites that contributed to the metabolic differences, 
we performed PCA (Fig.  6A), OPLS-DA (Fig.  6B) and 
ANOVA followed by FDR. The OPLS-DA model showed 
good separation, with high R2Y (R2Y = 0.991, p < 0.005) 
and Q2 (Q2 = 0.893, p < 0.005) (Fig. S3), indicating good 

explanatory ability of the sample classification informa-
tion and cross-validated predictive capability. The S plots 
of OPLS-DA were constructed based on the VIP values 
(Fig. 6C), which revealed the variety of metabolites.

Based on VIP > 1 and p < 0.05, 703 metabolites in A549 
lung cancer cells were differentially expressed between 
the PTE-A and Control-A groups, 886 metabolites in 
NCI-H460 lung cancer cells were differentially expressed 
between the PTE-N and Control-N groups, and 343 
metabolites in lung cancer cells were differentially 
expressed between the PTE group (PTE-A and PTE-N) 
and Control group (Control-A and Control-N) (Supple-
mentary File S4–6). Venn diagram analysis revealed 102 
common metabolic differences between the PTE-treated 
lung cancer cell group and the control group (Fig. 6D).

Metabolic pathway analysis
The 102 differentially abundant metabolites were 
imported into the KEGG compound database to search 

Fig. 6  Identification of differential endogenous metabolites. (A) PCA score plots, (B) OPLS-DA score plot, (C) S-plot of OPLS-DA, (D) Venn diagrams of the 
potential metabolites associated with PTE treatment of lung cancer cells
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for their corresponding KEGG ID, and only 30 metabo-
lites could be identified with the KEGG ID (Supple-
mentary File S7). These metabolites were subsequently 
imported into MetaboAnalyst to explore the potential 
anti-lung cancer mechanisms of Pinellia ternata, and 12 
metabolites were matched for further pathway analysis. 
As shown in Fig. 7, when the p value was less than 0.05, 
2 pathways, namely, purine metabolism and riboflavin 
metabolism, were significantly affected in the lung cancer 
cells (Fig. S4). The metabolites related to these pathways 
were D-ribose 5-phosphate, xanthosine, 5-amino-4-im-
idazolecarboxyamide, FMN and FAD. Interestingly, 
D-ribose 5-phosphate was also involved in the pentose 
phosphate pathway (Table 1).

Results of the network pharmacological analysis of Pinellia 
ternata
A total of 116 chemical components of Pinellia ternata 
were retrieved from the TCMSP database via keyword 
screening. By setting the inclusion criteria at DL ≥ 0.18 
and OB ≥ 30%, a total of 13 candidate compounds were 
retrieved (Table S1). Among them, 24-ethylcholest-4-en-
3-one, β-sitosterol, poriferast-5-en-3beta-ol, cavidine, 
baicalin, stigmasterol and other components have drug-
like properties of more than 75%, suggesting that these 
chemical components may play a key regulatory role 
in the function of this medicine in the human body. A 
total of 175 human target genes were matched from the 
13 compound components identified through searches 

Table 1  Differential metabolites related to the inhibitory effect of Pinellia ternata on lung cancer cells detected by UPLC-MS
NO Metabolites TR (min) m/z Formula VIP P Fold change Trend KEGG ID Scan mode
1 Flavin adenine dinucleotide (FAD) 3.00 785.15 C27H33N9O15P2 1.58 1.51E-02 1.38 ↑ C00016 +
2 Flavin mononucleotide (FMN) 3.01 456.10 C17H21N4O9P 2.29 2.28E-05 1.39 ↑ C00061 +
3 5-Aminoimidazole-4-carboxamide 2.09 126.05 C4H6N4O 1.56 1.15E-02 1.17 ↑ C04051 –
4 Xanthosine 1.64 284.07 C10H12N4O6 1.23 4.61E-02 2.03 ↑ C01762 –
5 D-ribofuranose 5-phosphate 0.86 230.02 C5H11O8P 1.68 1.51E-02 0.53 ↓ C00117 –
TR: Retention Time; UPLC-MS: Ultra-Performance Liquid-Chromatography - Mass Spectrometry; VIP: Variable Important in Projection

Fig. 7  Metabolic pathway analysis. The horizontal axis represents the influence value of the pathway, and the vertical axis represents the significance 
impact value of the signaling pathway
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of the TCMSP database. After deduplication, 99 target 
genes were ultimately obtained.

Then, 22,400 target genes of lung cancer were obtained 
from the Gene Cards database by using “lung cancer” as 
the screening keyword, and a total of 4559 genes were 
obtained by setting the correlation score greater than or 
equal to 6. By combining the 99 screened drug targets for 
mutual mapping, 99 common target genes were obtained. 
The relationships between these 13 compounds and 99 
target proteins were analyzed by Cytoscape software 
to construct a network visualization map of drugs, key 
chemical components, and disease targets, as shown in 
Fig. 8.

Integrated analysis of metabolomics and network 
pharmacology
To obtain a comprehensive view of the mechanisms of 
Pinellia ternata against lung cancer cells, we constructed 

an interaction network based on metabolomics and net-
work pharmacology. Differentially abundant metabolites 
were imported into the MetScape plugin in Cytoscape to 
construct metabolite–reaction–enzyme–gene networks. 
As shown in Figs.  9 and 28 metabolic enzymes associ-
ated with 5 differentially abundant metabolites were 
identified.

To further investigate how the target genes of the effec-
tive components in Pinellia ternata regulate metabolic 
enzymes to differentially express metabolites, the above 
99 target proteins and 28 metabolic enzymes were ana-
lyzed for protein interactions via the DAVID database. 
Through interrelated mapping, 24 target genes of 11 
compounds in Pinellia ternata were found to be closely 
related to 28 metabolic enzymes in lung cancer cells 
(Fig.  10). The affected pathways were purine metabo-
lism, riboflavin metabolism and the pentose phosphate 

Fig. 8  The drug-bioactive component-disease target network for Pinellia ternata in lung cancer. The red nodes represent Pinellia ternata drugs; the yellow 
nodes represent candidate active compounds, and the green nodes represent potential protein targets. The edges represent the interactions between 
these nodes
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pathway. These compounds may play essential roles in 
the inhibitory effect of Pinellia ternata on lung cancer 
cells.

Western blot verification of target proteins of active 
components in Pinellia ternata
In order to verify whether the target proteins involved in 
the above network are involved in inhibiting the prolif-
eration of lung cancer cells, we carried out WB experi-
ment to verify the expression of p-PI3K p-AKT, MMP9, 
HIF-1α, TGF-β, BCL-2, and AKT. As shown in Fig.  11, 
the extract of Pinellia ternata could significantly inhibit 
the expression of PI3K/AKT and other proteins in a con-
centration dependent manner, indicating that the active 
components of Pinellia ternata could target and regulate 
the expression of these proteins.

Discussion
Pinellia ternata is a traditional Chinese medicine 
recorded by ancient physicians for relieving clinical dis-
eases such as cough and sputum [27]. Our experiments 
showed that Pinellia ternata extracts could significantly 

inhibit the proliferation, migration, and invasion of lung 
cancer cells in vitro. By using network pharmacology 
methods, 13 ingredients, mainly sterols, alkaloids, flavo-
noids, and cyprinosides, were selected from the TCMSP 
database. The results of modern pharmacological 
research have shown that these categories of compounds 
play important roles in regulating tumorigenesis, sug-
gesting that network pharmacology for screening effec-
tive active ingredients of drugs has important reference 
value [28]. The network of drug–key chemical com-
ponent–disease targets not only revealed the progress 
of ancient Chinese medicine decoctions but also sug-
gested that pinasterol, β-sitosterol, carvendine, baicalein, 
coniferin and other chemical components may play key 
regulatory roles in the targeted treatment of lung can-
cer. β-Sitosterol has been found in many Chinese herbal 
medicines to significantly inhibit the proliferation of 
tumor cells; specifically, in lung cancer, β-sitosterol can 
target and regulate Trx/Trx1 reductase to induce apopto-
sis in lung cancer cells [29–31]. Stigmasterol is an impor-
tant component of phytosterols and is mainly isolated 
from soybeans and lentils. Studies have shown that it has 

Fig. 9  The compound–reaction–enzyme–gene networks of the key metabolites. The red hexagons, gray diamonds, green rectangles and purple circles 
represent the active compounds, reactions, proteins and genes, respectively. The key metabolites, proteins and genes are magnified
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broad-spectrum anticancer, antibacterial and antioxi-
dant effects. It could be used to treat breast and colorec-
tal cancer patients. Studies have shown that stigmasterol 
can significantly reduce the burden of metastatic tumors 
at cancer sites, mainly by reducing pAKT, metastasis 
marker genes (alkaline phosphatase, matrix metallopro-
teinases, epithelial to mesenchymal transcription fac-
tors), vascular growth factor (vascular endothelial growth 
factor), CD31 and continuous expression of cell prolif-
eration antigen (Ki67, proliferative cell nuclear antigen) 
[32]. Baicalein has broad-spectrum physiological activi-
ties, such as antibacterial, antiviral, and inflammatory 
effects, and can exert antitumor effects through multiple 
targets and multiple pathways [33, 34]. Carvendine has 
obvious antitumor effects due to its anti-inflammatory, 
immune-regulating and antiviral effects. It mainly acts on 
potential targets, such as the efferent nervous system, ion 
channels, PDE10A, and coagulation factors [35]. How-
ever, these studies still lack research on the antitumor 
functions of other components and have not systemati-
cally identified which components participate in the reg-
ulatory mechanisms affecting the malignant phenotype 
characteristics of lung cancer cells from the perspective 
of metabolic pathways.

Researchers are increasingly relying on metabolomics 
to explore disease mechanisms and intervention strate-
gies. We identified 5 significant metabolites of Pinellia 

ternata that act against lung cancer cells, as well as their 
related metabolic pathways. However, given the com-
plexity and heterogeneity of metabolomics, data analysis 
and interpretation are collaborative efforts [36]. Network 
pharmacology is a systems biology-based methodology 
[37]. It evaluates drug polypharmacological effects at 
the molecular level to predict the interaction of natural 
products and proteins as well as to determine the major 
underlying mechanisms [38]. Network pharmacology 
can further validate the therapeutic regulation of meta-
bolic networks and facilitate the identification of key 
targets and biomarkers [39]. In this study, network phar-
macology greatly improved the screening of metabolites 
of Pinellia ternata against lung cancer and elucidated 
the underlying mechanisms of action. By combining 
metabolomics with network pharmacology, 11 bioactive 
compounds, 24 key targets, 28 metabolic enzymes and 5 
metabolites (D-ribose 5-phosphate, FAD, FMN, 5-amino-
4-imidazolecarboxyamide and xanthosine) and 3 related 
pathways (purine metabolism, riboflavin metabolism and 
the pentose phosphate pathway) were identified. This 
strategy provides a suitable method to verify the results 
of the two approaches. It is also practical to screen for 
metabolites and targets of other natural compounds.

Purine metabolism represents a potential therapeutic 
pathway in cancer therapy. Purine, an abundant substrate 
in organisms, is a critical raw material for cell proliferation 

Fig. 10  The networks of drug–bioactive component–target gene–metabolic enzyme–metabolite interactions. The orange diamond represents Pinellia 
ternata; the purple hexagonal nodes represent the candidate active components in Pinellia ternata; the green circular nodes represent the target genes 
of the active components; the blue triangle represents the key metabolic enzymes, and the purple arrow represents the key metabolites
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and an important factor for immune regulation [40]. The 
purine de novo pathway and salvage pathway are tightly 
regulated by multiple enzymes, and dysfunction of these 
enzymes leads to excessive cell proliferation and immune 
imbalance that results in tumor progression [41, 42]. 
For example, inosine strongly enhances the prolifera-
tion of human melanoma cells [43], and an altered ratio 
of adenosine to inosine has been widely observed in 

cancer cells, affecting growth, invasiveness, and metasta-
sis [44]. Moreover, purines serve as potent modulators of 
immune cell responses and cytokine release via various 
receptor subtypes, such as P2X ligand-gated ion chan-
nels and G protein-coupled P2Y receptors [45], which are 
substantially involved in oncogenesis and tumorigenesis 
[46, 47]. Xanthosine is catalyzed by the substrate xan-
thine or xanthosine 5’-phosphate through the activity 

Fig. 11  Western blot verification of target proteins of active components in Pinellia ternata. (A) Western blot of proteins p-PI3K p-AKT, MMP9, HIF-1α, 
TGF-β, BCL-2, and AKT in A549 and NCI-H460 cells, (B) Relative expression level of proteins p-PI3K p-AKT, MMP9, HIF-1α, TGF-β, BCL-2, and AKT in A549 and 
NCI-H460 cells. * represents p < 0.05 compared with the control group
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of purine-nucleoside phosphorylase or 5’-nucleotidase. 
5-Aminoimidazole-4-carboxamide is synthesized by 
the substrate 1-(5’-phosphoribosyl)-5-aminoimidazole-
4-carboxamide through the activity of adenine phos-
phoribosyltransferase [48]. The levels of xanthosine and 
5-aminoimidazole-4-carboxamide increased in PTE-
treated lung cancer cell groups. Studies have shown 
that the administration of xanthosine did not affect the 
proportion of epithelial stem cells in bovine breast tis-
sue but had potential negative effects on cell prolifera-
tion, and tumor development in mice was also limited by 
xanthosine administration [49]. Studies have also indi-
cated that 5-aminoimidazole-4-carboxamide riboside 
combined with methotrexate has synergistic anticancer 
effects on human breast cancer and hepatocellular carci-
noma [50]. At present, there is almost no literature on the 
involvement of xanthosine and 5-aminoimidazole-4-car-
boxamide metabolites in cell death and migration, but 
there are relevant reports on the involvement of purine 
metabolic pathways in cell migration mechanisms [51]. 
Therefore, Pinellia ternata may inhibit the proliferation 
of lung cancer cells through purine metabolism, espe-
cially by altering the metabolic levels of xanthosine and 
5-aminoimidazole-4-carboxamide.

Riboflavin metabolism is closely related to human 
health. Riboflavin is an essential micronutrient for nor-
mal cellular activity, and riboflavin deficiency may result 
in disease, such as cancer. FMN synthesizes FAD through 
the activity of FAD synthetase, or FAD synthesizes FMN 
through the activity of nucleotide diphosphatase [52]. A 
high level of spontaneous intracellular FAD fluorescence 
is an indicator of cell pathology and indicates subsequent 
apoptosis and necrosis [53]. In this study, the levels of 
FAD and FMN increased in PTE-treated lung cancer cell 
groups. Many retrospective clinical studies have shown a 
close correlation between riboflavin deficiency and tumor 
development [54, 55]. In vitro experiments have demon-
strated that riboflavin depletion promotes tumorigenesis 
in HEK293T and NIH3T3 cells by sustaining cell prolifer-
ation and regulating cell cycle-related gene transcription 
[56]. Riboflavin supplementation has been shown to be 
an adjuvant for the treatment of tumors [57]. Moreover, 
dietary riboflavin supplementation can reduce the risk 
of cancer in clinical practice [58]. All these studies sug-
gested that Pinellia ternata may inhibit the proliferation 
of lung cancer cells by promoting riboflavin metabolism.

The pentose phosphate pathway (PPP) is a major path-
way for glucose catabolism [59]. It has become clear 
that the PPP plays a critical role in regulating cancer cell 
growth by supplying cells with not only ribose-5-phos-
phate but also NADPH for the detoxification of intracel-
lular reactive oxygen species, reductive biosynthesis and 
ribose biogenesis. Thus, alteration of the PPP contrib-
utes directly to cell proliferation, survival and senescence 

[60]. Many studies have shown that inhibiting the PPP 
can inhibit the development of tumors [61, 62], but 
there are currently almost no reports on the regulation 
of cell death and migration by D-ribouranose 5-phos-
phate. Interestingly, in this study, the lung cancer cell 
group treated with Pinellia ternata showed a decrease in 
D-ribofuranose 5-phosphate expression. D-Ribofuranose 
5-phosphate is an important intermediate metabolite of 
the pentose phosphate pathway and can be synthesized 
mainly through the metabolism of the substrate D-ribose 
through the activity of ribokinase. Therefore, Pinellia ter-
nata may inhibit the proliferation of lung cancer cells by 
inhibiting the PPP pathway.

Conclusion
In this study, we first demonstrated that Pinellia ter-
nata inhibited the proliferation, migration, and invasion 
of lung cancer cells. Subsequently, 5 key metabolites 
and 3 important metabolic pathways were identified 
through cell metabolomics screening. Combined with 
network pharmacology, we identified 11 effective active 
components, and an association network of Pinellia 
ternata–bioactive component–target gene–metabolic 
enzyme–metabolite interactions was constructed. This 
is the first development of a new comprehensive strat-
egy based on metabolomics and network pharmacol-
ogy to explore key targets and mechanisms of Pinellia 
ternata in the treatment of lung cancer. This study pro-
vides data and theoretical support for in-depth research 
on its mechanism of action, laying the foundation for 
clinical application. Further systematic molecular biology 
experiments are needed to verify the exact mechanism 
involved. This study also provides a new paradigm for 
determining the potential mechanisms of the pharmaco-
logical effects of natural compounds.
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