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Abstract 

Background Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, con-
tributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) 
has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims 
to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism.

Methods The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily 
basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate 
HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules includ-
ing glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, 
eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme 
A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected 
by western blot and/or qRT-PCR.

Results The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects 
on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such 
as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, 
and NF-κB-p65.

Conclusions The results suggested that HQT has protective effect against hepatic steatosis and inflammation 
in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.
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Background
Nonalcoholic fatty liver disease (NAFLD) is a clinico-
pathological disease, which is defined as an excessive 
accumulation of fat in the hepatocyte cytoplasm and the 
formation of lipid droplets, associated with hepatomeg-
aly and inflammation [1, 2]. It ranges from simple stea-
tosis to steatohepatitis, cirrhosis, and could eventually 
lead to hepatocellular carcinoma (HCC). With dramatic 
changes in lifestyles over the last 20 years, NAFLD has 
become the most prevalent liver disorder in China [3], 
and its potential risks are gradually recognized, thus the 
research related to NAFLD disease is attracting a grow-
ing attention. Currently, it has become clear that NALFD 
is a multifactorial disease closely associated with hepatic 
steatosis, insulin resistance, inflammatory response, oxi-
dative stress, etc [4]. Sustained endoplasmic reticulum 
stress (ERS) is involved in the regulation of the above 
physiological changes and plays an important role in the 
development of NALFD [5–7].

The ER is the main site of intracellular protein synthesis 
and modification. When the synthesis of protein precur-
sors exceeds the quality control capacity of the ER, it will 
cause unfolded protein response (UPR), and then induce 
ER Stress, resulting in hepatic lipid metabolism disorder, 
inflammation and hepatocyte apoptosis [8]. Mounting 
evidence indicates that ER stress-induced activation of 
protein kinase RNA-like endoplasmic reticulum kinase 
(PERK) pathway can up-regulate the expression of lipo-
genesis-related genes such as acetyl-coenzyme A-carbox-
ylase (ACC), thereby inducing excessive accumulation 
of hepatic lipids [9–11]. Moreover, ER stress activates 
the activating transcription factor 6 (ATF6) pathway to 
upregulate nuclear factor-kappa B (NF-κB) expression, 
exacerbating the hepatic inflammatory response and 
leading to liver steatosis to non-alcoholic steatohepatitis 
(NASH) [12, 13]. Therefore, PERK and ATF6 pathways 
have emerged as particularly promising therapeutic tar-
gets for the prevention of fatty liver disease.

Hugan Qingzhi tablet (HQT), a traditional Chinese 
medicine formula, has a long history of use in alleviating 
NAFLD in clinical practice. The formula consists of five 
herbal medicines, including Rhizoma alismatis, Fructus 
crataegi, Pollen typhae, Folium nelumbinis and Radix 
notoginseng. Our previous studies showed that HQT had 
anti-inflammatory and lipid-lowering effects on NAFLD 
[14–16]. However, the mechanisms associated with its 
improvement in NAFLD need to be further investigated. 
In our proteomics studies based on isobaric tags for rela-
tive and absolute quantitation of NAFLD rat livers, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis indicated that the ER stress is closely 
related to the pathogenesis of NAFLD [17]. In vivo stud-
ies show that HQT-medicated serum could effectively 

alleviate the ERS state of L02 cells [18]. However, imme-
diate evidence for the effect of HQT on the regulation 
of the ER stress is still absent in vivo. Therefore, the aim 
of this study was to investigate whether HQT protects 
against NAFLD by attenuating ER stress through PERK 
and ATF6 signaling pathways in rats.

Methods
Preparation of HQT
HQT was produced by Zhujiang Hospital, Southern 
Medical University, Guangzhou, China. It was prepared 
as follows: firstly, mixtures of 30% Fructus crataegi, 30% 
Rhizoma alismatis, 20% Folium nelumbinis, and 15% Pol-
len typhae were infiltrated with 70% ethanol (6:1, v/w) 
for 1.5 h and then extracted by reflux extraction for 2 h. 
The process was repeated three times. The yield of dried 
extract from the starting crude was 14.45% (w/w). After 
that, 5% Radix notoginseng was ground, sieved, and 
added to the dried extract to prepare HQT. The identi-
fication and quantification of the main components of 
HQT have been reported in our previous studies [19–21].

Animals and experimental design
Sixty SPF-grade male Sprague-Dawley rats (180-220 
g) were obtained from Experimental Animal Center of 
Southern Medical University (Guangzhou, China, qual-
ity certificate number: SCXK (Yue) 20,110,015). Ani-
mal experiments were approved by the Animal Ethics 
Committee of the Southern Medical University (Ani-
mal Welfare Assurance L2016133), with reference to the 
Guidelines for the Care and Use of Laboratory Animals 
in China. All efforts were made to minimize the suffer-
ing of the animals involved in the experiments, such as 
provide a clean and comfortable environment with ade-
quate food, drinking water, and space; perform animal 
experiments with standardized practices; anesthetize 
adequately with pentobarbital prior to obtaining blood 
samples; euthanasia by means of cervical dislocation and 
ensuring that tissue samples are taken after the death of 
the animal, etc. Rats were raised at 20–25℃, subjected 
to a 12-hour light-dark cycle in a pathogen-free labora-
tory, and allowed to drink and eat freely. After one-week 
of conditioning, 60 rats were randomly assigned to 6 
groups (n = 10 per group). Rats in the control group were 
given 1mL/100 g of distilled water and standard chow 
diet (SCD); rats in the model group were given distilled 
water and high-fat diet (HFD, ingredient: 20% sucrose, 
15% lard, 1.2% cholesterol, 0.2% sodium cholic acid, 10% 
casein, 0.6% calcium hydrogen phosphate, 0.4% stone 
powder, 0.4% premix and 52.2% base feed); rats in the 
fenofibrate (a commonly used lipid-lowering drug and 
used as positive control drug) group were orally admin-
istered 0.1 g/kg fenofibrate suspension (FF) and HFD; 
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rats in the other three groups were given HFD + HQT 
suspension in a low (HL, 0.54 g/kg), moderate (HM, 1.08 
g/kg), or high dosage (HH, 2.16 g/kg). The formulation 
of HFD has been described in previous studies [19–21]. 
After 12 weeks of treatment, rats were anesthetized with 
2% pentobarbital sodium (3 ml/kg body weight) and 
blood was collected through the abdominal aorta.

Serum biochemical analysis
Serum alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-
C), triglyceride (TG), and total cholesterol (TC) were 
assessed by automatic biochemical analyzer (Olympus 
AU5400, Tokyo, Japan).

Pro‑inflammatory cytokine assays
Markers of inflammation, including the interleukin-1β 
(IL-1β), interleukin-6 (IL-6) and tumor necrosis 
factorα(TNF-α), were measured in liver homogenates 
using an ELISA kit (Multisciences, Hangzhou, China) 
according to the manufacturer’s instructions [22].

Liver histological examination
To better visualize the accumulation of lipids in liver tis-
sue, the right lobe of liver tissue was weighed and fixed 
with 4% paraformaldelyde solution for liver histologi-
cal examination. Then the liver tissues were paraffin-
embedded, cut into 5 μm-thick sections, and stained with 
H&E (hematoxylin-eosin). In addition, frozen sections 
of liver tissues (10 μm per section) were stained with Oil 
Red O-Thoumarin (Sigma-Aldrich, USA). The stained 
sections were photographed using an Olympus light 
microscope (Olympus Corporation, Tokyo, Japan) at a 
magnification of 400×. For transmission electron micros-
copy (TEM), hepatic tissues were collected, fixed in 2.5% 
glutaraldehyde and post-fixed with 1% phosphate-buff-
ered osmium tetroxide. Then, liver tissues were embed-
ded, sliced (60-70 nm), and double-stained. Images were 
acquired using transmission electron microscopy. His-
topathological analysis was performed in six randomly 
selected fields from each Sects. [23, 24].

Quantitative real‑time PCR (qRT‑PCR) analysis
Liver tissue samples were quickly ground in liquid nitro-
gen and total RNA was extracted by adding Trizol Rea-
gent (Invitrogen, USA) according the manufacturer’s 
instructions. The RNA was reverse-transcribed into 
cDNA by using the PrimeScript® RT kit (Takara, Japan) 
at 42 °C for 45 min, followed by incubation at 95 °C for 5 
min. qRT-PCR was used to measure the mRNA expres-
sion levels of GRP78, ATF4, ACC, ATF6, and β-ACTIN. 
For real-time PCR, the cDNA and primers were prepared 

with a SYBR®Premix Ex TaqTMII Kit (Takara, Japan), 
according to the instruction manual. The amplification 
conditions were: initial denaturation (95℃, 30s, 1cycle); 
amplification (95℃, 5s, 60℃, 34s, 40cycles); dissolution 
curve (95℃, 5s, 60℃, 1 min, 1cycle) [25]. The sequences 
of the primers are shown in Table 1.

Western blotting analysis
The liver tissues were homogenized with RIPA lysis 
buffer and the total protein content in the supernatant of 
each sample was determined by BCA protein assay (Bey-
otime Biotech, China) according to the manufacturer’s 
instructions. The protein samples were separated by elec-
trophoresis in 15% SDS-PAGE gel and then transferred 
to a polyvinylidene fluoride (PVDF) membrane, which 
was cut into different bands according to the molecu-
lar weight of the protein. The membranes were blocked 
with 5% non-fat milk for 1 h at room temperature and 
then incubated with primary antibodies (GRP78, 1: 
3000, Abcam; PERK, 1: 1000, Abcam; p-PERK, 1: 1000, 
Beyotime; ATF4, 1: 1000, Beyotime; ACC, 1:1000, Beyo-
time; ATF6, 1: 1000, Beyotime; EIF2α, 1: 1000, Beyotime; 
p-EIF2α, 1: 1000, Beyotime; NF-κB-p65, 1: 500, Abcam; 
GAPDH, 1: 1000, Santa Cruz; Histone H3, 1: 3000, Santa 
Cruz) at 4℃ overnight. Subsequently, the membrane was 
washed with PBS and incubated with peroxidase-con-
jugated secondary antibodies at room temperature for 
1 h [26]. Protein bands were visualized using enhanced 
chemiluminescence detection reagent (Sigma Chemical 
Co., USA) and analyzed with quantitative image analysis 
software (Fig. 1).

Statistical analysis
All data were expressed as mean ± standard deviation. 
Statistically significant differences between groups were 
evaluated using Student’s t-test or one-way analysis of 
variance (ANOVA) using the SPSS 23.0 (IBM Corpora-
tion, NY, USA) statistical package. Differences were con-
sidered statistically significant when the p value was less 
than 0.05.

Table 1 Primer design for rtPCR

Gene Forward Reverse

GRP78 AAC CCA GAT GAG GCT GTA GCA ACA TCA AGC AGA ACC AGG 
TCAC 

ATF4 TGG TCT CAG ACA ACA GCA AG AGC TCA TCT GGC ATG GTT TC

ATF6 TAT CCC TCC ACC TCC ATG TCA TCT CGA TTT GGT CCT TTC CACT 

ACC ATG AAG GCT GTG GTG ATG GA TGG TGG TCT TGC TGA GTT GA

β-ACTIN CCC ATC TAT GAG GGT TAC GC TTT AAT GTC ACG CAC GAT TTC 
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Results
Effect of HQT on body weight and liver index in rats
After one week of acclimatization feeding, there was no 
statistically significant difference in the body weights of 
the rats in each group. After 12 weeks, the body weights 
of rats in the HFD group increased significantly (p < 0.01) 
compared to the Con group, whereas the body weights 
of the rats in the HM, HH and FF groups decreased 
(p < 0.01) compared to the HFD group. In terms of liver 
index, the HFD group showed a remarkable increase in 
liver index compared to the Con group (p < 0.001), while 
the HL, HM, HH, and the FF group showed a decrease 
in liver index compared to the HFD group (p < 0.01), as 
shown in Fig. 2.

Effects of HQT on hepatic function and serum lipids
In order to evaluate whether HQT has a protective 
effect on high fat diet injured liver, the study measured 
serum lipids and hepatic function-related indexes in 
rats. Compared with the Con group, the serum ALT 
and AST levels of rats in the HFD group were signifi-
cantly increased (p < 0.01), compared with the HFD 
group, HM, HL and fenofibrate treated rats showed a 
significant decrease in the levels of serum ALT and AST 
(P < 0.01). Meanwhile, compared with Con group, the 
levels of serum TG, TC and VDL-C were significantly 
increased (p < 0.01) and HDL-C levels were significantly 
decreased (p < 0.01) in HFD group; after medium and 
high doses of HQT treatment, serum TG, TC, HDL-C 

Fig. 1 Hugan Qingzhi tablets attenuates endoplasmic reticulum stress in nonalcoholic fatty liver disease rats by regulating PERK and ATF6 
pathways. ↑: up-regulation; ↓: down-regulation

Fig. 2 Rat body weight (a) and hepatic index (b) changes. Con: control group; HFD: high-fat diet group; FF: HFD + fenofibrate group; HL: HFD + HQT 
low dosage group; HM: HFD + HQT moderate dosage group; HH: HFD + HQT high dosage group. *p < 0.05, **p < 0.01 versus Con group. #p < 0.05, 
##p < 0.01 versus HFD group
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and LDL-C levels were reversed compared with the 
HFD group (p < 0.01), as shown in Fig. 3.

Effect of HQT on inflammatory cytokine levels in hepatic 
tissues
The inflammatory response is an important component 
of the pathogenesis of NAFLD. Compared with the Con 
group, the levels of TNF-α, IL-6 and IL-1β in the liver 
tissue homogenates of rats in the HFD group were sta-
tistically increased (p < 0.01). In contrast, HM, HH and 
FF groups treatment successfully restored (p < 0.01) the 
expression of these inflammatory cytokines in NAFLD 
rats (Fig. 4).

Analysis of hepatic histopathology
The photomicrographs of the H&E-stained liver sections 
are shown in Fig.  5. In the control group, the hepato-
cytes were neatly arranged, without steatosis, with clear 
lobular structure and no inflammatory cell infiltration in 
the portal area; in the HFD group, the hepatocytes were 
swollen, with lipid droplet vacuoles of different sizes, 
marginalized nuclei and inflammatory cell infiltration in 
the portal area; in the HL group, the hepatocytes were 
improved but not significantly compared with the HFD 
group; in the HM, HH and FF groups, the steatosis was 
significantly alleviated and the inflammatory cells were 
reduced compared with the HFD group. Oil red O stain-
ing demonstrated that there was no obvious steatosis in 
hepatocytes of the control group, and a large number of 

Fig. 3 Effects of HQT on the serum levels of ALT, AST, TG, TC, LDL-C and HDL-C in NAFLD rats. Con: control group; HFD: high-fat diet group; FF: 
HFD + fenofibrate group; HL: HFD + HQT low dosage group; HM: HFD + HQT moderate dosage group; HH: HFD + HQT high dosage group. *p < 0.05, 
**p < 0.01 versus Con group. #p < 0.05, ##p < 0.01 versus HFD group

Fig. 4 Effects of HQT on the levels of TNF-α, IL-6 and IL-1β in NAFLD rat livers. Con: control group; HFD: high-fat diet group; FF: HFD + fenofibrate 
group; HL: HFD + HQT low dosage group; HM: HFD + HQT moderate dosage group; HH: HFD + HQT high dosage group. *p < 0.05, **p < 0.01 
versus Con group. #p < 0.05, ##p < 0.01 versus HFD group
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red-stained lipid droplets appeared in the hepatocytes 
of the HFD group; the hepatocytes of the HL group 
improved compared with the model group, and the 
amount of lipid droplets tended to decrease; there were 
sporadic lipid droplets in the hepatocytes of the HM, HH 
and fenofibrate groups, and steatosis was significantly 
alleviated. The results showed that HFD-induced hepato-
cyte steatosis in rats and HQT could ameliorate the lipid 
accumulation in liver.

The endoplasmic reticulum substructure of hepatocytes 
was visualized using transmission electron microscopy 
(Fig.  6). The endoplasmic reticulum of the control group 
was neatly arranged and flattened in the shape of a vesicle, 
and the ribosomes were tightly attached to the outer flat 
pool membrane, and no obvious lipid vesicles were seen 
in the cytoplasm. In contrast, the endoplasmic reticulum 
structure of the HFD group showed severe damage, as 
evidenced by rough endoplasmic reticulum dilatation and 
degranulation. And the lipid droplet vacuoles of different 
sizes in the cytoplasm disrupt the distribution and struc-
ture of the endoplasmic reticulum. While, after the high-
dose HQT intervention, the overall cell structure tended to 
be normalized and the lipid vacuolation phenomenon was 

significantly reduced, and the structure and morphology of 
endoplasmic reticulum were significantly.

Effect of HQT on PERK pathway proteins and mRNA 
of endoplasmic reticulum stress
The expression of PRRK pathway-related proteins and 
mRNA were examined by western blot and RT-PCR. 
Compared with the Con group, the expression of GRP78, 
a marker protein of endoplasmic reticulum stress, was 
significantly increased in the HFD group (p < 0.01). HQT 
treatment was able to dose-dependently down-regulate the 
expression of HFD-induced GRP78 (p < 0.01). Meanwhile, 
the protein expression levels of p-PERK/PERK, p-EIF2α, 
ATF4, and ACC in the HFD group were significantly higher 
than those in the Con group (p < 0.01), whereas the pro-
tein expression levels of p-PERK/PERK, p-EIF2α, ATF4, 
and ACC in the HL, HM and HH groups were all down-
regulated (p < 0.01), and the HH and FF groups gradually 
converged to the expression levels of the Con group. The 
expression of GRP78, ATF4, and ACC mRNA showed sim-
ilar results (Fig. 7).

Effect of HQT on ATF6 pathway proteins and mRNA 
of endoplasmic reticulum stress
ATF6 is one of the marker signaling molecules of endoplas-
mic reticulum stress. As shown in Fig. 8, the expression of 
ATF6 in the HFD group was much higher than that in the 
Con group (p < 0.01), while the expression level of ATF6 in 
HM, HH and FF groups were all downregulated. In addi-
tion, NF-κB-p65 protein expression was significantly 
upregulated in the HFD group compared with the Con 
group (p < 0.01), whereas NF-κB-p65 expression showed 
decrease markedly after HQT treatment (p < 0.01). The 
expression of ATF6 mRNA showed similar results.

Discussion
With the gradual westernization of the dietary spectrum 
in China in recent years, the prevalence of NAFLD in the 
Chinese population has increased significantly to 15%, 

Fig. 5 Effects of HQT on histopathological examination by H&E and Oil Red O (400× magnification). Con: control group; HFD: high-fat diet group; 
FF: HFD + fenofibrate group; HL: HFD + HQT low dosage group; HM: HFD + HQT moderate dosage group; HH: HFD + HQT high dosage group

Fig. 6 Transmission electron microscopy of the ER in each group 
of hepatocytes (5000× magnification, 10,000× magnification). Li: lipid, 
M: mitochondria, Er: endoplasmic reticulum. Con: control group; HFD: 
high-fat diet group; HH: HFD + HQT high dosage group
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becoming the second most common liver disease after 
viral hepatitis [27]. A long-term high-fat diet impairs 
liver function, leads to liver steatosis and can induce 
NASH, which can eventually lead to hepatic fibrosis and 
even hepatocellular carcinoma [28]. The pathogenesis 
of NAFLD is very complex. In addition to the classical 
" second hit” theory, the role of endoplasmic reticulum 
stress has been widely emphasized by scholars [6]. HQT 
has been identified as a potential modulator of NAFLD 
through its lipid-lowering and anti-inflammatory effects 
[14]. However, the mechanism of anti-inflammatory 

and hypolipidemic effects of HQT in NAFLD rats is not 
clear. The results of the present study showed that the 
body weight and liver index of the rats in the HFD group 
increased markedly compared with those in CON group. 
The serum ALT, AST, TC, LDL-C, TNF-α, IL-6, and IL-1β 
levels were significantly increased in rats of the HFD 
group than those of the Con group (p < 0.01), whereas 
HDL-C level was significantly higher than that of the Con 
group (p < 0.01). The pathological results showed that 
the hepatocytes were diffusely fatty and the endoplasmic 
reticulum was dilated into vesicles, thus indicating that 

Fig. 7 Effect of HQT on PERK pathway proteins and mRNA of ERS. a‑f The expression levels of GRP78, PERK, p-PERK, EIF2α, p-EIF2α, ATF4 and ACC 
protein in rat liver tissues. g‑i The expression levels of GRP78, ATF6 and ACC mRNA in rat liver tissues. Con: control group; HFD: high-fat diet group; 
FF: HFD + fenofibrate group; HL: HFD + HQT low dosage group; HM: HFD + HQT moderate dosage group; HH: HFD + HQT high dosage group. 
*p < 0.05, **p < 0.01 versus Con group. #p < 0.05, ##p < 0.01 versus HFD group
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the NAFLD rats were successfully modeled in this study. 
Meanwhile, the HM and HH groups significantly reduced 
serum ALT, AST, TC and LDL-C levels, increased LDL-C 
levels, inhibited inflammatory factors and improved 
liver lipid accumulation and inflammatory response in 
NAFLD rats, indicating that HQT can effectively alleviate 
the development process of NAFLD.

Recent studies demonstrated that ERS plays an impor-
tant role in the development of NAFLD [29, 30]. Endo-
plasmic reticulum, which is abundant in hepatocytes, 
is an important subcellular organelle in eukaryotic cells 

with functions in lipid and carbohydrate synthesis, drug 
metabolism, storage and release of  Ca2+ to maintain 
intracellular calcium homeostasis [31]. Under physiologi-
cal or pathological conditions, the dynamic balance of 
the ER is disrupted. Misfolded proteins accumulate in ER 
lumen and impair normal physiological functions. This 
subsequently leads to ER stress, which in turn activates 
the cellular UPR pathway [8, 32]. In contrast, persistent 
or excessive ER stress causes the cell’s self-repair capac-
ity to be insufficient to resist external stimuli, activat-
ing the endoplasmic reticulum overload response (EOR) 

Fig. 8 Effect of HQT on ATF6 pathway proteins and mRNA of ERS. a‑c The expression levels of ATF6 and NF-κB-p65 protein in rat liver tissues. d 
The expression levels of ATF6 mRNA in rat liver tissues. Con: control group; HFD: high-fat diet group; FF: HFD + fenofibrate group; HL: HFD + HQT 
low dosage group; HM: HFD + HQT moderate dosage group; HH: HFD + HQT high dosage group. *p < 0.05, **p < 0.01 versus Con group. #p < 0.05, 
##p < 0.01 versus HFD group
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and secondary responses such as lipid accumulation, 
inflammatory response, insulin resistance and apoptosis 
[13]. Meanwhile, high cholesterol and high TG levels in 
NAFLD can induce ERS, which further exacerbates cho-
lesterol accumulation and ultimately leads to a vicious 
cycle of NAFLD development [33]. GRP78, a signature 
protein of endoplasmic reticulum stress, is a molecular 
chaperone protein located in the ER which is involved in 
protein folding and translocation to maintain endoplas-
mic reticulum homeostasis, thus providing protection 
to cells, and its expression is significantly increased in 
the occurrence of ERS [34]. In the present study, we first 
examined the expression of GRP78 gene and protein in 
liver tissues of NAFLD rats, and the results showed that 
the expression of GRP78 mRNA and protein was signifi-
cantly upregulated in the HFD group rats, suggesting that 
HFD induced a significant ERS response. Interestingly, 
GRP78 expression was significantly down-regulated by 
HQT and FF treatment, suggesting that ERS was signifi-
cantly inhibited by HQT and FF intervention.

To further explore the mechanism of the effects of 
HQT on ERS-related pathways, we examined the effects 
of HQT on UPR-related signaling pathways. Under nor-
mal physiological conditions, GRP78 binds to three 
membrane-spanning proteins PERK, IRE1 and ATF6 on 
the endoplasmic reticulum membrane, leaving it in an 
inactive state [32]. In pathological conditions, endoplas-
mic reticulum stress occurs and GRP78 is separated from 
the three transmembrane proteins, and unfolded proteins 
accumulate in the ER to compete for GRP78 binding and 
activate the three transmembrane proteins for ERS sign-
aling [35, 36]. In early ERS, the PERK-mediated signaling 
pathway is activated initially. PERK is a type I transmem-
brane protein of the endoplasmic reticulum and a mem-
ber of the eukaryotic translation initiation complex 2α 
kinase family. Upon ERS occurrence, PERK autophos-
phorylation activates eEF2α, decreases the translation 
level of most mRNAs in the cytoplasm, inhibits protein 
synthesis, as well as selectively promotes preferential 
translation of UPR-dependent genes such as ATF4 [37]. 
Steatosis is the first stage of NAFLD and is characterized 
by the ectopic accumulation of triglycerides in hepato-
cytes [38]. Since a large amount of lipid synthesis occurs 
in the smooth endoplasmic reticulum, the endoplasmic 
reticulum stress response plays an important role in the 
pathogenesis of steatosis [39]. The PERK-eIF2α-ATF4 
arm was reported to regulate lipogenesis and steatosis 
[6]. PERK deletion inhibited the sustained expression of 
FAS, ACL and SCD1 in immortalized murine embry-
onic fibroblasts [40]. Overexpression of ATF4 triggers 
liver steatosis in zebrafish [11], while silencing of ATF4 
leads to a reduction of lipogenic genes, including PPAR-γ, 
SREBP-1, ACC and FAS, in the liver and adipose tissue 

of mice [9]. ATF4-null mice were protected from age-
related and diet-induced obesity and steatosis [41, 42]. 
In the present study, RT-PCR and western blot results 
showed that the gene and protein expression levels of 
PERK, p-PERK, eIF2α, p-eIF2α, ATF4 and ACC were sig-
nificantly increased after administration of HFD feeding, 
and the abnormal expression of these genes and proteins 
were significantly reversed after the administration of 
HQT and FF intervention [18]. The results suggested that 
HQT intervention could alleviate endoplasmic reticulum 
stress-induced hepatic steatosis by inhibiting PERK sign-
aling pathway-related mRNA and protein expression.

In addition, ATF6 plays an important role in the ERS 
process [43]. ATF6 is a type II transmembrane protein on 
the endoplasmic reticulum and is a member of the ATF/
CREB family of transcription factors. When ERS occurs, 
activated ATF6 translocates to the Golgi apparatus, where 
it is cleaved by the resident proteases S1P and S2P, releas-
ing a cytosolic fragment that migrates to the nucleus to 
regulate gene transcription [44]. Furthermore, ATF6 is 
primarily involved in cellular inflammation and apopto-
sis through translocation from the ER membrane to the 
nucleus [45, 46]. Under chronic conditions of endoplas-
mic reticulum stress, rather than alleviating the current 
stress, UPR is counterproductive and leads to key char-
acteristics of progressive NASH, including inflammation 
and cell death [47]. It has been reported that ATF6α can 
activate NF-kB through phosphorylation of AKT, and 
the p65 subunit of NF-κB molecule can bind to DNA-
specific sites and induce monocytes and macrophages to 
synthesize and release inflammatory factors CRP, TNF-α, 
IL-1β in large quantities, forming an inflammatory cas-
cade response and causing liver injury [12]. Meanwhile, 
activated PERK can increase NF-κB activity by reducing 
the translation of IκB [48]. ATF6 and PERK/IRE1α arms 
appear to be essential for endoplasmic reticulum stress-
induced NF-κB activation [49]. From the results of our 
study, we concluded that the expression of ATF6 protein 
and mRNA was significantly elevated in the HFD group 
compared with the Con group, whereas it was signifi-
cantly down-regulated by the administration of HQT and 
FF treatments. In addition, the expression level of NF- 
κBp65 protein was also significantly reduced in the treat-
ment group. In summary, HQT may interfere with PERK 
and ATF6 signaling pathway protein expression to reduce 
the intensity of ERS, attenuate the hepatocyte inflamma-
tory response, and mitigate the progression of NAFLD.

Conclusion
In summary, we have demonstrated that HQT is effective 
in reducing endoplasmic reticulum stress, lowering serum 
ALT, AST, TC and LDL-C levels, increasing HDL-C levels, 
and lowering inflammatory factors such as TNF-α, IL-6 
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and IL-1β levels. HQT may alleviate hepatic lipid accumu-
lation and anti-inflammatory effects by downregulating 
GRP78, which inhibits PERK and ATF6 signaling path-
ways, thereby suppressing the expression of p-EIF2α, ACC 
and NF-κB-p65. Therefore, HQT can alleviate hepatic lipid 
accumulation and inflammatory response by inhibiting 
endoplasmic reticulum stress and can be used as a poten-
tial treatment for NAFLD.
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