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Abstract
Background  Clostridioides difficile infection (CDI) is one of the most common health care-acquired infections. The 
dramatic increase in antimicrobial resistance of C. difficile isolates has led to growing demand to seek new alternative 
medicines against CDI. Achillea millefolium L. extracts exhibit strong biological activity to be considered as potential 
therapeutic agents. In this work, the inhibitory effects of A. millefolium, its decoction (DEC) and ethanol (ETOH) 
extracts, were investigated on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S) induced 
inflammation and apoptosis.

Methods  Phytochemical analysis of extracts was performed by HPLC and GC analysis. The antimicrobial properties 
of extracts were evaluated against C. difficile RT001. Cell viability and cytotoxicity of Caco-2 and Vero cells treated 
with various concentrations of extracts and Tox-S were examined by MTT assay and microscopy, respectively. Anti-
inflammatory and anti-apoptotic effects of extracts were assessed in Tox-S stimulated Caco-2 cells by RT-qPCR.

Results  Analysis of the phytochemical profile of extracts revealed that the main component identified in both 
extracts was chlorogenic acid. Both extracts displayed significant antimicrobial activity against C. difficile RT001. 
Moreover, both extracts at concentration 50 µg/mL had no significant effect on cell viability compared to untreated 
cells. Pre-treatment of cells with extracts (50 µg/mL) significantly reduced the percentage of Vero cells rounding 
induced by Tox-S. Also, both pre-treatment and co-treatment of Tox-S stimulated Caco-2 cells with extracts 
significantly downregulated the gene expression level of IL-8, IL-1β, TNF-α, TGF-β, iNOS, Bax, caspase-9 and caspase-3 
and upregulated the expression level of Bcl-2.

Conclusion  The results of the present study for the first time demonstrate the antimicrobial activity and protective 
effects of A. millefolium extracts on inflammatory response and apoptosis induced by Tox-S from C. difficile RT001 
clinical strain in vitro. Further research is needed to evaluate the potential application of A. millefolium extracts as 
supplementary medicine for CDI prevention and treatment in clinical setting.
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Background
Clostridioides (formerly, Clostridium) difficile is a Gram-
positive, spore-forming anaerobic bacterium, which is 
known as the most common cause of healthcare-associ-
ated pathogen. C. difficile infection (CDI) can lead to a 
range of different diseases in humans such as asymptom-
atic colonization, antibiotic-associated diarrhea (AAD), 
potentially pseudomembranous colitis (PMC), and toxic 
megacolon [1, 2]. In recent decades, the incidence of CDI 
has been increasing in both adult and pediatric popula-
tions, and the surveillance data from 2011 estimated the 
number of CDI about 453,000 cases with nearly 29,000 
deaths in the United States [3, 4]. Typically, the dis-
turbance of the normal gut microbiota during or after 
broad-spectrum antibiotic treatment could be regarded 
as a major risk factor associated with the development 
of CDI [4, 5]. The main symptoms of CDI are correlated 
with the production of two major toxins, toxin A (TcdA) 
and toxin B (TcdB), which trigger cytopathic effect (CPE) 
in intestinal epithelial cells (IECs) through glycosylation 
and inactivation of Rho/Ras proteins [6]. These events 
can lead to cytoskeleton disintegration, and ultimately 
loss of epithelial barrier function, and apoptosis [7]. 
Additionally, the secretion of these toxins into the gas-
trointestinal tract provokes intracellular signaling cas-
cades, which result in induction of severe inflammation 
and eventually cell death [8]. These outcomes damage the 
patient’s colonic mucosa and cause severe diarrhea.

The conventional treatment recommended for mild-
to-moderate CDI includes antibiotic therapy, particularly 
vancomycin or metronidazole, which are non-selective, 
thus consequently leading to further irritating gut dys-
biosis (imbalance of gut microbiota) and reduction of the 
normal gut commensals [4, 9]. The gut dysbiosis leads 
to favoring an appropriate niche for antibiotic-resistant 
strains of C. difficile and facilitates their intestinal colo-
nization [10, 11]. Alternatively, administration of recom-
mended anti-CDI antibiotics is associated with a high 
recurrence rate (20–40%) of CDI (rCDI) in patients with 
primary infection within 4 to 6 weeks after completion of 
antibiotic therapy [11]. Recently, the use of specific anti-
C. difficile antibiotics, such as fidaxomicin, has been sug-
gested as an efficient option for reduction of the relapse 
rate of CDI, however, the high costs of fidaxomicin 
restrict its widespread application [12, 13].

Currently, to avoid the detriments of antibiotics, alter-
native therapeutic approaches have been introduced 
for the treatment or prevention of CDI, including fecal 
microbiota transplantation (FMT) and antibody-based 
immunotherapy [14, 15]. Additionally, pharmacological 
actions of plant-derived compounds have attracted much 

attention due to their antimicrobial, antioxidant, and 
anti-inflammatory properties in the last decades [16–
19]. The anti-inflammatory properties of components 
extracted from medicinal herbs have been reported for 
modulating the severity of inflammatory bowel disease 
(IBD) in both in vitro and in vivo models [16, 20]. Nota-
bly, the anti-inflammatory properties of plant products 
have been associated with the modulation of oxidative 
stress in intestinal cells [18, 21] and reinforce the function 
of the epithelium barrier [22]. Moreover, herbal-derived 
compounds exert antimicrobial activity and can modu-
late and attenuate the inflammatory responses induced 
by pathogenic microbes, thus, may be highly attractive as 
potential complementary therapies [23].

Among the most studied plant-derived components, 
Achillea millefolium L. extracts have been frequently 
studied in recent years [18, 24]. Achillea decoction is a 
widely used traditional medicine for the treatment of a 
variety of gastrointestinal diseases in several regions of 
the world [24–26]. Additionally, maceration in different 
solvents is a simple extraction method to prepare bioac-
tive compounds from the plants [27]. Several in vitro and 
in vivo studies have reported a wide array of biological 
features for A. millefolium and its derivatives, including 
antimicrobial [24, 28], antioxidant and anti-inflammatory 
properties [18, 29], and gastro-protective activities [30] 
in its aqueous, hydroalcoholic, and methanol extracts. 
Moreover, the anticancer activity of A. millefolium 
extracts is demonstrated in various tumor cell types, 
including cervical and breast epithelial adenocarcinoma, 
skin epidermoid carcinoma [31], hepatoma [32], and lung 
tumor cells [33].

In view of the potential biological efficacy of differ-
ent extracts of A. millefolium on infectious diseases, we 
investigated the antimicrobial activities of decoction 
(DEC) and ethanol (ETOH) extracts of A. millefolium on 
a toxigenic C. difficile clinical strain ribotype (RT) 001 
(RT001). Viability and cytotoxicity of Caco-2 and Vero 
cells treated with DEC, and ETOH extracts and the cell-
free supernatant (Tox-S) of C. difficile RT001 strain were 
also examined. Additionally, the inhibitory effects of both 
extracts on Tox-S mediated cytotoxicity were determined 
in Vero cells. We also assessed the modulatory effects of 
these extracts on expression level of the genes involved in 
inflammation and apoptosis in Caco-2 cells stimulated by 
Tox-S.

Materials and methods
Plant materials and extract preparation
The plant materials were collected in March 2021 from 
various regions of Chaharmahal and Bakhtiari province, 
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in southwestern of Iran. A. millefolium species was iden-
tified and verified by Dr. Vali Allah Mozaffarian at the 
Research Institute of Forest and Rangelands (AREEO, 
Tehran; Iran), and kept under code number: 353 in the 
herbarium for future reference. The vegetal materi-
als consisting of A. millefolium flowers were washed 
with distilled water, dried, grind, and used for prepar-
ing ETOH and DEC extracts. For ETOH extract, 20 gr of 
powder was suspended in 200 mL of 70% ethanol (v/v), 
and macerated under continuous mechanical stirring 
for 24 h, followed by filtration through a paper filter. The 
DEC extract was prepared by boiling 20 gr of powder in 
distilled water for 30  min, and then incubated at room 
temperature for a further 30  min and passed through a 
paper filter. The obtained samples for both ETOH and 
DEC were centrifuged at 3000 × g for 15 min. The super-
natants were isolated and filtered through 0.22 μm mem-
brane filters (Sartorius, USA). The filtered extracts were 
evaporated to dryness at 60 °C using a rotary evaporator, 
then freeze-dried and ground into a powder. The herbal 
extracts were stored at -20 °C until further experiments.

Determination of phytochemical compounds of plant 
extracts
The chemical analysis of A. millefolium extracts was 
performed by using high-performance liquid chroma-
tography (HPLC) and gas chromatography (GC). In this 
regard, analysis of the phenolic compounds of DEC and 
ETOH extracts was performed by using an HPLC system 
(Agilent 1260 Infinity II Quat Pump, CA, USA) equipped 
with photodiode array detector (PDA WR detector, CA, 
USA). A high-pH stable Ultisil XB-C18, 5  μm column 
(column dimension: length × ID = 250 × 4.6 mm) was used 
for separation. The mobile phases used included solvent 
A (acetic acid:water, 1:99 v/v) and solvent B (methanol). 
The injection volume was 10 µL to detect eight com-
pounds (gallic acid, catechin, rutin, quercetin, chloro-
genic acid, caffeic acid, rosmarinic acid, and apigenin). 
Analyses were carried out at 30  °C with a flow rate of 
1.0 mL/min. The analytes were monitored using a PDA 
detector at 254, 280, 300, and 330 nm. The concentration 
of eight expected phenolic components in both extracts 
was identified by comparing with retention times (Rt) 
and UV spectra of their respective standards (Sigma-
Aldrich, Germany).

GC Analysis of volatile compounds of DEC and ETOH 
extracts was performed by using an Agilent 7890 (Agi-
lent Technologies, USA) coupled with Flame Ionization 
Detector (FID) and a nonpolar DB-5 fused silica column 
(length 30 m, inner diameter 0.25 mm, and thickness of 
stationary phase layer equal to 0.25 μm). The initial col-
umn temperature was 60 °C and programmed to increase 
to 260 °C at a rate of 3 °C/min. The injector temperature 
was 260 °C and nitrogen was used as the carrier gas with 

a flow rate of 1.0 mL/min. The split ratio was 10:1. The 
amount of components including limonene, 1,8-cineole, 
and menthone in plant extracts was determined using the 
injection of standard samples to GC instrument and cali-
bration curve.

C. difficile strain and culture conditions
In this study, we used the toxigenic strain of C. difficile 
RT001 (A+B+), which was previously characterized in the 
Department of Anaerobic Bacteriology in Research Insti-
tute for Gastroenterology and Liver Diseases in Tehran, 
Iran [34]. The strain was cultured on cycloserine-cefox-
itin-fructose agar (CCFA, Mast) supplemented with 5% 
(v/v) sheep blood under anaerobic conditions (85% N2, 
10% CO2 and 5% H2) (Anoxomat® Gas Exchange System, 
Mart Microbiology BV) at 37  °C for 48–72  h after an 
alcohol shock treatment [35, 36].

Preparation of Tox-S
The Tox-S preparation was carried out as described pre-
viously [36]. In brief, the C. difficile RT001 was grown 
anaerobically in CCFA for 48  h and then used to pre-
pare a bacterial suspension equal to 2 McFarland tur-
bidity standard in 0.85% sterile saline. The suspension 
(100  µL) was transferred to a 10 mL pre-reduced brain 
heart infusion (BHI) broth and incubated at 37 °C under 
agitation at 120 rpm for 72 h. After that, cells and debris 
were removed by centrifugation at 4,000 × g in 4  °C for 
5  min. The supernatant was aseptically filtered through 
a membrane filter with 0.22  μm pore size, and kept at 
-80 °C until analysis. The presence of C. difficile TcdA/B 
toxins in the supernatant was evaluated by enzyme-
linked immunosorbent assay (ELISA, Generic Assays, 
Germany) according to the manufacturer’s instructions.

Antimicrobial assays by minimum inhibitory concentration 
(MIC) determination
To determine the antibacterial activity of the plant 
extracts, agar dilution and broth microdilution methods 
were applied as previously described by Azimirad et al. 
[36] with minor modifications. Briefly, the range of con-
centrations used to determine MICs of the extracts was 
5-200  µg/mL prepared in the 10% dimethyl sulfoxide 
(DMSO). Moreover, bacterial suspension from RT001 
strain at a final turbidity of approximately 106 CFU/
mL was prepared from pure cultures recovered anaero-
bically on CCFA plates at 37  °C for 48 h. For agar dilu-
tion method, different concentrations of each extract 
were added in pre-reduced supplemented Brucella agar. 
Plates were inoculated with a final inoculum density of 
approximately 1 × 106 CFU/mL from RT001 strain and 
inoculated under an anaerobic atmosphere at 37  °C for 
48 h. MICs were determined as the lowest concentration 
of each extract at which no visual growth of bacteria was 
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observed. Growth controls were performed by addition 
of bacterial inoculum into a free medium without extract. 
The plates without bacterial inoculation and plates con-
taining 10% DMSO were served as negative controls. 
Three repeats were considered for each assay.

For broth microdilution, a 96-well microtiter plate 
was filled with 0.5 mL of sterilized pre-reduced Brucella 
broth supplemented with different concentrations of the 
extracts, 1 µg/mL vitamin K1, 1 µg/mL L-cysteine, 5 µg/
mL hemin, and 5% (v/v) lacked sheep blood and then 
inoculated with approximately 105 CFU/well of C. difficile 
RT001. The wells without any extracts served as bacte-
rial growth control. The wells without bacterial addition 
and wells containing 10% DMSO were served as nega-
tive controls. Plates were then incubated under anaerobic 
conditions at 37  °C for 48 h. MICs were determined for 
the lowest concentration of each extract, where no visible 
growth was seen by evaluation of turbidity using opti-
cal density reading at 600 nm using a microplate reader 
(BioTek, USA). Moreover, percentage of growth inhibi-
tion for each extract against C. difficile was determined 
by comparing OD of each treatment to control. Three 
repeats were considered for each assay.

Cell culture and growth conditions
The Caco-2 (human colon adenocarcinoma cell line) 
and Vero cells (an African green monkey kidney cell 
line) were obtained from the Iranian Biological Resource 
Center (IBRC) and cultured in high-glucose Dulbecco’s 
modified Eagle’s medium (H-DMEM) (Gibco, USA) 
supplemented with 10% (v/v) fetal bovine serum (FBS) 
(Gibco, USA), 1% (v/v) penicillin/streptomycin (Sigma-
Aldrich, Germany), and 1% (v/v) of a non-essential amino 
acid (Gibco, USA).

Cell viability assay
To evaluate cell viability, a colorimetric assay based on 
the cleavage of the yellow tetrazolium salt 3-(4,5 dimeth-
ylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 
(Sigma-Aldrich, Germany) was performed as previously 
described [36]. MTT assay examines the metabolic activ-
ity of the cells by measuring the reduction of tetrazolium 
salts to colored formazan products. To do this, DEC 
and ETOH extracts and Tox-S were individually titrated 
on Caco-2 cells that were seeded at 5 × 103 cells/well in 
96-well plates and incubated for 1, 4, 24 h time points at 
37  °C in a 5% CO2 incubator. At the end of incubation 
times, cells were washed twice with phosphate-buffered 
saline (PBS, pH 7.4) and then 90 µL of culture medium 
and 10 µL/well of MTT (5 mg/mL in PBS) was added to 
each well. After incubation of cells for 4 h at 37 °C under 
5% CO2 atmosphere, 200 µL of DMSO was added to each 
well for 15 min to stop the reaction. Untreated monolay-
ers were used as negative controls and wells without cells 

served as blanks. The plates were shaken and then incu-
bated at 37 °C for 10 min. The absorbance was recorded 
at 570  nm (reference filter, 690  nm) by a microplate 
reader (BioTek, USA). The percentage of cell viability was 
calculated as follows: cell viability (%) = (absorbance of 
treated cells × 100%)/absorbance of untreated cells. All 
experiments were performed in triplicate.

Cytotoxicity assay
The cytotoxic activity of the extracts and Tox-S was 
determined using Vero cells by breakdown of the actin 
cytoskeleton, which leads to cell rounding, as previously 
described [36, 37]. Briefly, Vero cells were seeded in a 
96-well plate at 104 cells/well. Two concentrations of C. 
difficile RT001 Tox-S (100 and 500 µg/mL) and two con-
centrations of DEC and ETOH extracts (50 and 75  µg/
mL) were used in cytotoxicity assays. In addition, to 
determine the ability of the extracts to inhibit the cyto-
toxicity caused by Tox-S, each extract was combined 
at concentration 50  µg/mL with Tox-S at different con-
secrations (100 and 500 µg/mL), and were added to the 
Vero cells, and incubated for 4, 8, and 24 h at 37 °C in 5% 
CO2 conditions. The cytotoxic activity was determined 
by 90% cell rounding that was detected visually using 
an inverted microscope (Olympus Corporation, Tokyo, 
Japan) at ×200 magnification. Cell images were taken and 
the percentage of round cells in different treatments was 
determined by ImageJ software-assisted counting, and 
then normalized to the percentage of round cells in the 
wells treated with Tox-S. The assays were carried out in 
triplicate.

Treatment of Caco-2 cells with Tox-S and A. millefolium 
extracts
Caco-2 cells were seeded into 24-well plates at a density 
of 2.5 × 104 cells/well. Three forms of cell treatments were 
carried out as follow: (1) Caco-2 cells were treated with 
Tox-S (100 µg/mL), DEC, or ETOH extracts (50 µg/mL) 
and incubated for 4, 8, and 24 h at 37 °C in 5% CO2 atmo-
sphere. (2) Caco-2 cells were pre-treated with extracts 
(50  µg/mL), and after 8  h of incubation, cells were 
exposed to Tox-S (100 µg/mL) and incubated for further 4 
and 24 h at 37 °C in 5% CO2 atmosphere. (3) Caco-2 cells 
were simultaneously treated with the extracts (50 µg/mL) 
and Tox-S (100 µg/mL), and incubated for further 4 and 
24 h at 37 °C in 5% CO2 conditions. Untreated cells and 
Tox-S (100 µg/mL) without the addition of each extract 
were used as controls. After treatments, the cells were 
lysed for RNA extraction and gene expression analysis. 
All treatments were run in triplicate.

Total RNA isolation and cDNA synthesis
The treated Caco-2 cells were collected by centrifuga-
tion (800 × g, 10 min, 4°C) and used for RNA extraction 
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according to the manufacturer’s protocol of RNeasy Mini 
Kit (Qiagen, Germany). RNA purity was assessed by 
calculation of the ratio between absorbance at 260 and 
280 nm (A260/A280) using a NanoDrop spectrophotom-
eter (ND-1000, Thermo Scientific, USA). The isolated 
RNAs were stored at -80 °C and then used for cDNA syn-
thesis. Purified RNA was reverse transcribed to cDNA by 
the PrimeScript™ RT Reagent Kit (Takara, Japan) accord-
ing to manufacturer’s protocol. All cDNAs were kept at 
-20 °C until further analysis.

Quantitative real-time PCR (RT-qPCR)
The mRNA expression levels of interleukin-1β (IL-1β), 
IL-8, tumor necrosis factor α (TNF-α), transforming 
growth factor-beta (TGF-β), inducible nitric oxide syn-
thase (iNOS), B-cell lymphoma 2 (Bcl-2), BCL-2-asso-
ciated X protein (Bax), caspase-9, and caspase-3 genes 
in treated Caco-2 cells for 4, 8 and 24  h time periods 
were determined using RT-qPCR assays as previously 
described [35]. Gene expression was evaluated by the 
Rotor-Gene® Q (Qiagen, Germany) real-time PCR sys-
tem using BioFACT™ 2X Real-Time PCR SYBR Green 
Master Mix (BIOFACT, South Korea). Oligonucleotide 
primers specific to each gene and their amplification con-
ditions are presented in Supplementary Table 1. β-actin 
housekeeping gene served as the endogenous control. To 
confirm amplification specificity, a melting analysis and 
subsequent agarose gel electrophoresis were performed 
after each run. The relative gene expression data to 
β-actin were calculated according to the 2− ΔΔCt method 
and presented as fold change to the control groups. All 
reactions were assessed in triplicate.

Statistical analysis
GraphPad Prism 8.0 (GraphPad Software, CA, USA) was 
used for statistical analysis. Results were calculated and 
analyzed for statistical significance using Unpaired stu-
dent’s t test and one-way analysis of variance (ANOVA). 
The data were presented as mean ± standard deviation 
(SD) for three independent experiments. Differences 

were considered statistically significant when P < 0.05; 
*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

Results
Phytochemical analysis of A. millefolium extracts
In this study, the phenolic and volatile compounds of A. 
millefolium were investigated by HPLC and GC, respec-
tively. Chromatograms obtained from the analysis of 
DEC and ETOH extracts of A. millefolium are shown in 
Supplementary Figs. 1, 2, and 3. Phytochemical analysis 
of both extracts showed that ETOH extract contained 
more diverse phenolic compounds compared to DEC 
extract. Among eight phenolic compounds analyzed, the 
main compound identified in both extracts was chloro-
genic acid (161.1 and 296.7  µg/mL in DEC and ETOH 
extracts, respectively). Interestingly, apigenin (7.0  µg/
mL), rutin (55.4  µg/mL), and caffeic acid (4.1  µg/mL) 
were other antioxidants identified in ETOH extract, 
while in DEC extract, only apigenin (5.1  µg/mL) was 
detected (Table  1). The amount of other analyzed com-
pounds, including gallic acid, catechin, quercetin, and 
rosmarinic acid, was not detectable in any of the extracts. 
Additionally, results of the quantitative measurement of 
three volatile compounds in DEC and ETOH extracts by 
GC analysis showed that ETOH extract contained two 
compounds, including limonene (4.9 µg/mL) and 1,8-cin-
eol (16.3  µg/mL), while only limonene (5.7  µg/mL) was 
detected in DEC extract (Table 1).

Antimicrobial susceptibility testing
The agar dilution method was performed to determine 
the antimicrobial activity of the extracts against C. dif-
ficile RT001, in which both extracts showed antimicro-
bial activity against this strain. The lowest MICs detected 
for DEC and ETOH extracts that inhibited the growth 
of RT001 were 75  µg/mL and 50  µg/mL, respectively. 
The extracts were further examined by the broth micro-
dilution method to determine their MIC and inhibitory 
activities. Based on the results, the lowest MICs detected 
for DEC and ETOH extracts using broth microdilution 
method, which had complete inhibition on the growth of 
RT001, were 100 µg/mL and 75 µg/mL, respectively. The 
inhibitory activity of different concentrations of DEC and 
ETOH extracts against C. difficile RT001 are indicated in 
Table 2 and Supplementary Fig. 4.

Effect of C. difficile RT001-derived Tox-S and A. millefolium 
extracts on cell viability in Caco-2 cells
MTT assay was used to determine the cytotoxic effects 
of different concentrations of Tox-S, DEC, and ETOH 
extracts on Caco-2 cells for 4, 8, 12, and 24  h. As pre-
sented in Fig.  1A, viability of Caco-2 cells was signifi-
cantly decreased after treatment with 50 to 500  µg/
mL of Tox-S compared with untreated cells (P < 0.001). 

Table 1  Phytochemical analysis of decocted (DEC) and ethanol 
(ETOH) extracts of A. millefolium detected by HPLC and GC
Analysis Compounds Rt 

(min)
Concentration 
(µg/mL)
DEC ETOH

Phenolic compounds 
(HPLC)

Chlorogenic 
acid

8.08 161.1 296.7

Caffeic acid 10.1 Nd 4.1
Rutin 14.88 Nd 55.4
Apigenin 21.85 5.1 7.0

Volatile compounds (GC) Limonene 11.982 5.7 4.9
1,8-cineol 12.191 Nd 16.3

*GC, gas chromatography; HPLC, high-performance liquid chromatography, Nd, 
not detected; Rt, retention time
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Moreover, Tox-S at concentration of 50  µg/mL led to 
20% cell death, whereas a greater effect was observed for 
higher concentrations 100 and 500  µg/mL that resulted 
in nearly 30% and 70% of cell death, respectively.

In contrast, DEC extract at concentrations of 5 to 
75  µg/mL did not significantly decrease the viability of 
Caco-2 cells after 4 to 24 h, whereas with an increase in 
the concentration of this extract the amount of cytotoxic-
ity was augmented (Fig. 1B). For ETOH extract, no cyto-
toxic effect was seen up to concentration 50 µg/mL, while 
at higher concentrations the viability of cells decreased 
significantly (Fig. 1C).

Cytotoxicity of C. difficile RT001-derived Tox-S and A. 
millefolium extracts on Vero cells
To evaluate the cytotoxicity of Tox-S and extracts on 
Vero cells, two concentrations of Tox-S and two concen-
trations of extracts were applied. After 4, 8, and 24 h, the 
percentage of cell rounding for each treatment was cal-
culated by ImageJ software. The microscopic cell mor-
phology of Vero cells showed that Tox-S of RT001 can 
induce CPE and cell rounding, in particular at 500  µg/
mL (Fig. 2A). As shown in Fig. 2B, Tox-S at concentration 

Table 2  Percentage of inhibitory activity of decocted (DEC) and 
ethanol (ETOH) extracts of A. millefolium against C. difficile RT001 
clinical strain
Concentration (µg/mL) Extracts

ETOH (%) DEC (%)
5 5.970 0
10 18.17 6.39
25 62.54 12.39
50 96.26 87.37
75 100 94.14
100 100 100
200 100 100
*RT, ribotype

Fig. 1  Cell viability of Caco-2 cells incubated with different concentrations (5, 10, 25, 50, 75, 100, and 200 µg/mL) of (A) decocted extract (DEC) and (B) 
ethanol extract (ETOH) of A. millefolium, (C) Tox-S (50, 100, 250, and 500 µg/mL) of C. difficile RT001 clinical strain. Data shown are means ± SD of three 
independent experiments
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of 100  µg/mL induced about 90% cell rounding after 
24 h, while the highest CPE was observed at concentra-
tion 500  µg/mL of Tox-S, which led to 98% cell round-
ing compared to untreated cells. In contrast, no CPE was 
observed at concentration 50  µg/mL for both extracts 
after 4 and 8 h of treatment of Vero cells, while a small 
cytotoxicity was observed for both extracts after 24 h as 
compared with untreated cells. Interestingly, both DEC 
and ETOH extracts showed moderate CPE at concentra-
tion 75 µg/mL, which led to approximately 5% and 10% 
cell rounding after 24 h of treatment, respectively. Since 
a concentration of 50 µg/mL of both extracts had a lower 
CPE, further experiments were carried out with this 
concentration.

Protective effect of A. millefolium extracts on Tox-S 
mediated cytotoxicity of C. difficile RT001 in Vero cells
To evaluate the protective effect of plant extracts on 
Tox-S mediated cytotoxicity on Vero cells, two dif-
ferent concentrations of Tox-S (100 and 500  µg/mL 

resulting in approximately 90 and 98% cell rounding, 
respectively) were co-incubated with 50  µg/mL of DEC 
or ETOH extracts. The results of morphological exami-
nation showed that both extracts notably reduced the 
percentage of round cells induced by Tox-S compared to 
control cells (the percentage of round cells in the wells 
treated with Tox-S) (Fig. 3A). In more details, simultane-
ous treatment of cells with both concentrations of Tox-S 
and either DEC or ETOH extracts inhibited the cytotoxic 
effect of Tox-S by more than 50% (Fig.  3B). There was 
no significant difference between the inhibitory effect 
of DEC and ETOH extracts on cell rounding induced 
by different concentrations of Tox-S. However, Tox-S at 
concentration 100  µg/mL was applied for further gene 
expression experiments due to having less destructive 
effects on both cell lines used in this study.

Fig. 2  Cytopathic effect (CPE) of two different concentrations (100 and 500 µg/mL) of Tox-S from C. difficile RT001 clinical strain and two different con-
centrations (50 and 75 µg/mL) of decocted (DEC) and ethanol (ETOH) extracts on Vero cells. (A) Microscopic cell morphology of Vero cells after treatment 
with Tox-S, DEC and ETOH extracts for 4, 8, 24 h at 37 °C in comparison with untreated cells. Light microscopy (200X magnification), Scale bar = 100 μm. 
(B) Percentage of Vero cell rounding induced by Tox-S, DEC and ETOH extracts for 4, 8, 24 h at 37 °C in comparison with untreated cells. Data shown are 
means ± SD of three independent experiments

 



Page 8 of 17Raeisi et al. BMC Complementary Medicine and Therapies           (2024) 24:37 

Effect of C. difficile RT001-derived Tox-S and A. millefolium 
extracts on gene expression of inflammatory parameters 
in Caco-2 cells
The RT-qPCR assay was used to examine the effects of 
Tox-S and extracts on expression level of inflammation-
associated genes in Caco-2 cells. As presented in Fig. 4, 
the expression level of IL-1β, IL-8, TNF-α, TGF-β, and 
iNOS was significantly increased upon treatment of 
Caco-2 cells with Tox-S compered to untreated cells. 
Inversely, treatment of Caco-2 cells with both extracts 
downregulated the expression level of over-mentioned 
inflammation-related genes, which showed statisti-
cally significant differences in some treatment groups. 
Although ETOH extract showed a stronger effect than 
DEC extract on downregulating expression level of indi-
cated genes, this effect did not follow a time-dependent 
manner.

Effect of C. difficile RT001-derived Tox-S and A. millefolium 
extracts on gene expression of apoptosis related genes in 
Caco-2 cells
To determine the effect of Tox-S and extracts on apopto-
sis induction, the gene expression level of Bax, caspase-9, 
caspase-3, and Bcl-2 was assessed in treated Caco-2 cells 
during the indicated time points. As shown in Fig. 5, the 
gene expression level of Bax, caspase-9, and caspase-3 
was significantly induced by Tox-S after 8 and 24 h, while 
it was downregulated in Caco-2 cells treated with both 
DEC and ETOH extracts. In contrast, the gene expression 
level of Bcl-2 was significantly downregulated by Tox-S 
in treated Caco-2 cells compared to untreated cells after 
24 h, whereas it was significantly upregulated upon treat-
ment with both extracts after the indicated time periods.

Modulatory effect of A. millefolium extracts on expression 
level of inflammatory related genes in Tox-S treated Caco-2 
cells
To evaluate the anti-inflammatory effects of both extracts 
on Tox-S treated Caco-2 cells, the expression level of 

Fig. 3  Inhibitory effects of decocted (DEC) and ethanol (ETOH) extracts (50 µg/mL) on cell rounding induced by two different concentrations (100 and 
500 µg/mL) of Tox-S from C. difficile RT001 clinical strain on Vero cells. (A) Microscopic cell morphology of Vero cells co-treated with Tox-S and DEC or ETOH 
extracts for 4, 8, 24 h at 37 °C in comparison with untreated cells. Light microscopy (200X magnification), Scale bar = 100 μm. (B) Percentage of inhibition 
of Vero cell rounding induced by Tox-S and co-treated with DEC or ETOH extracts for 4, 8, 24 h at 37 °C in comparison with untreated cells. Number of 
round cells was normalized to the cells treated with Tox-S exhibiting 100% cytotoxicity. Data shown are means ± SD of three independent experiments
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inflammation-associated genes was determined in pre-
treated and co-treated cells with each extract. As shown 
in Fig.  6, pre-treatment of Caco-2 cells with DEC or 
ETOH extracts significantly decreased the expression 
level of IL-1β, IL-8, TNF-α, TGF-β, and iNOS genes 
induced by Tox-S almost in a time-independent man-
ner. Similarly, both extracts markedly decreased the gene 
expression level of indicated inflammation-related mark-
ers upon co-treatment of Caco-2 cells with Tox-S and 
extracts in a time-independent manner.

Modulatory effect of A. millefolium extracts on expression 
level of apoptosis related genes in Tox-S treated Caco-2 
cells
To determine the anti-apoptosis effects of both extracts 
on Tox-S treated Caco-2 cells, the expression level of 
Bax, caspase-9, caspase − 3 and Bcl-2 genes was assessed 
in pre-treated and co-treated cells with each extract. 
As shown in Fig.  7, pre-treatment and co-treatment of 
Caco-2 cells with DEC or ETOH extracts significantly 
decreased the gene expression level of Bax, caspase-9, 
and caspase− 3 induced by Tox-S during the indicated 
time points. In contrast, extracts in both types of treat-
ment, pre-treatment and co-treatment, significantly 

Fig. 4  Relative expression of IL-1β (A), IL-8 (B), TNF-α (C), TGF-β (D), and iNOS (E) genes in Caco-2 cells upon treatment with Tox-S (100 µg/mL) from C. dif-
ficile RT001 clinical strain, decocted (DEC), and ethanol (ETOH) extracts (50 µg/mL) measured by using quantitative real-time PCR assay. Gene expression 
data was normalized to β-actin as the reference gene. Data shown are means ± SD of three independent experiments. A P value of < 0.05 was considered 
as significant (*P < 0.05; **P < 0.01; ***P < 0.001) by unpaired student’s t test and one-way ANOVA statistical analysis
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upregulated the gene expression level of Bcl-2 in Caco-2 
cells stimulated with Tox-S after 4 and 24 h.

Discussion
Globally, CDI is reported as a considerable threat to 
both public health and healthcare setting leading to sub-
stantial economic and medical costs [4]. Although the 
preferred approved management of patients with CDI 
is antibiotic administration, the use of antibiotics can 
result in profound alterations to the intestinal micro-
biota structure and disrupt colonization resistance pre-
disposing the host to rCDI [38]. The toxigenic C. difficile 
RT001 (A+B+) has been identified as the most common 
frequent RT types detected in Iran [34, 39]. The major-
ity of the strains belonging to RT001 are multidrug resis-
tant [39], thus developing novel alternative approaches to 
antibiotic treatment are crucial for prevention and con-
trol of RT001 in this area. Additionally, the development 
of novel alternative therapeutic components that can 
simultaneously maintain the gut homeostasis and tackle 
pathogens and neutralize their toxins is of great impor-
tance for improving clinical outcomes and reducing the 
recurrence rates of CDI.

So far, several studies have been conducted to exam-
ine the inhibitory effects of A. millefolium extracts on 

different bacterial species [28, 29, 40]. Different tech-
niques can be used to extract bioactive compounds, 
among which maceration in ethanol solvent is a simple 
and low-cost method to extract the major components 
of plants [41]. Additionally, the decoction is a traditional 
and easily available method used for the extraction of 
medicinal plants [27]. The potential of protective effects 
and beneficial features of A. millefolium led us to the 
hypothesis that the use of different extracts of this plant, 
i.e., DEC and ETOH extracts, could modulate C. difficile 
Tox-S mediated cytotoxicity in vitro. Further, the anti-
inflammatory and anti-apoptosis activities of A. mille-
folium DEC and ETOH extracts were investigated using 
a human colon cancer cell line treated with C. difficile 
Tox-S. The results of both agar dilution and broth micro-
dilution assays revealed potent inhibitory activities of A. 
millefolium extracts on the growth of C. difficile RT001. 
These results are relatively in agreement with the study 
performed by Karaalp et al. where they showed that A. 
millefolium extracts could exert a minimal anti-micro-
bial activity of ≥ 100  µg/mL against different bacteria, 
including Bacillus cereus, Salmonella typhimurium, and 
Salmonella Agona [42]. Interestingly, they also reported 
that essential oil of A. millefolium showed stronger 
anti-microbial activity for Gram-positive bacteria than 

Fig. 5  Relative expression of Bax (A), Bcl-2 (B), Caspase-9 (C), and Caspase-3 (D) genes in Caco-2 cells upon treatment with Tox-S (100 µg/mL) from C. dif-
ficile RT001 clinical strain, decocted (DEC), and ethanol (ETOH) extracts (50 µg/mL) measured by using quantitative real-time PCR assay. Gene expression 
data was normalized to β-actin as the reference gene. Data shown are means ± SD of three independent experiments. A P value of < 0.05 was considered 
as significant (*P < 0.05; **P < 0.01; ***P < 0.001) by unpaired student’s t test and one-way ANOVA statistical analysis
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Gram-negative bacteria. In another study by Candan 
et al. [28], the antibacterial properties of A. millefolium 
oil collected from Turkey were also examined against 
B. cereus and S. aureus, showing MIC value of 72  mg/
mL, which was almost similar to the MIC values deter-
mined in our study. It has been reported that the anti-
bacterial activity of A. millefolium is contributed to its 
components including chlorogenic acid, caffeic acid, 
1,8-cineole, cis-sabinene hydrate, α-terpinol, α-cadinol, 
terpinen-4-ol, p-cymene, and camphor [43]. Apparently, 
the hydrophobicity property of Achillea components 
targets the cell membrane and increases the permeabil-
ity of bacterial cells [44, 45]. The phytochemical analysis 
of extracts revealed that chlorogenic acid, apigenin, and 
limonene were detected in both extracts, whereas rutin, 

caffeic acid, and 1,8-cineol were only detected in ETOH 
extract. Interestingly, the extractive yield was greater in 
ETOH extract than DEC extract, which is also supported 
by other researchers [24, 27, 43]. The differences detected 
on the overall bioactive components of two extracts 
partially could be contributed to use of different extrac-
tion methods [27, 41, 46]. Given the hydrophobicity 
property of these chemicals, the primary target of these 
components is the cell membrane. These components 
can penetrate microbial cells and cause loss of integrity 
and increased permeability, resulting in bacterial cellu-
lar leakage and death [44]. Earlier studies also reported 
that caffeic and chlorogenic acids could exert high anti-
microbial activities against several bacterial species 
[47–49]. Interestingly, it has been documented that the 

Fig. 6  Relative expression of IL-1β (A), IL-8 (B), TNF-α (C), TGF-β (D), and iNOS (E) genes in Caco-2 cells upon pre-treatment with decocted (DEC) or etha-
nol (ETOH) extracts (50 µg/mL), followed by treatment with Tox-S (100 µg/mL) from C. difficile RT001 clinical strain; and also co-treatment with DEC and 
Tox-S, or ETOH and Tox-S measured by using quantitative real-time PCR assay. Gene expression data was normalized to β-actin as the reference gene. Data 
shown are means ± SD of three independent experiments. A P value of < 0.05 was considered as significant (*P < 0.05; **P < 0.01; ***P < 0.001) by unpaired 
student’s t test and one-way ANOVA statistical analysis
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constituents of essential oils can apply synergistic effects 
on different pathogens [50]. Based on our results, it can 
be suggested that chlorogenic acid, caffeic acid, 1,8-cin-
eol, and limonene may be involved in the antimicrobial 
activity of the extracts examined in the present study. 
However, further research using purified components of 
A. millefolium is required to discover their precise inhibi-
tory mode of action against C. difficile cells.

The cell viability results demonstrated that different 
concentrations of both DEC and ETOH extracts had 
no significant adverse effect on viability of Caco-2 cells. 
However, higher concentration of DEC extract showed 
a lower CPE than ETOH. This could be due to higher 
dissolution of some components in decoction method 
compared to maceration process, relating to high tem-
perature used in the decoction process. The high temper-
ature leads to the transformation of diester-diterpenoid 
alkaloids (DDAs) to monoester-diterpenoid alkaloids 
(MDAs) having less toxic effects [41]. Our results sup-
ported previous reports about the low in vitro [51–53] 
and in vivo [53] cytotoxicity of different extracts of 
Achillea species. Additionally, other studies have dem-
onstrated that the presence of phenolic components, 
especially chlorogenic acid, can induce apoptotic activity 
in different cell lines and act as an anti-cancer agent [54, 
55]. This can explain the cytotoxic activities reported for 
higher concentrations of the extracts.

It has been well established that both TcdA and TcdB 
from C. difficile strains can affect IECs through inactiva-
tion of Rho/Ras proteins and induce cell apoptosis both 
in vitro and in vivo [36, 56, 57]. Our results indicated that 
treatment of the Vero cells with concentration of 100 µg/
mL of Tox-S can stimulate 90% cell rounding. Interest-
ingly, the co-treatment of Achillea extracts could strongly 
reduce the cell rounding of Vero cells stimulated by 
Tox-S. Moreover, no significant difference was observed 
for the ability of DEC or ETOH extracts in reducing 
cytotoxicity caused by Tox-S. It has been proposed that 
some plant extracts may act as a physical barrier and/or 
directly interact with toxins, thus reducing the exposure 
of cells to toxins and prevent their internalization [58, 
59].

As shown in previous studies, TcdB significantly acti-
vates MAPKs, NF-κB and subsequently induces the pro-
duction of IL-1β and TNF-α [8, 60]. Additionally, TGF-β 
is a multifunctional cytokine that regulates various cel-
lular processes like cell growth, adhesion, differentiation, 
apoptosis, and immunosuppression [61]. Previous data 
show that TcdA is able to increase the expression of TGF-
β1 and its receptor, TβRII, both in IEC cells and in mouse 
ileal tissue [62]. Based on our results, exposure of Caco-2 
cells with Tox-S of C. difficile RT001 could upregulate the 
gene expression level of inflammatory cytokines. Accord-
ing to several previous studies, A. millefolium extracts 

Fig. 7  Relative expression of Bax (A), Bcl-2 (B), Caspase-9 (C), and Caspase-3 (D) genes in Caco-2 cells upon pre-treatment with decocted (DEC) or ethanol 
(ETOH) extracts (50 µg/mL), followed by treatment with Tox-S (100 µg/mL) from C. difficile RT001 clinical strain; and also co-treatment with DEC and Tox-
S, or ETOH and Tox-S measured by using quantitative real-time PCR assay. Gene expression data was normalized to β-actin as the reference gene. Data 
shown are means ± SD of three independent experiments. A P value of < 0.05 was considered as significant (*P < 0.05; **P < 0.01; ***P < 0.001) by unpaired 
student’s t test and one-way ANOVA statistical analysis
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exerted various effects on the transcriptional response 
of cells stimulated by LPS [18, 63]. Chou et al. demon-
strated that Achillea extract can modulate inflamma-
tory responses induced by LPS in RAW 264.7 murine 
macrophages through inhibition of oxidative stress, and 
by down-regulation of iNOS, COX-2, TNF-α and IL-6 
expression [64]. In this work, both extracts decreased the 
gene expression level of a select number of genes engaged 
in inflammation and apoptosis pathways. It has been 
proven that the expression of inflammatory cytokines 
is extensively regulated by the NF-κB signaling pathway 
[17]. Accordingly, we assume that A. millefolium extracts 
may probably modulate the NF-κB activation and its 
downstream signaling mediators. Furthermore, the 
anti-inflammatory properties of A. millefolium could be 
attributed to secondary metabolites, such as flavonoids, 
alkaloids, isoprenoids, and phenolics, which can be pres-
ent in its extracts at different concentrations [26].

Nitric oxide (NO) is one of the toxic chemical spe-
cies released by the host epithelial cells during CDI, and 
acts as an early signal to activate inflammatory response 
and production of cytokines [65]. The overproduction of 
NO is related to elevated activation of iNOS that results 
in inflammation and intestinal injury [66]. It has been 
shown that TcdB of C. difficile can induce the expression 
of iNOS in vascular smooth muscle cells (VSMCs) [65]. 
Conversely, it has been reported that Achillea species 
could decrease NO levels [64], which is corroborated by 
our results. According to literature, many plant extracts 
can suppress NF-κB activation [17, 67, 68], which can be 
a probable underlying mechanism to explain the down-
regulatory impact of the extracts on iNOS expression in 
the present work as well.

In addition to inflammation, increased activity of iNOS 
can affect the apoptosis pathway and act as a mediator 
of apoptosis in cells [69]. The key regulating members 
of the Bcl-2 family, Bax and Bcl-2, are actively involved 
in promoting or inhibiting apoptotic pathways triggered 
by mitochondrial dysfunction [70]. The overexpres-
sion of Bax, known as a pro-apoptotic agent, occurs in 
response to different cellular stresses and activates a 
cascade of reactions by releasing cytochrome C from 
the mitochondria, leading to the activation of caspase-9 
and caspase− 3, ultimately resulting in apoptosis [71]. In 
contrast, Bcl-2 acts as a barrier to apoptosis and restricts 
most types of apoptotic cell death by suppressing the 
Bax activity [70]. Interestingly, caspase-3 can cleave Bcl-
2, which activates a positive feedback loop for reinforc-
ing the apoptotic effect [72]. It has been well established 
that both TcdA and TcdB from C. difficile strains can 
induce cell apoptosis in vitro and in vivo [7, 57]. Simi-
larly, our results revealed that Tox-S extracted from C. 
difficile RT001 can modulate the gene expression of Bax, 
caspase-9, caspase-3 and Bcl-2, leading to induction 

of apoptosis in Caco-2 cells in a time-dependent man-
ner. In contrast, exposure of Tox-S treated Caco-2 cells 
with both extracts caused a significant decrease on the 
mRNA expression level of Bax, caspase-9, caspase-3 and 
a significant increase the expression level of Bcl-2. These 
results indicate that A. millefolium extracts can possibly 
inhibit apoptosis through inactivation of the Bax-cas-
pase-9-caspase-3 axis. There a limited number of stud-
ies demonstrating the anti-apoptosis activity of plant 
products [73, 74]. In addition, several studies have shown 
that Achillea can trigger apoptosis in various cancer cell 
types, indicating that Achillea profits in a dual manner 
in proceeding cell apoptosis, albeit its precise molecu-
lar mechanism remains to be elucidated [31, 32]. It has 
been proposed that higher concentration of Achillea 
extracts can induce apoptotic cell death in different can-
cer cell lines through upregulating the expression level 
of Bax and caspase-3 genes and downregulating Bcl-2 
expression [75, 76]. Inversely, Okkay et al. reported that 
A. millefolium extracts can suppress apoptosis through 
reducing the expression of caspase-3 in Wistar rats [77]. 
This finding is in line with our results, suggesting an anti-
apoptotic effect of Achillea extracts in Tox-S treated cells. 
Additionally, several pharmacological experiments have 
proved the potential of A. millefolium extracts with anti-
inflammatory, antiulcer, and anticancer activities with 
varying doses (400 to 1600 mg/kg/day) [78, 79]. However, 
further research using in vivo models and clinical experi-
ments is warranted to discover pharmacokinetic profile 
of A. millefolium extracts in the intestine, and to clearly 
define safety, efficacy, and inhibitory effects of these 
extracts against C. difficile.

Conclusion
In conclusion, the results of the present study for the first 
time showed that both DEC and ETOH extracts obtained 
from A. millefolium can inhibit the growth of C. difficile 
RT001. Although both extracts exhibited low cytopathic 
effects on Caco-2 and Vero cells, DEC extract exerted 
safer biological activity compared to ETOH extract due 
to its lower cytotoxicity. This finding indicates that the 
type of extraction method used can affect the cytotoxicity 
of herbal extracts. In addition, our findings demonstrated 
that both extracts can exert anti-inflammatory and anti-
apoptosis activity in Caco-2 cells stimulated by Tox-S of 
C. difficile RT001. We propose that these modulatory 
effects are possibly elicited through suppressing the acti-
vation of key pathways involved in C. difficile toxin-medi-
ated inflammation, including NF-κB and TGF-β signaling 
pathways, and also inhibiting the Rho/Ras inactivation 
pathway engaged in apoptosis regulation (Fig. 8). One of 
the major limitations of the present work refers to restric-
tion in the composition analysis of the extracts, where 
only 11 plant compounds were determined. Furthermore, 
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this work provides preliminary evidence for antimicro-
bial, anti-inflammatory, and anti-apoptosis activities of 
A. millefolium extracts at in vitro level. Further research 
using animal models is required to precisely evaluate the 
toxicity, efficacy and inhibitory effects of these extracts 
on C. difficile growth and pathogenesis. Taken together, 
the advocacy of A. millefolium extracts to be applied as 
potential supplementary medicine to current therapies 
for rCDI needs to be explored in clinical.
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