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Abstract 

Background Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the destruction of synovial 
tissue and articular cartilage. Huangqi-Guizhi-Wuwu-Decoction (HGWD), a formula of Traditional Chinese Medicine 
(TCM), has shown promising clinical efficacy in the treatment of RA. However, the synergistic effects of key response 
components group (KRCG) in the treatment of RA have not been well studied.

Methods The components and potential targets of HGWD were extracted from published databases. A novel node 
influence calculation model that considers both the node control force and node bridging force was designed 
to construct the core response space (CRS) and obtain key effector proteins. An increasing coverage coefficient (ICC) 
model was employed to select the KRCG. The effectiveness and potential mechanism of action of KRCG were con-
firmed using CCK-8, qPCR, and western blotting.

Results A total of 796 key effector proteins were identified in CRS. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) analyses confirmed their effectiveness and reliability. In addition, 59 components 
were defined as KRCG, which contributed to 85.05% of the target coverage of effective proteins. Of these, 677 targets 
were considered key reaction proteins, and their enriched KEGG pathways accounted for 84.89% of the patho-
genic genes and 87.94% of the target genes. Finally, four components (moupinamide, 6-Paradol, hydrocinnamic 
acid, and protocatechuic acid) were shown to inhibit the inflammatory response in RA by synergistically targeting 
the cAMP, PI3K-Akt, and HIF-1α pathways.

Conclusions We have introduced a novel model that aims to optimize and analyze the mechanisms behind herbal 
formulas. The model revealed the KRCG of HGWD for the treatment of RA and proposed that KRCG inhibits the inflam-
matory response by synergistically targeting cAMP, PI3K-Akt, and HIF-1α pathways. Overall, the novel model is plausi-
ble and reliable, offering a valuable reference for the secondary development of herbal formulas.
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Introduction
Rheumatoid arthritis (RA) is a common chronic inflam-
matory disease, with a prevalence ranging from 0.4% to 
1.3% depending on factors such as sex, age, and region 
[1–3]. Current clinical treatments for RA include non-ste-
roidal anti-inflammatory drugs (NSAIDs), disease-modify-
ing antirheumatic drugs (DMARDs), glucocorticoids, and 
other biological agents. However, these drugs have side 
effects that limit their long-term use [1, 4–6]. Traditional 
Chinese medicine (TCM) has been used for centuries to 
treat complex diseases with minimal side effects [7–9]. 
One TCM formula, Huangqi-Guizhi-Wuwu-Decoction 
(HGWD), has shown significant anti-inflammatory effects 
in the treatment of RA. However, the specific components 
and mechanisms of action of HGWD in RA treatment 
require further investigation.

HGWD consists of five botanicals: Astragalus mong-
holicus Bunge. (Huang Qi, HQ, 15 g), Neolitsea cassia (L.) 
Kosterm. (Gui Zhi, GZ, 12 g), Paeonia lactiflora Pall. (Shao 
Yao, SY, 12 g), Zingiber officinale Roscoe. (Sheng Jiang, SJ, 
25 g) and Ziziphus jujuba Mill. (Da Zao, DZ, 4). This com-
bination reflects the characteristic complexity of TCM 
formulas, which involve multiple components, pathways, 
links, and targets. The complexity of TCM formulas poses 
challenges for studying their pharmacological mechanisms. 
Network pharmacology, a new discipline, offers a research 
strategy that encompasses the comprehensive, systematic, 
and dynamic nature of TCM, thus aiding in the moderniza-
tion of TCM. Our previous work has successfully decoded 
the pharmacological mechanisms of various TCM formulas 
in various diseases, including liver cancer, osteoporosis, sys-
temic lupus erythematosus, and RA [10–13].

The key response component group (KRCG) and its 
mediated core functional space (CFS) are the active com-
ponents and targets tightly associated with disease pro-
gression in TCM formulas. They are also a key part of 
exerting efficacy in the entire prescription and a key clue 
to exploring pharmacological mechanisms. In this study, 
we explored the KRCG and CFS of HGWD in treating 
RA and validated their effectiveness at the functional 
level using Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) analyses. Further-
more, we selected four components (moupinamide, 
6-Paradol, hydrocinnamic acid, and protocatechuic acid) 
for in vivo validation, and the results demonstrated their 
effectiveness in inhibiting RA inflammatory responses. 
Western blotting experiments further revealed their syn-
ergistic effects through multiple pathways and targets.

Analytical methods
Chemical components and potential targets collection
The ingredients of HGWD were collected from four 
online databases: the Traditional Chinese Medicine 
Systems Pharmacology (TCMSP) database [14], Tradi-
tional Chinese Medicine integrated database (TCMID) 
[15] and Traditional Chinese Medicine database@Tai-
wan [16]. Potential targets were obtained using sev-
eral predictive tools, including the Similarity Ensemble 
Approach SEA (https:// sea. bkslab. org/) [17], HitPick 
(http:// mips. helmh oltz- muenc hen. de/ proj/ hitpi ck) 
[18], and Swiss Target Prediction (http:// www. swiss 
targe tpred iction. ch/) [19]. The data were duplicated and 
integrated.

Active chemical components identification
ADME properties refer to human absorption, dis-
tribution, metabolism, and excretion of exogenous 
chemicals, which are key characteristics for evaluat-
ing whether small-molecule drugs can be used as new 
drugs. This is a requirement of regulatory agencies 
worldwide. In this study, two ADME characteristics, 
drug-like bioavailability (DL) and oral bioavailability 
(OB), were used to screen chemical components with 
potential biological activity. Based on this, com-
pounds with DL ≥ 0.18, and OB ≥ 30% were selected, 
and a further sum combined with the screening cri-
teria of MW < 500  Da, Rotatable Bond Count < 10, 
Hydrogen Bond Acceptor Count < 10, Hydrogen Bond 
Donor Count < 5, 20 ≤ TPSA ≤ 130, -0.7 ≤ XLogP3 ≤ 5.0, 
-0.4 ≤ WLogP ≤ 5.6, MLogP ≤ 4.15, ESOL Class, Ali 
Class and Silicos-IT class except poorly soluble, hERG 
inhibition except high risk, and GI absorption retaining 
high absorption, the remaining compounds were iden-
tified as potential active ingredients.

Construct the CFS and evaluate the effective proteins
TCM usually plays a therapeutic role in the form of multi-
component-target pathways in complex diseases. These 
components and their targets coexist to orchestrate a 
potential action network. Determining the CFS from this 
complicated network can retain the components, targets, 
and pathogenic genes that are highly related to prescrip-
tion function to the greatest extent. We mapped the com-
ponent-target-disease-pathogenic gene relation to the PPI 
network, which was composed of the data compiled by the 
online tools CMGRN and PTHGRN and the data from the 
BioGRID database. The influence of the network nodes 
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is the foundation for screening the key components of a 
network. Many methods have been proposed for calculat-
ing the influence of nodes, such as betweenness centrality, 
proximity centrality, clustering coefficient, and the average 
shortest path length. In this study, we developed a novel 
methodological program to determine the influence of 
nodes. CWctp = {C ,W } is defined as the entire C-T-P net-
work, C represents the ingredients, target genes, or patho-
genic genes. W represent ingredients-target-pathogenic 
gene interactions:

ISe : Influence of node e in the NW
ℵ : represents the diameter of the CW network, that is, 

the distance between the two farthest nodes in the net-
work. If the network is discontinuous, then ℵ represents 
the diameter of the largest connected network.
gsv : count of path-link nodes s and v
Here, gsv(e) : represents the total number of paths con-

necting nodes s and v through node e and m represents 
the total number of shortest paths passing through node 
e in the CW network. where n indicates the total number 
of ingredients, target genes or pathogenic genes in the CW 
network.

The increasing coverage coefficient (ICC) model 
for determining KRCG 
To better determine KRCG from CFS, we design an 
increasing coverage coefficient model. In this model, wi 
denotes the network occupation rate of component i in 
CFS, vi denotes the occupation rate of target genes for path-
ogenic genes, and the maximum expected network occupa-
tion rate of KRCG is R. R > 0,wi > 0, vi > 0, 1 ≤ i ≤ n . 
The design formula is as follows:

ℵ = max
i<n

(t1→2, t1→3, t1→4 · · · ti→s · · · t( n(n−1)
2

−1)→
n(n−1)

2

)

ISe =
(T + 1)− gsv(e)/m

ℵ
×

s,t∈V

gSV (e)

gsv

ISmedian = median{IS1, IS2, IS3, · · · , ISn}

CFS =

n
⋃

i=1

IS(NWctp)i > ISmedian

ICC = max

n
∑

i=1

vixi

n
∑

i=1

wixi ≤ Rxi ∈ {0, 1}, 1 ≤ i ≤ n

The sub-problems of the question can be solved as:

When the expected network occupation rate is Rsub 
and the optimized component is y, m(i,Csub) is the opti-
mized solution. According to the properties of the opti-
mized substructure, the recursive process for validating 
m(i,Csub) can be described by the following formula:

Function enrichment analysis
The ClusterProfiler package of R (version 4.2.2) was used 
to perform Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analysis 
with an adjusted p value cutoff of 0.05 and a q-value of 
0.05. Graphs were created using the ggplot2 package in 
R software (version 4.2.2). Data visualization was per-
formed using Pathview in the R Bioconductor package 
(https:// www. bioco nduct or. org/) and Cytoscape [20].

Experimental verification
Materials
Moupinamide (CAS:66648–43-9), 6-Paradol 
(CAS:27113–22-0), hydrocinnamic acid (CAS:501–52-
0), and protocatechuic acid (99–50-3) were obtained 
from Jingzhu Biotechnology (Nanjing, China). Lipopoly-
saccharide (LPS) was obtained from Sigma-Aldrich (St. 
Louis, MOUSA).

Cell culture
RAW264.7 cells were cultured in DMEM (Invitrogen, 
Shanghai, China) supplemented with 10% FBS (Life 
Technologies), 100 μg/mL streptomycin, and 100 μg/mL 
penicillin, and incubated at 37 °C under 5%  CO2.

Cell viability assay
The cells were seeded in 96-well plates at a den-
sity of 1 ×  104 cells/well. On the second day, different 

ICCsub = max

n
∑

k=1

vkxk

n
∑

k=1

wkxk ≤ Rsubxk ∈ {0, 1}, 1 ≤ k ≤ n

m(i,Rsub) =

{

max{m(i + 1,Rsub),m(i + 1,Rsub − wi)+ vi}Rsub ≥ wi

m(i + 1,Rsub)0 ≤ Rsub < wi

m(n,Rsub) =

{

vnRsub ≥ wn

00 ≤ j < wn

https://www.bioconductor.org/


Page 4 of 15Liu et al. BMC Complementary Medicine and Therapies            (2024) 24:4 

concentrations of drugs were added and incubated for 
24 h. Then, 10 μL of the CCK-8 reagent was added for 
2 h at a constant temperature. Finally, the results were 
quantified by recording the absorbance of the solution 
was measured at 450 nm.

Measurement of NO content
RAW264.7 was inoculated in 12-well plates and pre-
protected with 1 μg/ml LPS for 2 h after adherent, fol-
lowed by intervention with a specified concentration 
component. After 24 h, the supernatant of the cell cul-
ture was collected, and the NO content was measured 
according to the instructions of the Total Nitric Oxide 
Assay Kit (Beyotime, China).

Quantitative real‑time PCR (qRT‑PCR)
Total RNA was extracted using a Total RNA Isola-
tion Reagent Kit (Qiagen, China). RNA was reverse-
transcribed into cDNA using the TransScript® Uni 
All-in-One First-Strand cDNA Synthesis SuperMix for 
qPCR kit (TransGen Biotech, China) and quantitative 
PCR was performed using SYBR Premix (Vazyme Bio-
tech Co., Ltd.). All experiments were performed using 
QuantStudio 1.

Western blot
Total protein was extracted using RIPA lysis buffer. 
Equal amounts of protein samples (20–30  μg) were 
separated using SDS-PAGE and transferred onto poly-
vinylidene difluoride (PVDF) membranes. Membranes 
were first blocked with 5% skim milk for 1 h and then 
immunoblotted with primary antibodies at 4  °C over-
night. The membranes were washed with TBST three 
times for 5  min each and then incubated with a sec-
ondary antibody at room temperature for 1 h. Finally, 
the membranes were washed again, as described 
above. Antibody signals were detected using an elec-
trochemiluminescence (ECL) substrate. All antibodies 
were purchased from CST: β-actin (1:1,000; cat. no. 
#13E5), HIF-1α (cat. no. 36169  T) and PI3K (cat. no. 
4257  T), Phospho-PI3K (cat. no. 4228  T), AKT (Cat. 
no. 4691 T) and phospho-AKT (cat. no. 4060 T), PKA 
C-α (cat. no. 5842  T) and phospho-PKA C (cat. no. 
5661 T).

Statistical analysis
Data are expressed as the mean SD. All statistical 
analyses were performed using GraphPad Prism 7.0. 
Statistical significance was set at * 0.01 < P < 0.05, ** 
0.001 < P < 0.01, and *** P < 0.001.

Results
Selection and identification of RA‑related pathogenic 
genes
Potential RA-related pathogenic genes were identified 
using the GeneCards and DisGeNET databases. 1012 
pathogenic genes with “relevance scores” greater than 
the average of pathogenic genes from GeneCards (Gen-
eCards-ave) were selected to overlap with the pathogenic 
genes from DisGeNET. A total of 844 shared pathogenic 
genes were figured out as RA-related (Fig.  1A, Supple-
mentary Table S1, sheet 1–3). To verify whether these 
pathogenic genes were highly correlated with RA, we 
extracted the expression matrix of these pathogenic 
genes from the GEO database (Series:  GSE55235) and 
performed a heat map analysis. The results confirmed 
that these pathogenic genes could distinguish RA from 
healthy samples and accurately reflect the changes in 
pathological genes in the pathogenesis of RA (Fig.  1B). 
KEGG pathway and GO term analyses are important 
for revealing the functions of target genes. As shown in 
Fig.  1C, these gene-enriched pathways, including the 
rheumatoid arthritis pathway, NF-κB pathway, TNF 
pathway, and osteoclast differentiation pathway, are well 
documented in the pathogenesis of RA. Furthermore, 
GO analysis of molecular functions showed that these 
pathogenic genes were related to the production of vari-
ous cytokines and activation of multiple immune cells 
(Fig.  1D). Additionally, the top ten ranked pathogenic 
genes with the highest number of evidences were closely 
related to inflammation. For example, TNF-α, the core 
cytokine in the inflammatory cascade, has been used as 
a target for RA treatment with excellent efficacy [21, 22]. 
The HLA-DRB1 allele constitutes the strongest genetic 
association for RA and may account for at least 30% of 
the total genetic component [23, 24]. Moreover, IL-1β, 
IL-17A, and IL-10 levels strongly correlated with RA pro-
gression of RA [25–27]. These results further confirm the 
reliability and accuracy of the selected pathogenic genes.

Identification of potential candidate components in HGWD
A total of 927 components in HGWD were collected 
from the online databases TCMSP, TCMID, TCM@Tai-
wan, and YaTCM (Supplementary Table S2). Accord-
ing to the screening criteria, 349 potentially candidate 
components, including 30 in HQ, 109 in GZ, 36 in SY, 
141 in SJ, and 33 in DZ, were retained for further analy-
sis (Fig. 2A, Supplementary Table S2). In addition, com-
pounds with high chemical concentrations in HGWD 
that typically elicit biological activities were extracted 
from the literature (Table  1) and combined with 349 
potentially candidate components, ultimately yielding 
366 candidate components for a more comprehensive 
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evaluation (Fig.  2A, Supplementary Table S3). The 
changes in properties between pre- and post-selection 
indicated that candidate components were more con-
sistent with the drug screening criteria and may have 
better activities (Fig. 2B).

Analysis of active components and targets
By analyzing the distribution of these candidate com-
ponents in the five herbs, we found that 39 candidate 

components co-existed in two or more herbs (Fig.  3A). 
For example, dibutyl phthalate (MID010507), cedrol 
(MID010700), and acetic acid (MID014218) are present 
in GZ, SY, and SJ, respectively. Among these, cedrol has 
been reported to ameliorates RA by reducing inflamma-
tion and selectively inhibiting JAK3 Phosphorylation [34]. 
Furthermore, GZ, SY, and DZ all contain the component 
( +)-catechin (MID010331), which has been reported to 
synergistically mediate anti-inflammatory effects with 

Fig. 1 Selection and identification of RA-related pathogenic genes. A The venn diagram of overlapping genes between DisGeNET 
and GeneCards-ave. B The gene expression heatmap of the RA-related pathogenic genes between RA and negative control (NC). C-D The top 30 
KEGG pathways and GO terms of RA-related pathogenic genes
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quercetin by inhibiting the NF-κB and MAPK path-
ways [35]. Additionally, GZ and SJ share 27 common 
components. Among them, thymol (MID011844) was 
demonstrated to have anti-inflammatory and wound 
healing-promoting effect [36]; eugenol (MID010096) 
and ()-Bornyl acetate (MID011038) were reported to be 
able to mitigate the progression of inflammation [37, 38]. 

However, apart from the shared components, each herb 
has its own specific ingredients that perform unique 
functions. SJ, GZ, SY, DZ, and HQ contained 110, 79, 36, 
31, and 27 specific candidate components, respectively. 
To further explore potential therapeutic mechanisms, 
we predicted the targets of these five herbs. By integrat-
ing information from the SEA, HitPick and Swiss Target 

Fig. 2 Scatter plots of properties changes between two sets of components. A The number of components before and after screening. B The 
red dots represent the componments before ADMET filtering (Pre-selected), and the blue dots represent the componments after ADMET filtering 
(Post-selected)
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Table 1 The candidate components of HGWD collected from literature

Formula Method Component Concentration Reference

Huangqi Guizhi Wuwu Decoction (HGWD) UFLC Calycosin-7-O-β-dglucoside 0.203 μg/mL  [28]

Paeoniflorin 21.67 μg/mL

Albiflorin 4.54 μg/mL

Cinnamic acid 0.644 μg/mL

Astragalus aaronii (Eig) Zohary. (Huang Qi, HQ) HPLC Campanulin 0.42 mg/g  [29]

Formononetin 0.02 mg/g

Cassia abbreviata Oliv. (Gui Zhi, GZ) UHPLC Protocatechuic acid 0.11 mg/g  [30]

Coumarin 0.84 mg/g

Cinnamic alcohol 0.04 mg/g

Cinnamic acid 0.68 mg/g

Cinnamaldehyde 9.93 mg/g

Paeonia lactiflora Pall. (Shao Yao, SY) HPLC Gallic acid 2.33 mg/g  [31]

Hydroxyl-paeoniflorin 1.89 mg/g

Catechin 0.03 mg/g

Albiflorin 4.44 mg/g

Paeoniflorin 4.81 mg/g

Benzoic acid 0.03 mg/g

1,2,3,4,6-pentagalloylglucose 4.80 mg/g

Benzoyl—paeoniflorin 0.11 mg/g

Paeonol 0.07 mg/g

Zingiber officinale Roscoe (Sheng Jiang, SJ) HPLC 6-Gingerol 16.62 mg/g  [32]

6-Shogaol 4.92 mg/g

Ziziphus jujuba Mill. (Da Zao, DZ) HPLC Rutin 0.21 mg/g  [33]

Quercetin 0.008 mg/g

Isorhamnetin 0.17 mg/g

Fig. 3 Analysis of candidate components and targets. A Shared and specific candidate components of HQ, GZ, SY, GZ and SJ in HGWD. B Shared 
and specific targets of HQ, GZ, SY, GZ and SJ in HGWD
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online tools, 618 HQ, 1290 targets for GZ, 828 targets 
SY targets, 1171 SJ targets, and 957 DZ targets were 
obtained (Supplementary Table S4). The distribution 
map suggested that 323 targets co-exist in five herbs, and 
most of them had critical roles in the evolution and inter-
vention of RA (Fig.  3B, Supplementary Table S5). For 
instance, the activation of the STAT1 pathway has been 
significantly observed in RA, and inhibiting this pathway 
can alleviate the progression of the disease [39]. Simi-
larly, the levels of the chemokine CXCL12 were elevated 
in the synovium and bone tissue of RA patients, and it 
has a pronounced activating effect on mature osteo-
clasts by inducing bone resorption activity and specific 
MMP-9 enzyme release [40]. Furthermore, recent studies 
have highlighted the importance of synovial hypoxia as a 
contributing factor in the development of RA, with the 
involvement of the hypoxia-inducible factor HIF1A being 
significant in this context [41, 42]. Additionally, MIF has 
been suggested as a therapeutic target for RA [43], while 
JAK inhibitors appear to be an important treatment 
option for RA patients who are difficult to treat [44]. Sim-
ilarly, each component had its own unique targets. Spe-
cifically, HQ, SY, DZ, SJ, and GZ have 12, 43, 102, 88, and 
174 targets, respectively, which fully reflects the complex 
multi-component-target features and synergistic thera-
peutic mechanisms of TCM formulas. Overall, our data 
suggest that HGWD can potentially treat RA via coordi-
nation of shared and unique components and targets.

Construction of core functional space and selection 
of effective proteins
To further explore the potential therapeutic mechanism 
of HGWD in RA, 1666 targets after removing duplicate 
genes (Supplementary Table S6) were used to construct 
the component-target network (C-T network). How-
ever, considering that the C-T network can only reflect 
some therapeutic effects but cannot reflect the propa-
gation mode of such therapeutic effects, we further 
integrated pathogenic gene–gene interactions and the 
C-T network to construct a comprehensive C-T-P net-
work, which could reveal the complex regulatory rela-
tionship of organism life activities to a certain extent. 
Our results showed that the C-T-P network contained 
2,495 nodes and 57,683 edges. In C-T-P networks, the 
node influence is one of the most critical topological 
attributes. It is generally believed that nodes with an 
influence score higher than the average node influence 
score of the C-T-P network are key players and central 
hubs [45]. In view of this principle, we propose a novel 
model that considers both the node control force and 
node bridging force to calculate the influence of nodes 
in this C-T-P network and reserved these larger-than-
average nodes and their edges to construct the core 

functional space (CFS), thus identifying 796 effective 
proteins. To verify that the effective proteins obtained 
from CFS can reflect RA characteristics at the func-
tional level, we performed KEGG and GO analyses 
and compared them with the target and pathogenic 
genes (T&P genes). Our results showed that among 
216 KEGG pathways and 3856 GO terms enriched in 
T&P genes, our model covered 191 KEGG pathways 
and 3109 GO terms with coverage rates of 88.43% and 
80.63%, respectively (Fig.  4A). Most of these KEGG 
pathways and GO terms have been well-documented, 
with a tight connection to RA. These include PI3K/
AKT, MAPK, TNF, and NF-kappa B pathways. In addi-
tion, we compared it with other models that are widely 
used to calculate the influence of nodes, including 
betweenness centrality, closeness centrality, cluster-
ing coefficient, degree, and neighborhood connectivity. 
The effective proteins obtained from each model were 
used to perform functional analysis, and their KEGG 
pathways and GO term coverage with target genes and 
pathogenic genes were calculated. Our results suggest 
that our model has a higher percentage of coverage of 
KEGG pathways and GO terms than the other models, 
whether compared with T&P genes or target genes and 
pathogenic genes, respectively (Fig.  4A-B). In conclu-
sion, our model has higher accuracy and reliability for 
determining critical genes with intervention potential 
at the functional level.

Three datasets are used in this study. The first type rep-
resents genes that directly link the component targets 
and pathogenic genes, which we describe as linked gene 
sets. The second type refers to genes that uniquely belong 
to pathogenic genes, which we defined as disease-leading 
gene sets. The third type represents genes that specifi-
cally target component targets, which were determined 
to be component-leading gene sets. To evaluate whether 
the effective proteins screened by CFS could better 
reflect pathogenic genes, we conducted a functional anal-
ysis of the three types. As seen in Fig. 4C, for the KEGG 
pathway, linked gene sets, disease-leading gene sets and 
component-leading gene sets accounted for 45.32%, 
53.95%, and 93.52% of the pathogenic genes, respectively; 
However, effective proteins accounted for 95.68%, which 
was higher than the previous three types. Similarly, for 
the GO analysis results, linked gene sets, disease-leading 
gene sets, and component-leading gene sets accounted 
for 56.56%, 58.39%, and 75.82%, respectively, which were 
far less than 81.22% of the effective proteins (Fig.  4C). 
These results provide further validation of the reliability 
of the model we constructed and verify that effective pro-
teins screened by CFS could represent the function of the 
pathogenic genes of RA and may play a vital role in the 
HGWD treatment of RA.
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Identification and validation of key response components 
group
To further optimize the active components and obtain 
the key response components group (KRCG), the increas-
ing coverage coefficient (ICC) model was orchestrated 
for evaluating cumulative contribution rate of each 

component. Based on the output of the cumulative con-
tribution rate score, only the first four components, ben-
zyl acetate (MID013540), vanillic acid (MID009964), butyl 
benzoate (MID014553), and moupinamide (MID018278), 
accounted for 50.12% of the effective proteins. Further-
more, 59 components with 677 targets contributed to 

Fig. 4 Construction of CFS and selection of effective proteins. A Venn diagrams show the number of overlapped KEGG pathways and GO 
terms between our model and other widely used model. B The proportion histogram of KEGG and GO of all model compared with the target 
genes or pathogenic genes. (C) The proportion histogram of KEGG pathways and GO terms of linked gene sets, disease-leading gene sets, 
component-leading gene sets and effective proteins compared with pathogenic genes
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85.05% target coverage, defined as KRCG (Fig.  5A; Sup-
plementary Table S7).

To further evaluate the effectiveness of KRCG in treat-
ing RA at the functional level, we extracted 677 targets 
produced by KRCG as key response proteins and com-
pared them with pathogenic genes and target genes at the 
KEGG pathway and GO term levels. Our results showed 
that key response proteins enriched 192 KEGG path-
ways, accounting for 84.89% and 87.94% of the patho-
genic genes and target genes, respectively, and that 3071 
GO terms were enriched with key response proteins, 
accounting for 72.17% and 82.33% of the pathogenic 
genes and target genes, respectively (Fig. 5B). These data 
demonstrate that the proposed model effectively selected 
key targets and eliminated noise. Figure  5C shows the 
top 30 signaling pathways analyzed by KRCG enrich-
ment, mainly involving cAMP, EGFR tyrosine kinase 
inhibitor resistance, calcium signaling, PI3K-Akt, and 
HIF-1 pathways. Among these, the cAMP, PI3K-Akt, and 
HIF-1 pathways have been extensively associated with 
the progression or treatment of RA. In summary, KRCG 
screening partially revealed the underlying mechanism of 
HGWD treatment for RA at the functional level.

Verification of KRCG in vitro
We randomly selected four components (moupina-
mide, MID018278; 6-Paradol, MID012414; hydrocin-
namic acid; MID010180, and protocatechuic acid; 
MID007590) to verify the effectiveness of KRCG and 
the reliability of our selection model at the experi-
mental level. The cell viability of four components on 
RAW 264.7 cells were measured by CCK-8 and the 
results showed that the components were not signifi-
cantly cytotoxicity to RAW264.7 cells at concentrations 
below 25 μM for moupinamide, 12.5 μM for 6-Paradol, 
200  μM for hydrocinnamic acid and 200  μM for pro-
tocatechuic acid (Supplementary Figure S1). Therefore, 
these concentration ranges without cytotoxic effects 
were used in subsequent experiments. The pathogenesis 
of RA is usually manifested by an increase in interleu-
kin 6 (IL-6), Nos2, nitric oxide (NO), and other inflam-
matory factors as well as activation of the MAPK and 
NF-κB pathways. Hence, the NO production level was 
determined, and the results showed a 4.2-fold increase 
in the LPS model group compared to the control group, 
indicating that LPS successfully triggered an inflam-
matory response in RAW264.7 cells. However, when 
treated with moupinamide (6.25, 12.5 and 25  μM), 
6-Paradol (3.125, 6.25 and 12.5  μM), hydrocinnamic 
acid (50, 100 and 200  μM) and protocatechuic acid 
(50, 100 and 200  μM), the release of NO has signifi-
cantly decreased in a concentration-dependent manner 
(Fig. 6A), which indicated the anti-inflammatory effects 

of the four components. To further verify their anti-
inflammatory effects, we measured intracellular lev-
els of Nos2 and IL-6, which are typical markers of the 
inflammatory response. As shown in Fig.  6B  and 6C, 
the levels of Nos2 and IL-6 were markedly increased in 
the LPS model group, whereas they were reduced in a 
dose-dependent manner in the administration group 
(Fig.  6B-C). Overall, our results demonstrated that all 
four components effectively inhibited the LPS-induced 
inflammatory response in RAW264.7 cells, further con-
firming the effectiveness of KRCG.

Similarly, we conducted experimental validation on 
three randomly selected non-KRCG components. The 
CCK8 results demonstrated that concentrations below 
200 uM for nerol, and below 400 uM for geranyl ace-
tate and bifendate did not exhibit any significant toxic 
effects on RAW264.7 cells (Supplementary Figure S3A). 
Furthermore, the relative NO production results indi-
cated that none of the tthree components had a mitigat-
ing effect on the LPS-induced inflammatory response 
in RAW264.7 cells (Supplementary Figure S3B). Impor-
tantly, there were no statistically significant differences 
observed in the levels of IL-6 and Nos2 mRNA (Sup-
plementary Figure S3C). These findings provide further 
evidence of the significance of KRCG in the treatment 
of RA and validate the reliability of our new model.

Moreover, to reveal the potential underlying mecha-
nism of KRCG, western blotting was performed to 
detect signaling pathways enriched in key response 
proteins (Fig.  5C), including cAMP, PI3K-Akt, and 
HIF-1 pathways. The data showed that the PI3K-Akt 
and HIF-1 pathways were activated and the cAMP 
pathway was inhibited in the LPS model group. How-
ever, these pathways were partially rescued by the 
treatment with these four components. For example, 
25 μM moupinamide inhibited LPS-induced activation 
of p-PI3K and p-AKT but had no significant effect on 
the cAMP and HIF-1α pathways. However, Paradol at 
12.5 μM, hydrocinnamic acid at 200 μM and protocat-
echuic acid at 200  μM both significantly inhibited the 
activation of PI3K-Akt pathway and HIF-1 pathway 
as well as promoting the activation of cAMP pathway 
(Fig. 6D). In summary, our results verified the reliabil-
ity of KRCG and demonstrated its potential synergistic 
functional role in RA therapy.

Discussion
In this study, we aimed to investigate the core compo-
nents and mechanisms of HGWD in the treatment of 
RA. we developed an optimized model for analyzing the 
correlation between disease-related genes and the tar-
gets of TCM components. This model incorporated both 
node control force and node bridging force to construct 
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Fig. 5 Identification and validation of key response components group. A The ICC scores of HGWD active components. B The number 
of overlapped KEGG pathways and GO terms between key response proteins and pathogenic genes. C Top 30 KEGG pathways of key response 
proteins
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the CRS, which was further used to identify the KRCG 
through an ICC model. The results identified 59 KRCG 
of HGWD in treating RA and further revealed their 
potential pharmacological mechanisms for inhibiting the 
inflammatory response by synergistically targeting the 
cAMP, PI3K-Akt, and HIF-1α pathways.

In fact, there are multiple computational models avail-
able to assess the centrality and importance of nodes in 
a network. These models include betweenness centrality, 
closeness centrality, clustering coefficient, degree central-
ity, and neighborhood connectivity. Each of these mod-
els has distinct focuses and calculation methods when 
measuring node importance. Betweenness centrality 

quantifies the criticality of a node in information flow 
by measuring its frequency of occurrence in all shortest 
paths [46, 47]. Closeness centrality measures the aver-
age distance between a node and other nodes in the net-
work [48]. The clustering coefficient gauges the level of 
connectivity among a node’s neighboring nodes [49]. 
Degree centrality, being the simplest measure of node 
importance, evaluates the number of connections a node 
has with other nodes [50]. Neighborhood connectiv-
ity measures the degree of connectivity among a node’s 
neighboring nodes [51]. In our study, we propose a novel 
computational model that integrates node control force 
and node bridging force. This model exhibits the highest 

Fig. 6 Verification of KRCG in vitro. A Cells were treated with moupinamide, 6-Paradol, hydrocinnamic acid and protocatechuic acid at the indicated 
concentrations for 24 h and then the NO production was measured. B-C The IL-6 and Nos2 mRNA levels were detected by qPCR. D The protein 
expression levels were determined by western blot (Full-length blots/gels are presented in Supplementary Figure S2)
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score when computing the KRCG of HGWD compared 
to other computational models. It effectively retains the 
active components responsible for the functionality of 
HGWD, as evidenced by the KEGG and GO enrichment 
results shown in Fig.  4B. Additionally, recent research 
utilizing ultra-performance liquid chromatography-
diode array detector (UPLC-DAD) fingerprint identified 
five compounds in HGWD with a relative content > 1%: 
paeoniflorin, astragaloside IV, hexahydrocurcumin, for-
mononetin, and calycosin-7-glucoside. Experimental 
studies have demonstrated the anti-inflammatory effects 
of these compounds [52]. Notably, paeoniflorin, hexa-
hydrocurcumin, and formononetin are all present in 
the KRCG, while the other two components were not 
initially included in the component survey. This finding 
validates the reliability and trustworthiness of our model, 
while also highlighting a significant limitation of com-
putational models: the dependence of prediction results 
on the quality and reliability of input data, which may be 
compromised by errors or missing data. Furthermore, 
our experimental validation focused on assessing the 
anti-inflammatory effects of four components: moupina-
mide, 6-Paradol, hydrocinnamic acid, and protocatechuic 
acid. The findings revealed their synergistic targeting of 
the cAMP, PI3K-Akt, and HIF-1α pathways, aligning with 
previous literature reports [53, 54].

However, our study has several limitations that should 
be acknowledged. Firstly, the predictive outcomes of 
computational models heavily rely on the completeness 
and reliability of input data. Unfortunately, we were una-
ble to collect comprehensive information regarding the 
components and disease targets of the HGWD. Secondly, 
the lack of extensive validation experiments poses a limi-
tation that needs to be addressed. It is crucial to validate 
the reliability of our model by incorporating a wider 
range of components from HGWD. Additionally, evalu-
ating the individual effectiveness of KRCG in comparison 
to the HGWD is necessary. Furthermore, the identifica-
tion of effective components in HGWD using HPLC is 
of utmost importance, as their contribution to therapeu-
tic effects largely depends on their concentration levels. 
Lastly, while our study primarily focuses on unveiling the 
role of KRCG, the significance of non-KRCG should not 
be disregarded, necessitating further research to eluci-
date the synergistic effects of the entire formulation.

Therefore, a comprehensive approach encompass-
ing qualitative and quantitative analysis of TCM using 
HPLC, ensuring data integrity through the incorporation 
of information from databases, as well as the utilization 
of computational models and extensive experimental val-
idation, will significantly enhance the accuracy and reli-
ability of computational models, and deepen the overall 
understanding and application of TCM.
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