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Abstract 

Background In the last few decades, the use of plant extracts and their phytochemicals as candidates for the man‑
agement of parasitic diseases has increased tremendously. Irises are aromatic and medicinal plants that have long 
been employed in the treatment of different infectious diseases by traditional healers in many cultures. This study 
aims to explore the potential of three common Iris species (I. confusa Sealy, I. pseudacorus L. and I. germanica L.) 
against infectious diseases. Their in vitro antiprotozoal potency against Plasmodium falciparum, Trypanosoma brucei 
brucei, T. b. rhodesiense, T. cruzi and Leishmania infantum beside their cytotoxicity on MRC‑5 fibroblasts and primary 
peritoneal murine macrophages were examined.

Methods The secondary metabolites of the tested extracts were characterized by UPLC‑HRMS/MS and Pearsons cor‑
relation was used to correlate them with the antiprotozoal activity.

Results Overall, the non‑polar fractions (NPF) showed a significant antiprotozoal activity (score: sc 2 to 5) in contrast 
to the polar fractions (PF). I. confusa NPF was the most active extract against P. falciparum  [IC50 of 1.08 μg/mL, selectiv‑
ity index (S.I. 26.11) and sc 5] and L. infantum  (IC50 of 12.7 μg/mL, S.I. 2.22 and sc 2). I. pseudacorus NPF was the most 
potent fraction against T. b. rhodesiense  (IC50 of 8.17 μg/mL, S.I. 3.67 and sc 3). Monogalactosyldiacylglycerol glycolipid 
(18:3/18:3), triaceylglycerol (18:2/18:2/18:3), oleic acid, and triterpenoid irridals (spirioiridoconfal C and iso‑iridobelamal 
A) were the top positively correlated metabolites with antiplasmodium and antileishmanial activities of I. confusa NPF. 
Tumulosic acid, ceramide sphingolipids, corosolic, maslinic, moreollic acids, pheophytin a, triaceylglycerols, mono‑ 
and digalactosyldiacylglycerols, phosphatidylglycerol (22:6/18:3), phosphatidylcholines (18:1/18:2), and triterpenoid 
irridal iso‑iridobelamal A, were highly correlated to I. pseudacorus NPF anti‑ T. b. rhodesiense activity. The ADME study 
revealed proper drug likeness properties for certain highly corelated secondary metabolites.

Conclusion This study is the sole map correlating I. confusa and I. pseudacorus secondary metabolites to their newly 
explored antiprotozoal activity.
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Background
The majority of so-called neglected diseases, which dis-
proportionately impact marginalized populations and 
for whom effective treatments are not readily available 
due to a variety of reasons, such as high cost, limited 
compliance, drug resistance, ineffectiveness, and high 
toxicity, are caused by protozoal infections [1]. Approx-
imately 700,000 people die each year from parasitic 
diseases, which make up more than 17% of all infec-
tious diseases [2]. Major killers that cause substantial 
illness and mortality in underdeveloped nations are 
Plasmodium (malaria), Trypanosoma (African trypa-
nosomiasis, American trypanosomiasis) and Leishma-
nia (leishmaniasis) [3]. The Plasmodium protozoan is 
responsible for the most common parasite disease in 
the world, malaria. Malaria is widespread in nearly 100 
countries. It caused an estimated 405,000 fatalities and 
228 million infections in 2018 [4].

Furthermore, the parasites responsible for African 
sleeping sickness, also known as Human African Tryp-
anosomiasis (HAT), are the African trypanosomes, 
(Trypanosoma brucei rhodesiense and Trypanosoma 
b. gambiense). Additionally, Trypanosoma b. brucei is 
what causes nagana, or African animal trypanosomia-
sis, in livestock. Because HAT is fatal if left untreated, 
sub-Saharan Africa has high rates of morbidity and 
mortality. It also causes 1.5 million disability-adjusted 
life years (DALYs), a measure of the loss of 1 year of a 
healthy and productive life due to disease, which is 
a financial burden in such regions. The World Health 
Organisation (WHO) Special Programme for Research 
and Training in Tropical Diseases (TDR) has so desig-
nated HAT as a category 1 disease [5]. Furthermore, 
over 28 million people are at risk of contracting T. 
cruzi, a protozoan parasite that causes African trypa-
nosomiasis (Chagas disease), which affects 15 million 
people worldwide [6].

A set of chronic infectious disorders known as leishma-
niasis are brought on by the Leishmania protozoan [7]. 
Leshmaniasis is a neglected, resurgent, and uncontrolled 
tropical disease that affects around 12 million individu-
als worldwide [8]. Infantile visceral leishmaniasis (Kala-
azar) is brought on by L. infantum and is prevalent in the 
Mediterranean region and Latin America [9]. Due to side 
effects, extended parenteral administration, high cost, 
low efficacy, and significant drug resistance, the current 
course of treatment is unfavourable [10].

The rise of emerging trypanosomiasis, leishmaniasis, 
and malaria in both developing and third-world coun-
tries highlight the need for the identification of novel nat-
ural effective therapeutic treatments. In order to discover 
effective, affordable treatments for those lethal parasite 
diseases, it is therefore required to explore therapeutic 

plants, extracts, and compounds, known as "hits," that 
have a specific activity at a non-toxic level [11–13].

In temperate and tropical climates, Iris spp., belonging 
to family Iridaceae, are extensively spread [14]. Irises have 
been used as effective folk cures for a variety of ailments 
in many different cultures. Iris pseudacorus L. rhizomes 
were used to treat throat infections in Irish and British 
traditional medicine [15]. Irises were used in Mongo-
lian traditional medicine, to cure bacterial diseases [16]. 
Additionaly, irises have been linked to a number of bio-
logical activities, including putative anti-bacterial, anti-
viral, and antiprotozoal potentials [17–21].

I. confusa rhizomes had been used as a folk medicine to 
treat acute tonsillitis and bronchitis [22]. I. confusa whole 
plant extract showed inhibitory activity on hepatitis B 
virus (HBV) DNA replication. The isolated compounds, 
spirioiridoconfal C and 28-deacetyl-belamcandal from 
I. confusa extracts showed potent activities against the 
HBV DNA replication and did not show inhibitory activi-
ties to the secretion of HBsAg and HBeAg [22].

Among the Egyptian cultivated Iris species are the 
three most common and available rhizomatous plants; 
I. confusa Sealy (bamboo iris), I. pseudacorus L. (yellow 
flag), and I. germanica L. (German iris) [23, 24] which 
were chosen for this study. Previously, we studied the 
anti-virulence; anti-haemolytic and quantitative biofilm 
inhibition as well as the anti-Helicobacter pylori activities 
of Iris confusa Sealy, I. germanica L., and I. pseudacorus 
L. cultivated in Egypt [25, 26]. In addition, we investi-
gated their primary [27] and secondary metabolites [25]. 
In light of our previous work, this study is a continuation 
of our research regarding the biological potentials of the 
aforementioned interesting  irises against infectious dis-
eases. This study aims to evaluate the in vitro antitrypa-
nosomal (T. b. brucei, T. b. rhodesiense, and T. cruzi), 
antiplasmodial (P. falciparum-K1), and antileishmanial 
(L. infantum) activities of the polar (PFs) and non-polar 
(NPFs) fractions of I. confusa, I. pseudacorus, and I. ger-
manica for the first time. In addition, their cytotoxic-
ity on human embryonic lung fibroblasts (MRC-5) and 
primary peritoneal murine macrophages (PMM) was 
assessed to evaluate their selectivity, together with their 
antioxidant activity. This study is the sole map correlating 
Iris secondary metabolites to their newly explored anti-
protozoal activity.

Materials and methods
General
Inactivated fetal calf serum (FCSi), minimal essential 
medium (MEM), chlorophenol red β-D-galactopyranoside 
(CPRG), resazurin, nitro blue tetrazolium (NBT), phena-
zine ethosulfate (PES) and 3-[4,5-dimethylthiazol-2-yl]- 
2,5-diphenyltetrazolium bromide (MTT) were purchased 
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from Sigma Aldrich (Bornem, Belgium). Roswell Park 
Memorial Institute Medium (RPMI-1640) and penicillin–
streptomycin (P/S solution) were supplied by Gibco BRL, 
(Merelbeke,. Belgium). The cell lines; human embryonic 
lung fibroblasts (MRC-5; Biowhittaker, Verviers, Belgium) 
and primary peritoneal murine macrophages (PMM 
(Naval Medical Research Institute (NMRI mouse; Charles 
River, Sulzfeld, Germany) were used. Standard drugs 
and all other reagents used were purchased from Sigma 
Chemical Company (CA, USA).

Plant material
The flowering Iris germanica L. and Iris pseudacorus L. 
(both collected from the Experimental Station of Medici-
nal Plants of the Faculty of Pharmacy, Assiut Univer-
sity, Egypt) and Iris confusa Sealy (from Al-Mansouria, 
Giza, Egypt), were collected in March 2018. They were 
graciously authenticated by Prof. Dr. Abd Haleem Abd 
El-Mogali, chief researcher, Flora and Phytotaxonomy 
Research Department, Agriculture Museum, Giza, Egypt. 
The curator of the African Iridaceae at the Royal Botanic 
Gardens, Kew, in London, UK, Dr. Nina Davies, gra-
ciously confirmed and authenticated the identity of the 
plant sample. Voucher specimens were deposited in the 
Herbarium of the Pharmacognosy Department at Cairo 
University with registration number Jan 15, 2019 (I-III).

Extraction and fractionation
I. germanica, I. pseudacorus and I. confusa underground 
parts were separated, air-dried in the shade then pow-
dered. The plant materials were stored in dark containers 
with tight lids until use. Following the method described 
in Salem et  al., 2016, ten mg of the separated under-
ground parts of each species were individually extracted 
using a macertation with 1 mL of MTBE: MeOH 3:1 v/v. 
Each sample received an equal volume (3:1 v/v) addi-
tion of  H2O and MeOH for liquid–liquid extraction. The 
lower layers of each sample  (H2O–MeOH) were evapo-
rated until dryness yielding the polar fractions (PF). The 
higher layers were evaporated until dryness generating 
the non-polar fractions (NPFs).

In vitro antiprotozoal activity
Preparation of polar (PFs), non‑polar (NPFs) fractions’ 
and reference drugs’ stock solutions
Just before screening, the dried plant fractions (PFs and 
NPFs) and reference drugs were individually dissolved in 
100% dimethylsulfoxide (DMSO) at 20 mg/mL and then 
further diluted with the medium.The DMSO concentra-
tion did not exceed 0.5% in order not to affect the para-
site growth [28]. To construct a full dose-titration and 
to determine of the  IC50 (inhibitory concentration 50%), 

plant fractions and reference drugs were examined at 
concentration of 64, 16, 4, 1 and 0.25 μg/mL.

Test plate production
Greiner, Bio-One, Wemmel, Belgium was used for the 
experiments [29, 30]. A robotic station (BIOMEK 2000, 
Beckman, CA, USA) performed the dilutions. Each 
plate comprised reference controls (positive control), 
infected untreated controls (negative control), and blank 
medium-controls (blanks: 0% growth). All experiments 
were performed in triplicates (first test in duplicate and 
one independent repeat).

Antiplasmodial potency evaluation
In RPMI-1640 medium supplemented with 25 mM 
Hepes, 0.37 mM hypoxanthine, 25 mM  NaHCO3 and 
ten percent  O+ human serum together with two percent 
washed human  O+ erythrocytes, chloroquine-resistant 
Plasmodium falciparum (K1 strain) was maintained. In 
96-well microtiter plates, tests were run in an atmos-
phere of 3%  O2, 4%  CO2 and 93%  N2. A test material solu-
tion containing 10 μL was added to each well along with 
190 μL of the malaria parasite inoculum (2% haematocrit, 
1% parasitaemia), which was then incubated for 72 h then 
stored at -20 °C. The Malstat assay, a colorimetric proce-
dure based on the reduction of 3-acetyl pyridine adenine 
dinucleotide (APAD) by parasite-specific lactate dehy-
drogenase (pLDH) [31], was used to measure the para-
site multiplication after thawing. Twenty μL of each well 
were transferred into another plate along with 100 μL of 
the Malstat™ reagent. PES (0.1 mg/mL) and NBT (2 mg/
mL) were combined in a volume of 20 μL at a ratio of 1:1. 
Using a Biorad 3550-UV microplate reader, the colour 
change (blue formazan product) was measured spectro-
photometrically at 655 nm. A dose response curve was 
used to measure the 50% inhibitory concentration  (IC50), 
and the tested samples potency was determined using the 
aforementioned scoring system.

Score 1: inactive; 2: weak; 3: moderate; 4: pronounced; 
5: strong.

Antitrypanosomal potency evaluation
T. b. brucei (suramin-sensitive, Squib-427 strain) and T. 
b. rhodesiense (STIB-900 strain) trypomastigotes were 
grown separetly in Hirumi-9 (HMI-9) medium at 5% 
 CO2 and  37◦C with 10% FCSi. The T. b. brucei and T. b. 
rhodesiense assays were carried out as per Vik et al.[1] and 
Freiburghaus et al. [32] instructions, respectively. Using an 
excitation λ 536 nm and emission λ 588 nm, The plates of 
T. b. rhodesiense and T. b. brucei were read in Molecular 
Devices Cooperation, CA, USA (Spectramax Gemini XS 
microplate fluorimeter) [33].
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On human lung fibroblast (MRC-5) cells, Trypano-
soma cruzi Tulahuen CL2 (nifurtimox-sensitive strain) 
was kept in MEM with 200 mM L-glutamine, 16.5 mM 
sodium hydrogen carbonate, and 5% FCSi at 37 °C in a 
5%  CO2 atmosphere. After incubation for 7 days at 37°C, 
4 ×  103 MRC-5 cells and 4 ×  104 parasites were introduced 
to each well. By addition of the β-galactosidase substrate 
CPRG for 4 h at 37 °C, parasite growth was evaluated. 
The absorbances were represented as a percentage of the 
blank controls when the colour reaction was measured at 
540 nm after 4 h [1].

Antileishmanial potency evaluation
Primary peritoneal murine macrophages (PMM) were 
infected using L. infantum (MHOM/FR/96/LEM3323) 
amastigotes that were extracted from the spleen of a 
donor hamster that had the infection. Starch was injected 
intraperitoneally to activate PMM, the host cells used 
in the experiment. The macrophages were gathered and 
sown (3 ×  104) two days later in each well of a 96-well 
plate that was being incubated at 37°C with 5%  CO2. 
In RPMI-1640 + 5% FCSi, L. infantum ex  vivo (spleen-
derived) amastigotes were employed to infect the PMM 
at infection ratio 10:1 after two days. The dilutions of 
the tested samples were added to the plates after a fur-
ther 2 h of incubation. The plates were then kept at 37°C 
and 5%  CO2 for 5 days. After incubation, cells were dried, 
methanol-fixed, and stained with 20% Giemsa stain for 
examination. Results were represented as % reduction of 
amastigote burden (mean number of amastigotes/mac-
rophage) compared with the untreated control cultures 
(without tested samples) [34].

Determination of cytotoxicity and selectivity against MRC‑5 
and PMM cell lines
By utilising MTT solutions in 96-well microplates, the 
colorimetric MTT assay was used to determine the 
cytotoxicity of the examined fractions [35]. MRC-5 and 
PMM were grown in MEM and in RPMI-1640, respec-
tively supplemented with 20 mM L-glutamine, 5% FCSi 
and  NaHCO3 (16.5 mM) at  37◦C and 5%  CO2 and 2% P/S 
solution. The prediluted sample test plates were seeded 
with  104cells per well, and they were then incubated for 
72 h at 37°C and 5%  CO2. After incubation, the viabil-
ity of the cells was assessed using a GENios microplate 
reader and resazurin. From a dose response curve, the 
50% cytotoxic concentration  (CC50) was calculated. The 
toxicity of the studied fractions for MRC-5 and PMM 
as well as their efficacy against the tested parasites were 
compared using selectivity index (SI). It was computed as 
follows with regard to the antitrypanosomal and antima-
larial action [1]: 

Concerning the antileishmanial activity, SI was calcu-
lated as [1]

and [36]

UPLC‑ESI–MS/MS analysis
This analysis was done according to Okba et al. [25]. Statistical 
analyses were conducted using Pearson’s correlation. Metabo-
analyst 3.0 was used for multi-variate data analysis [37].

Estimation of total phenolic, favonoid and triterpene 
contents
Total phenolic content (TPC) estimation
TPC of PFs and NPFs were calculated using the Folin-
Ciocalteu colorimetric method [38]. A standard calibra-
tion curve was constructed using gallic acid as a standard. 
The results were expressed as μg gallic acid equivalent 
(GAE)/mg dried fraction (DF).

Total favonoid content (TFC) estimation
TFC of PFs and NPFs were determined using aluminium 
chloride method [39]. Quercetin was used as standard. The 
TFC was calculated from the standard calibration curve and 
was represented as μg quercetin equivalent (QE) /mg DF.

Total triterpene content (TTC) estimation
TTC of PFs and NPFs were determined based on meas-
uring the red–purple color intensity that resulted from 
perchloric acid-oxidized triterpenes in glacial acetic acid 
with vanillin reaction [40]. Ursolic acid was used as a 
standard compound. The TTC was calculated from the 
standard calibration curve and was expressed as μg urso-
lic acid equivalent (UAE)/mg DF.

Antioxidant potential evaluation
With a few adjustments, the DPPH antioxidant experi-
ment was performed as instructed by Romano et al.[41]. 
The PFs and NPFs of I. pseudacorus, I. germanica, and I. 
confusa, portions were separately dissolved in methanol 
with the help of sonication to creat serial dilutions. In 
each instance, the reaction mixture was 200 μL of 0.004% 
DPPH in methanol and 22 μL of the tested sample. Simi-
lar procedures were used to conduct a blank experiment, 
which used 22  μL of methanol in place of the sample. 
The DPPH radicals (non-quenched) were assessed at 
λmax = 492 nm spectrophotometrically.

SIa = CC50(MRC− 5fibroblasts)/IC50(parasite)

SIa = CC50(MRC− 5fibroblasts)/IC50(parasite)

SIb = CC50(PMMmacrophages/IC50(parasite)
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Drug likeness analysis
To explore the properties of the secondary metabolites 
correlated with the observed activity, Lipinski’s Rule of 
Five [42] and Veber’s rules [43] were applied. Drug-like-
ness profiles prediction of the compounds was measured 
using SwissADME webtool (http:// www. swiss adme. ch/) 
[44].

Results
In a continuation of our interest in exploring plants 
with antiprotozoal potential [29, 30, 45–47], common 
Iris species from Egypt were screened for their in vitro 
antiprotozoal potency against P. falciparum (K-1), T. 
b. brucei, T. b. rhodesiense, T. cruzi, and L. infantum. 
Their cytotoxicity against PMM and MRC-5 cell lines 
as well as their selectivity were evaluated (Table 1 and 
Fig.  1). All NPFs showed potent antiplasmodial, antit-
rypanosomal and antilishmanial activity than the PFs of 
the same species.

Cytotoxicity and selectivity
All the tested fractions were non cytotoxic (sc 1) or 
showing low cytotoxicity (sc 2) against MRC-5 cells 
except I. confusa PF which showed moderate cytotoxicity 
(sc 3). The PF of I. confusa was not further tested because 
of its high cytotoxicity. All the tested fractions were 
non cytotoxic against PMM cells (sc 1). The potentially 
active tested fractions demonstrated nonspecific activity 
towards certain species of protozoa.

Antiplasmodial activity
The NPFs of the three Iris species displayed pronounced 
strong activity (sc 4–5) with  IC50 values in the range 1.08 
– 2.59 μg/mL and  SIa ratio [CC50 (MRC-5 fibroblasts) / 
 IC50 (parasite)] in the range 26.11 – 12.34. On the other 
hand, the PFs showed weak to no activity (sc 1–2). The 
most potent fraction against P. falciparum was I. confusa 
NPF  (IC50 of 1.08 μg/ml, S.I. 26.11 and sc 5).

Antitrypanosomal activity
The NPFs of I. pseudacorus, I. germanica and I. confusa 
showed weak to moderate activity (sc 2–3) against T. b. 
rhodesiense and T. cruzi, while the PFs exerted no activ-
ity against the three tested Trypanosoma species. I. pseu-
dacorus NPF was the most potent fraction against T. b. 
rhodesiense  (IC50 of 8.17 μg/ml, S.I. 3.67 and score 3). The 
three Iris species exerted moderate activity (sc 3) against 
T. cruzi with an  IC50 of 8.14–10.30 μg/ml. On the other 
hand, T. b. brucei was resistant to all fractions.

Antileishmanial activity
In addition to testing the cytotoxicity of the tested frac-
tions on MRC-5, it was also determined on the primary 
peritoneal murine macrophages (PMM), the host cells for 
the amastigote form of Leishmania [36]. The selectivity 
index  (SIb =  CC50 for macrophage /  IC50 for amastigotes) 
was used to compare the toxicity of the tested fractions 
for PMM and the activity against amastigotes of Leishma-
nia [36]. Only the NPF of I.confusa exerted weak activ-
ity (sc 2) against L. infantum with  IC50 of 12.70μg/mL. It 
showed no cytotoxicity (sc 1) on PMM.

UPLC‑ESI–MS/MS analysis
Secondary metabolites profiling of the NPFs of I. pseu-
dacorus, I. germanica, and I. confusa revealed the pres-
ence of 45 metabolites belonging to differenet chemical 
classes; triterpene acids, iridals, caged-tetraprenylated 
xanthone, phosphatidic acids, fatty acids, phosphatidyl 
glycyerols, glycolipids, phosphatidyl ethanol amine, chlo-
rophyll derivatives, phosphatidylcholines, triacylglycerols 
and ceramides [25]. Pearson’s correlation was applied on 
this results to explore the top correlated metabolites with 
the newly observed plasmodicidal, lesishmanicidal and 
trypanocidal potential.

Interestingly, five metabolites were strongly correlated 
with I. confusa NPF high antiplasmodial and antileshma-
nial potentials (Fig. 2A and B). These compounds belong 
to various chemical classes viz glycolipids monogalacto-
syldiacylglycerol MGDG (18:3/18:3) (metabolite no. 1), 
triacyl glycerols TAG (18:2/18:2/18:3) metabolite no. 2, 
iridals (spirioiridoconfal C and, (iso)iridobelamal metab-
olites no. 3 and 4, respectively, and fatty acid; oleic acid 
metabolites no. 5.

On the other hand, thirteen metabolites belonging 
to different phytochemical classes were highly corre-
lated to I. pseudacorus NPF anti- Trypanosoma b. rho-
desiense activity (Fig.  3A and B) including triterpene 
acids; tumlosic acid metabolite no. 6 and corosolic/
maslinic acid metabolite no. 7, ceramide (t18:1/α24:0) 
metabolite no. 8 and ceramide (t 18:0/α24:0) metabo-
lite no. 9, caged xanthone; moreollic acid metabolite 
no. 10, chlorophyll derivatives: pheophytin a metab-
olite no. 11 and chlorophyll b metabolite no. 12, 
phosphatidylglycerol (22:6/18:3) metabolite no. 13, gly-
colipids: digalactosyldiacylglycerol DGDG (18:3/18:3) 
metabolite no. 14 and MGDG 18:2/18:2 metabolite no. 
15, triterpenoid irridal; iso(iridobelamal) metabolite 
no. 16, fatty acid; hydroxyoctadecadienoic acid metab-
olite no. 17, and phosphatidylcholine PC 18:1/18:2 
metabolite no. 18.

http://www.swissadme.ch/
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The structures of the secondary metabolites 
strongly correlated with I. confusa NPF antiplasmo-
dial and antileshmanial potentials and I. pseudacorus 
observed anti Trypanosoma brucei rhodesiense poten-
tial were represented in Fig. 4 and their Ms/Ms frag-
mentation were demonstrated in supplementry file 
(Figs. S1-S18).

Identification of I. confusa NPF secondary metabolites 
that were strongly correlated with the high antiplasmodial 
and antileshmanial potentials
The following is the detailed MS/MS fragmentation 
explanation aided in the identification of the highly cor-
related metabolities recently identified in our previous 
study [25] on the same common Iris species.

Fig. 1 Bar graph representing  CC50/IC50 (μg/mL) of the PFs and NPFs of I. confusa, I. pseudacorus and I. germanica showing their cytotoxicity 
against MRC‑5 and PMM cells as well as their antiprotozoal activity

Fig. 2 Top I. confusa NPF metabolites correlated with its antiplasmodium and antileshmanial activities. A: Pearson’s correlation coefficients 
indicate the relationship between metabolites and activity against P. falciparum and L. infantum. B: Heat map for the distribution of metabolites 
correlated with I. confusa NPF activity against P. falciparum and L. infantum. The metabolite abundance from five biological replicates was used 
for the generation of heat maps
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Metabolite no. 1: It was detected as [M +  NH4]+ ions 
in the positive mode and as [M +  CH3COO]− in the 
negative mode as well documented [48, 49]. Its ammo-
nium adduct showed loss of  NH3 plus loss of galactosyl 
residue (-179  Da) with formation of the daughter ion 
[M +  NH4-NH3-Gal]+ at m/z 613.48 [48]. Moreover, the 
ammonium adduct exhibited neutral loss of  NH3 and loss 
of galactosyl residue involving the cleavage of the sugar 
hemiacetal with proton transfer (-197  Da) with forma-
tion of daughter ion at m/z 595.47. In the positive ioni-
zation mode, product ion [RCO +  74]+ was observed at 
m/z 335.26 (18:3 FA) which identified the fatty acyl sub-
stituents; corresponding to the acyl ion with additional 
74 amu equivalent to  C3H6O2 (glyceryl moiety) [50]. In 
the negative ionization mode, its acetate adduct yielded 
the respective fatty acid carboxy anion [C18:3-H]− at m/z 
277.22 at positions sn-1 and sn-2 of the glycerol backbone 
[48]. The acetate adduct of metabolite no. 1 yielded the 
respective fatty acid carboxy anions [C18:3-H]− at m/z 
277.22 at positions sn-1 and sn-2 of the glycerol backbone 
[48]. It was identified as MGDG (18:3/18:3) (Fig. S1).

Metabolite no. 2 was detected in positive ionization 
mode only. A protonated molecular ion at m/z 877.72 
[M +  H]+ was observed. Fragment ion appeared at m/z 
597.49 corresponding to diacyl product ion due to the 
loss of neutral C18:2  C17H31COOH from the protonated 
molecular ion [M +  H]+ or the loss of 297  Da relative 

to the loss of neutral C18:2  C17H31COONH4 from the 
ammonium adduct. Other less abundant fragment 
ions appeared which were very important in stereoiso-
mers assignments corresponding to C18:2 (m/z 263.24, 
245.24, 337.27 and 319.26) and others corresponding 
to 18:3 fatty acid were detected (m/z 261.22, 243.21, 
335.26 and 317.25). The product ion at m/z 599.50 
corresponded to the loss of 18:3 fatty acid. The higher 
abundance of the DAG ion produced by the loss of 18:2 
than the one produced from the loss of fatty acid 18:3 
suggested that 18:2 and 18:3 acids were located at sn-1 
and sn-3 positions, respectively. Fragment ion appeared 
at m/z 261.22  [C14H25CH2CH = CH-CO]+ correspond-
ing to the typical loss of the middle fatty acid at the sn-2 
position as α,β-unsaturated acid  [C18H30O2 +  H]+ fol-
lowed by loss  H2O molecule corresponding to C18:2 at 
sn-2. This was further confirmed by the higher abun-
dance of the product ion at m/z 337.27 corresponding 
to 18:2  [C17H31CO +  74]+ than the ion at m/z 335.26 
corresponding to 18:3  [C17H29CO +  74]+ showing that 
the 18:2 fatty acid not 18:3 was located at the sn-2 posi-
tion. It was identified as triacyl glycerol (18:2/18:2/18:3) 
(Fig. S2).

Metabolites no. 3 and 4: in the positive ionization 
mode, fragment ions appeared at m/z 469.33/457.37 
[M + H-H2O]+ and 451.32/439.36 [M + H-2H2O]+ due 
to loss of 2 successive water molecules [51] from the 

Fig. 3 Top I. pseudacorus NPF metabolites correlated with its antitrypanosomal activity. A) Pearson’s correlation coefficients indicate the relationship 
between metabolites and activity against T. b. rhodesiense, B) Heat map for the distribution of metabolites correlated with I. pseudacorus NPF activity 
against T. b. rhodesiense. The metabolite abundance from five biological replicates was used for the generation of heat maps
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two  compounds, respectively. In the negative ionization 
mode of (iso)iridobelamal (metabolite no. 4), fragment 
ion appeared at m/z 455.36 due to loss of water molecule. 
While spirioiridoconfal C (metabolite no. 3) exhibited 

successive loss of 2 water molecules leading to fragment 
ions at m/z 467.32 and 449.30 [22, 52, 53]. They were 
identified as spirioiridoconfal C and (iso)iridobelamal 
irridal respectively (Figs. S3 and S4).

Fig. 4 Structures of the secondary metabolites strongly correlated with A) I. confusa NPF antiplasmodial and antileshmanial potentials and B) I. 
pseudacorus observed anti Trypanosoma brucei rhodesiense potential
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Metabolites no. 5: The most abundant ion for the fatty 
acid is the molecular ion peak [M-H]− only at m/z 281.24 
[54]. It was identified as oleic acid (Fig. S5).

Identification of I. pseudacorus secondary metabolites 
that were strongly correlated with the observed anti T. b. 
rhodesiense potential
Metabolites no. 6 and 7: they were characterized by 
fragment ion [M-H-CH2O-H2O]− at m/z 437.34 and 
423.33, respectively due to loss of formaldehyde and 
water molecule (48 Da). [55, 56]. They were identified as 
tumlosic and corosolic/maslinic triterpene acids respec-
tively (Figs. S6 and S7).

Metabolites no. 8 and 9: The protonated pseudomo-
lecular molecular ion [M +  H]+ of metabolite no. 8 
yielded daughter ions at m/z 664.62 [M + H-H2O]+ and 
646.62 [M + H-2H2O]+. Fragment ions at m/z 298.27, 
280.26 and 262.25 were assigned to 6-hydroxysphing-
4-enine moiety formed after amide bond cleavage and 
concomitant loss of three consecutive water molecules. 
On the other hand, the protonated pseudomolecular ion 
[M +  H]+ of metabolite no. 9 yielded daughter ions at 
m/z 666.64 [M + H-H2O]+, 648.63 [M + H-2H2O]+and 
630.63 [M + H-3H2O]+. In the positive ionization mode; 
fragment ion at m/z 318.30  [C18H39NO3 +  H]+ assigned 
to phytosphingosine moiety formed after amide bond 
cleavage was detected. Abundant triplet fragment ions 
were detected at m/z 300.29, 282.28 and 264.27 formed 
by subsequent loss of water from the phytosphingo-
sine [57]. Regarding the negative ionization mode of 
metabolites no. 8 and 9, fragment ions appeared at m/z 
662.61, and 664.62 [M-H-H2O]− and 644.60 and 646.62 
[M-H-2H2O]−, respectively. In addition, fragment ion 
was detected in the negative ionization of metabolite no. 
9 at m/z 652.63 [M-H-HCHO]−. Moreover prominent 
fragment ion at m/z 383.35  [C24H47O3]− was detected 
corresponding to 2-hydroxy tetraeicosanoic ion in the 
spectra of both metabolites. Other fragment ions were 
observed at m/z 365.34 and  [RCO2

−-H2O] and 337.35 
 (RCO2

−-[H2 +  CO2]) which were characteristic to the 
αh24:0-fatty acid [58] (Figs. S8 and S9).

In metabolite no. 8, the cleavage of the C2-C3 
bond of the LCB led to the formation of N-acyleth-
anolamine (NAE) anion ([NAE–H]−) at m/z 426.40 
 [C23H47CO2NHCH2CH2O]− reflecting fatty acyl sub-
stituent to be C24:0 (2OH). Fragment ions reflect-
ing the 6-hydroxysphing-4-enine LCB were also 
seen at m/z 314.27 [LCB-H]− =  [C18H34O3NH3-H]−, 
279.23 [M-H-H2O-C23H47CO2NH2]− (elimina-
tion of the fatty acyl moiety as an amide), 253.22 
[M-H-NAE]− = [M-H-C23H47CO2NHCH2CH2OH]−.

The ions at m/z 426.40 [NAE-
H]− =  [C23H47CO2NHCH2CH2OH-H]−, 424.38 [NAE-

H-2H]− =  [C23H47CO2NHCH2CH2OH-H-2H]−, 408.39 
[NAE-H-H2O]− =  [C23H47CO2NHCH2CH2OH-H-H2O]−, 
383.35  [RCO2]− =  [C23H47CO3]−, and 382.37 
 [RCONH]− =  [C23H47CO2NH]− indicating the h24:0 fatty 
acyl substituent were prominent. The ions of m/z 383.35 
along with ions of m/z 365.34 [383.35–H2O]-, and 337.35 
[383.35–(H2 +  CO2)], suggested the presence of αh24:0-
fatty acyl substituent [58].

Considering metabolite no. 9, the cleavage of the 
C2-C3 bond of the LCB led to the formation of N-acy-
lethanolamine (NAE) anion ([NAE-H]−) at m/z 426.40 
 [C23H47CO2NHCH2CH2O]− reflecting fatty acyl sub-
stituent to be C24:0(2OH). Ions characteristic for t18:0-
LCB (phytosphigosine) component were detected at m/z 
267.23 and 255.23 [58].

Metabolites no. 8 and 9 were identified as ceramide 
(t18:1/α24:0) and ceramide (t 18:0/α24:0), respectively.

Metabolite no. 10: showed a pseudomolecular ion in 
the positive ionization mode at m/z 593.28 [M +  H]+ [59]. 
It was identified as caged xanthone (moreollic acid) (Fig. 
S10).

Metabolites no. 11 and 12: The most abundant 
fragment ions in chlorophyll derivatives is corre-
sponded to the loss of groups from the C-17 position 
in the form phytil chain (as the phytadiene,  C20H38) or 
 CH3COOC20H39 group [60]. The protonated pseudomo-
lecular ions of metabolite no. 11 yielded product ion at 
m/z 593.27 corresponding to [M + H-C20H38]+. Prod-
uct ions at m/z 533.25 [M + H-CH3COOC20H39]+ and 
other at m/z 812.55 [M + H-COOCH3]+ were detected 
due to the loss of  COOCH3 from position C-132 [60]. 
It was identified as pheophytin a (Fig. S11). The proto-
nated pseudomolecular ion of metabolite no. 12 yielded 
product ions at m/z 629.23 [M + H-C20H38]+ and 569.20 
[M + H-CH3COOC20H39]+. In addition, fragment ion 
at m/z 627.21 [M-H-C20H38]− was detected [61]. It was 
identified as chlorophyll b (Fig. S12).

Metabolite no. 13: Carboxylate anions appeared at 
m/z 327.22  [C21H31CO2]− and 277.22  [C17H29CO2]− rela-
tive to 22:6 and 18:3 fatty acids. Their relative intensities 
indicated the C-22:6 is in position sn-1 (less abundant 
peak at m/z 327.22) while C-18:3 is in position sn-2 (more 
abundant peak at m/z 277.22). Fragment ions detected at 
m/z 537.28 [M-H-C18H30O2]− and at m/z 487.25 [M-H-
C22H32O2]− corresponding to the loss of C-18:3 and 
C-22:6 fatty acids. It was identified as phosphatidylglyc-
erol (22:6/18:3) (Fig. S13).

Metabolites no. 14 and 15: were detected 
as [M +  NH4]+ ions in the positive mode and as 
[M +  CH3COO]− in the negative mode as well docu-
mented [48]. Their ammonium adduct showed loss  NH3 
plus loss of galactosyl residue (-179  Da) with formation 
of the daughter ion [M +  NH4-NH3-Gal]+ at m/z 775.54 
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and 617.51, respectively [48]. Moreover, the ammonium 
adduct exhibited neutral loss of  NH3 plus loss of galacto-
syl residue involving the cleavage of the sugar hemiacetal 
with proton transfer (-197 Da) with formation of daugh-
ter ion at m/z 757.52 and 599.50, respectively. In the posi-
tive ionization mode of metabolite no. 14 and, product 
ion [RCO +  74]+ was observed at m/z 335.26 (18:3 FA) 
and 337.27 (18:2 FA) which identified the fatty acyl sub-
stituents; corresponding to the acyl ion with additional 
74 amu equivalent to  C3H6O2 (glyceryl moiety), in each 
compound respectively [49, 50]. Also, the ammonium 
adduct of metabolite no. 14 underwent loss of 2 hexose 
residues and  NH3 (-341 Da) yielding fragment ion at m/z 
613.48 [M +  NH4-2Hex-NH3]+ was observed. Fragment 
ion at m/z 261.22  [RCO]+  =  [C17H29CO]+ was detected. 
In the negative ionization mode, the acetate adduct of 
metabolites no. 14 and 15 yielded the respective fatty acid 
carboxy anions [C18:3-H]− at m/z 277.22 and [C18:2-H]− 
at m/z 279.23, respectively at positions sn-1 and sn-2 of 
the glycerol backbone [48]. The acetate adduct of metab-
olites no. 14 and 15 yielded the respective fatty acid car-
boxy anions [C18:3-H]− at m/z 277.22 and [C18:2-H]− at 
m/z 279.23, respectively at positions sn-1 and sn-2 of the 
glycerol backbone [48]. Metabolites no. 14 and 15 were 
identified as DGDG (18:3/18:3) and MGDG 18:2/18:2) 
glycolipids (Figs. S14 and S15).

Metabolite no. 16: as described above for metabolite 
no. 3 (Fig. S16).

Metabolite no. 17: The most abundant ion for fatty 
acids is the molecular ion peak [M-H]− only [54]. It was 
identified as hydroxyoctadecadienoic (FA 16:0) fatty acid 
(Fig. S17).

Metabolite no. 18: it showed fragment ions at m/z 
279.23 [C18:2-H]− and 281.25 [C18:1–H]– correspond 
to linoleic and oleic acids, respectively. Small signals 
detected at m/z 506.33 and 504.31 due to loss of ketenes 
of linoleic [M-CH3-262]− and oleic [M-CH3-264]− acids, 
respectively, were observed. Loss of neutral linolenic 
and oleic acids from the demethylated molecular ion 
[M-CH3]− was found with low intensity at m/z 488.32 
[M-CH3-C18:2]− and 486.30 [M-CH3-C18:1]−. Product 
ion relative to the carboxylate anion of linoleic acid at 
m/z 279.23 was more abundant than that relative to oleic 
acid with more abundance of the ketene of linolenic than 
that of oleic acid. It was identified as phosphatidylcholine 
(PC 18:1/18:2) (Fig. S18).

Quantitative determination of the main phytochemical 
classes
The three studied species NPFs generally showed higher 
triterpenoidal content while the PFs showed higher total 
phenolic and flavonoid contents (Fig. 5 A-C). The NPF of 
I. pseudacorus exhibited the highest TTC (151 ± 0.05 μg 

ursolic acid equivalent /mg dried fraction). On the other 
hand, I. confusa PF showed the highest content of TPC 
(99 ± 0.02 μg gallic acid equivalent /mg dried fraction) 
and TFC (98 ± 0.04 μg quercetin equivalent /mg dried 
fraction).

Antioxidant activity
The  EC50 of each sample against gallic acid is presented 
in Fig. 5D. All the studied PFs showed a stronger antioxi-
dant activity than the corresponding NPFs. Among the 
PFs, I. confusa exhibited the highest DPPH scavenging 
activity with an  EC50 of 41.68 ± 6.67 μg/mL.

Drug likeness analysis
To explore the properties of the secondary metabolites 
correlated with NPF and PF of Iris species, Lipinski’s Rule 
of Five and Veber’s rules were predicted using the free 
accessible web server Swiss ADME (http:// www. swiss 
adme. ch/ index. php). Results are tabulated in Table 2.

Discussion
Cytotoxicity on host cells is a critical criterion for 
determining the selectivity of observed pharmacologi-
cal effects and must always be considered in parallel. 
Although several cell types might conceivably be uti-
lized for this purpose, MRC-5 cells were chosen due to 
their sensitivity and receptivity to a variety of parasites 
[11]. The  CC50 of the tested fractions was also calculated 
against PMM, which are the host cells for L. infantum 
amastigotes, in order to assess the toxicity of the tested 
fractions on macrophages [36].

Herein, The NPFs showed significant antiplasmo-
dial, antitrypanosomal and antileishmanial activities 
than the PFs. This could be due to the presence of sev-
eral classes of biophytochemicals of well documented 
antiparasitic activities e.g. iridals [18], pentacyclic trit-
erpenes [62] and phospholipids [63–65]. Interestingly, 
it has been shown in various parasitic infections that 
lipid synthesis increased dramatically in the infected 
cells to meet the parasite’s need for new membranes 
as the parasite multiplied [65]. Thus, interfering with 
PL production with polar head analogues that com-
pete or substitute for native polar head inclusion is 
fatal to certain parasites [66, 67]. It is worth noting that 
miltefosine, the reference medication for L. infantum, 
is a phospholipid analogue (hexadecylphosphocho-
line) [68]. The WHO Special Programme for Research 
& Training in Tropical Diseases (TDR) established an 
activity threshold as  IC50 0.2 µg /mL with SI > 20 for an 
antimalarial hit [69]. I. confusa NPF displayed the high-
est antiplasmodial activity with high selectivity index. 
In addition, it was the only fraction exerting an inhibi-
tory activity against L. infantum with no cytotoxicity. 

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
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Five metabolites in I. confusa NPF were strongly cor-
related with its high antiplasmodial and antileshma-
nial potentials; glycolipids [MGDG (18:3/18:3)], triacyl 
glycerols [TAG (18:2/18:2/18:3), iridals (spirioiridocon-
fal C and, (iso)iridobelamal) and fatty acid (oleic acid). 
These phytochemical classes are well reputed for their 
antiplasmodial and antileishmanial activities. Irid-
als were previously reported to exhibit antiplasmodial 
activity [19]. In addition, fatty acids showed inhibitory 
action against the fatty acid biosynthetic machinery 
of the parasite P. falciparum which could be consid-
ered as a likely strategy to combat the parasite [70, 71]. 
Glycolipids were previously reported to exhibit anti-
plasmodial and antileishmanial activities [72]. Triacyl-
glycerols exhibited promising antileishmanial activities 
[73].

I. pseudacorus NPF showed the higheset activity 
against T. b. rhodesiense. Thirteen metabolites were cor-
related to this activity including triterpene acids (tum-
losic acid and corosolic/maslinic acid), certain ceramides 
[cer (t18:1/α24:0) and ceramide (t 18:0/α24:0), caged 
xanthone (moreollic acid), chlorophyll derivatives (pheo-
phytin a and chlorophyll b), phosphatidylglycerol [PG 

(22:6/18:3)], glycolipids [DGDG (18:3/18:3), and MGDG 
18:2/18:2)] triterpenoid irridal iso(iridobelamal), fatty 
acid (hydroxyoctadecadienoic acid), phosphatidylcholine 
(PC 18:1/18:2). This could be justified by the previously 
reported antitrypanosomal activity of many of those 
compounds as corosolic and maslinic acids [74], xantho-
nes [75], fatty acids [76], iridals [18], ceramides [77] and 
pheophytin a [78].

The 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in-
vitro model was used in this study to assess the antioxi-
dant capacity of the PFs and NPFs fractions of the three 
studied species.

The observed higher triterpenoidal content of the 
NPFs matched with the documented antiprotozoal activ-
ity of triterpenes [79–81]. The higher DPPH scavenging 
activity of the PFs than the NFs was in accordance with 
their higher TPC and TFC [82]. This was justified by the 
highest scavenging activity of I. confusa PF that showed 
the highest TPC and TFC. However, the observed anti-
oxidant potential of the NPFs could be attributed to their 
xanthones and triterpenoid contents [83, 84].

A future study is required to isolate the metabolites 
of the active fraction(s) responsible for the antiparasitic 

Fig. 5 Quantification of total A) phenolic, B) flavonoid, and C) triterpene content calculated as gallic acid, quercetin, and ursolic acid equivalent 
respectively and D) DPPH antioxidant activity of polar and non‑polar fractions of I. pseudacorus, I. germanica and I. confusa underground parts. GAE, 
gallic acid equivalent; TPC, total phenolic content; QE, quercetin equivalent; TFC, total flavonoid content; TTC, total triterpene content; UAE, ursolic 
acid equivalent; NPFs, non‑polar fractions; PFs, polar fraction;  EC50 = effective concentration of the sample required to scavenge 50% of the DPPH 
free radical
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activity. Future studies concerning the validation of this 
in  vitro results by detailed in  vivo, bioavailability, and 
safety studies are highly recommended.

Conclusion
For the first time, a comparative evaluation of the anti-
plasmodial, antileishmanial and antitrypanosolmal 
potentials of I. pseudacorus, I. germanica and I. confusa 
in relation to their metabolic profile was performed. 
Herein, the antiplasmodial potential of I. confusa NPF 
was highlighted in a first record. Our future perspective 
is fractionation of I. confusa NPF to less complex frac-
tion or purified compounds with the aim of discovering 
new antiplasmodial hits that meet the requirements of 
WHO.
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