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Abstract 

Background The plant kingdom has long been considered a valuable source for therapeutic agents, however, some 
plant species still untapped and need to be phytochemically and biologically explored. Although several Atriplex spe‑
cies have been investigated in depth, A. leucoclada, a halophytic plant native to Saudi Arabian desert, remains to be 
explored for its phytochemical content and biological potentials. Herein, the current study investigated the metabolic 
content and the anti‑inflammatory potential of A. leucoclada.

Methods Powdered aerial parts of the plant were defatted with n‑hexane then the defatted powder was extracted 
with 80% methanol. n‑Hexane extract (ATH) was analyzed using GC–MS, while the defatted extract (ATD) was subjected 
to different chromatographic methods to isolate the major phytoconstituents. The structures of the purified compounds 
were elucidated using different spectroscopic methods including advanced NMR techniques. Anti‑inflammatory activity 
of both extracts against COX‑1 and COX‑2 enzymes were examined in vitro. Molecular docking of the identified com‑
pounds into the active sites of COX‑1 and COX‑2 enzymes was conducted using pdb entries 6Y3C and 5IKV, respectively.

Results Phytochemical investigation of ATD extract led to purification and identification of nine compounds. Inter‑
estingly, all the compounds, except for 20‑hydroxy ecdysone (1), are reported for the first time from A. leucoclada, 
also luteolin (6) and pallidol (8) are isolated for the first time from genus Atriplex. Inhibitory activity of ATD and ATH 
extracts against COX‑1 and COX‑2 enzymes revealed concentration dependent activity of both fractions with  IC50 41.22, 
14.40 μg/ml for ATD and 16.74 and 5.96 μg/ml for ATH against COX‑1 and COX‑2, respectively. Both extracts displayed 
selectivity indices of 2.86 and 2.80, respectively as compared to 2.56 for Ibuprofen indicating a promising selectivity 
towards COX‑2. Molecular docking study supported in vitro testing results, where purified metabolites showed binding 
affinity scores ranged from ‑9 to ‑6.4 and ‑8.5 to ‑6.6 kcal/mol for COX‑1 and 2, respectively, in addition the binding 
energies of GC–MS detected compounds ranged from ‑8.9 to ‑5.5 and ‑8.3 to ‑5.1 kcal/mol for COX‑1 and 2, respectively 
as compared to Ibuprofen (‑6.9 and ‑7.5 kcal/mol, respectively), indicating high binding affinities of most of the com‑
pounds. Analysis of the binding orientations revealed variable binding patterns depending on the nature of the com‑
pounds. Our study suggested A. leucoclada as a generous source for anti‑inflammatory agents.
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Introduction
Inflammation is a self-defense mechanism that is trig-
gered by pathogens, tissue injury, trauma or dys-
regulation of the normal physiological processes. 
Inflammatory response rises from the production of 
prostaglandins that is synthesized from the unsaturated 
arachidonic acid via cyclooxygenase (COX) enzymes 
[1, 2]. Cyclooxygenase enzymes are responsible for the 
formation of important biological mediators called 
prostanoids, including prostaglandins, prostacyclin 
and thromboxane. There are two known isoenzymes: 
COX-1 and COX-2. COX-1 is constitutively expressed 
in many tissues and is the predominant form in gastric 
mucosa and in kidney. COX-2 is not normally expressed 
in most cells, but elevated levels are found at sites of 
inflammation. Pharmacological inhibition of COX can 
provide relief signs of inflammation and pain [3].

Anti-inflammatory drugs include steroids and non-
steroid drugs. Steroid drugs have some serious side 
effects such as osteoporosis and fractures, immunosup-
pression, myopathy, cardiovascular disease, glaucoma 
and cataracts, diabetes and hyperglycemia, psychiatric 
disturbances, gastrointestinal and dermatologic adverse 
effects. These adverse effects limit their utility and make 
them less popular to be used in inflammatory diseases 
compared with nonsteroidal drugs [4]. However, non-
steroidal drugs may have some side effects too such as 
bronchospasm, renal failure, thrombosis, and gastro-
intestinal bleeding [5]. To overcome these problems, 
herbal medicines and phytochemicals have been submit-
ted to studies to identify and develop natural products 
that can be used as anti-inflammatory agents [6–8] or as 
a combinatorial therapy with these synthetic drugs [9].

The Atriplex genus (Amaranthaceae) constitutes her-
baceous halophytes that include about 260 species dis-
tributed throughout the world, especially in the arid 
and semi-arid regions of Europe, Asia, Africa, Aus-
tralia, and North America [10, 11]. Recent studies have 
shown that some species have high nutritional value 
and protein content and can be used as cereal grains as 
A. hortensis seeds [12]. Phytochemical investigations of 
some Atriplex species revealed various chemical con-
stituents belonging to different chemical classes as: 
phenolics [13, 14], triterpenes, sterols [15], phytoecdys-
teroids [16, 17] and triterpene saponins [13, 15, 18, 19]. 
From biological point of view some species have been 
reported to have anti-inflammatory [20], antioxidants, 
anticholinestrase [13], antidiabetic [21], antimicrobial 
[22], hepatoprotective [23], immunomodulatory [14], 
analgesic, antipyretic, and, cytotoxic activities [24, 25].

Atriplex leucoclada Boiss. (English name: cut-leaf salt-
bush, orach, Arabic name: Ragal, رغل), is a low perennial 
shrub commonly growing in Saudi Arabian desert. This 

species has an agricultural importance in arid regions. It 
can adapt high salt habitats via different strategies [13, 
26]. Reviewing the relevant literature little research was 
found discussing the metabolic content and/or the bio-
logical activity of A. leucoclada, where, one previous 
study reported the isolation of five triterpenoidal sapo-
nins and highlighted their molluscidal potential [27]. 
Accordingly, this study was designed to add more 
research about the phytochemical constituents and anti-
inflammatory activity of A. leucoclada.

Materials and methods
General experimental procedures
NMR spectra were obtained on Bruker Avance III 400 
MHz with BBFO Smart Probe and Bruker 400 MHz 
AEON Nitrogen-Free Magnet (Bruker AG, Switzerland) 
operating at 400 MHz for proton and 100 MHz for car-
bon. Data were analyzed using Topspin 3.1 Software 
(Bruker AG, Fallanden, Switzerland). 1D and 2D-NMR 
spectra (1H, 13C, HSQC and HMBC) were obtained using 
standard Bruker pulse programs. All deuterated solvents 
 (CDCl3,  CD3OD and pyridine-d5) for NMR measurement 
were obtained from (Cambridge Isotopes, USA). Col-
umn chromatography was performed using silica gel 60 
(Fluka, St. Louis, MO, USA, particle size 0.063–0.2 mm, 
70–230 mesh), polyamide-6 (50–160 μm), and Sephadex 
LH-20 (Sigma-Aldrich, Germany). Solvents used in chro-
matographic isolation of secondary metabolites were of 
analytical grade; n-hexane, dichloromethane  (CH2Cl2), 
ethyl acetate (EtOAc), methanol (MeOH), and n-butanol 
(n-BuOH). Pre-coated silica gel 60 TLC plates used for 
the analysis of fractions and isolated compounds were 
purchased from Merck (Darmstadt, Germany). Visuali-
zation of the TLC plates was achieved with portable UV 
lamp (254 and 365 nm),  AlCl3 and p-anisaldehyde′s spray 
reagent [28]

Plant material
Aerial parts of A. leucoclada were collected in October 
2020 from the Qassim area, Kingdom of Saudi Arabia. 
The plant identity was verified by Ibrahim Aldakhil, area 
botanical expert, Qassim, KSA. Voucher sample number 
QPP-103 was deposited at the College of Pharmacy, Qas-
sim University, KSA.

Preparation of extract
The dried aerial parts of A. leucoclada (700 g) were pul-
verized by a grinder and defatted with n-hexane (4 × 750 
mL, at room temperature) to provide 1.7 g ATH extract. 
Afterwards, air-dried defatted powdered aerial parts 
were extracted with 80% methanol (4 × 1000 mL, at room 
temperature) to yield 45 g crude ATD extract.
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Chromatographic isolation of phytochemicals
The defatted fraction (30 g) was fractionated on polyam-
ide-6 using  H2O-MeOH gradient to obtain two main sub-
fractions after TLC monitoring; (A-I and A-II); A-I (eluted 
by 10–30% MeOH in  H2O) was purified on Sephadex 
LH-20 column using MeOH to obtain compound 1 (5.0 
mg). A-II (eluted with 70–100% MeOH in  H2O) was chro-
matographed on a silica gel column using gradient elution 
with  CH2Cl2-MeOH as eluent in 5% increments to obtain 
five sub-fractions; A-IIa (100 mg, eluted with 5% MeOH in 

 CH2Cl2), A-IIb (40 mg, eluted with 15% MeOH in  CH2Cl2), 
A-IIc (70 mg, eluted with 15% MeOH in  CH2Cl2), A-IId 
(20 mg, eluted with 20% MeOH in  CH2Cl2), A-IIe (25 mg, 
eluted with 25–30% MeOH in  CH2Cl2). A-IIa was puri-
fied on Sephadex LH-20 using MeOH to afford two sub-
fractions; the first one was purified on Sephadex LH-20 
column using MeOH as eluent to obtain compound 2 (6.0 
mg), the other was chromatographed on a silica gel column 
using mixtures of n-hexane–EtOAc as eluent in 5% incre-
ments to obtain mixture of compound 3 &4 (10.0 mg) and 
compound 5 (15.0 mg), respectively. A-IIb, A-IId and A-IIe 
were separately filtered through Sephadex LH-20 column 
using MeOH as eluent to obtain compounds 6 (8.0 mg), 8 
(20.0 mg) & 9 (7.0 mg); respectively. A-IIc was recrystal-
lized to obtain compound 7 (25 mg).

Gas chromatography–mass spectrometry analysis
GC–MS system: thermo scientific trace 1310 gas chro-
matograph attached with ISQ LT single quadrupole mass 
spectrometer. Column used for separation was db5-ms, 
30m; 0.25 mm id (J&W scientific) with temperature pro-
gram; 40°c (3 min)—280°c (5 min) at 5°c/min. -290°c (1 
min) at 7.5°c/min. Ionization mode: EI. Ionization voltage: 
70eV. Detector temperature: 300°c. Injector temperature 
was adjusted at 200°c. Helium was used as a carrier gas 
at 1 ml/min flow rate. identification of components was 
based on Willey and NIST mass spectral data base [29].

In vitro determination of COX‑1 and COX‑2 enzymatic 
activity
COX-1 and COX-2 inhibition assays are based on the 
detection of the florescence produced by prostaglandin 
G2 (i.e., the intermediate product produced by the COX-1 
and 2 enzymes). The assay was performed by using 
COX-1 inhibitor screening kit (#K548-100, BioVision Inc.) 
and COX-2 inhibitor screening kit (#K547-100, BioVision 
Inc.) to measure in  vitro COX-1 and COX-2 enzymatic 
activities respectively. Ibuprofen was used as a posi-
tive control. Samples and control were used at different 

concentrations: 0.01–100 ug/ml. According to the manu-
facturer’s instructions [2, 30], 10 μL of samples or Ibupro-
fen was added to each well, and 80 μL of reaction master 
mix was prepared (76 μL of COX buffer assay, 1 μL COX 
probe, 2 μL diluted COX cofactor, 1 μL COX-1 or COX-2) 
and added to each well, and the fluorescence was meas-
ured kinetically at (Ex/Em = 535/587 nm) at 25°C for 5–10 
min. The experiments were performed in triplicate. The 
relative percentage of inhibition of COX-1 and COX-2 
was calculated according to the following Equation:

Statistical analysis
All measurements were performed in triplicate and 
results were expressed as mean ± standard deviation (SD).

In silico studies
Isolated metabolites from defatted methanol (ATD) extract 
as well as compounds detected during GC–MS analysis of 
n-hexane (ATH) extract were docked into the active sites 
of COX-1 and COX-2 enzymes using pdb entries; 6Y3C 
[31] and 5IKV [32], respectively that were retrieved from 
Protein Data Bank (https:// www4. rcsb. org/). Structures of 
all compound were downloaded from PubChem [33] [July, 
2023] and their energies were minimized using Chem Bio 
3D (Chem Bio Office Ultra 12.0 suite). Docking studies 
were performed using Autodock Vina in Pyrx [34]. XYZ 
coordinates were set as; 6Y3C: -30.39, -44.13, 7.77; 5IKV: 
166.48, 183.18, 186.96 BIOVIA Discovery Studio visualizer 
v21.1.0.20298 (Dassault systems Biovia Corp., San Diego, 
CA, USA) and Pymol software [35] were used to visualize 
and analyze the docked ligand poses.

Results
Structural determination of isolated compounds
Chromatographic fractionation of defatted fraction of aerial 
parts (ATD) led to the isolation and characterization of nine 
known compounds. The structures of the isolated com-
pounds were identified upon spectral data analysis (Spec-
troscopic data of compounds were shown in supplementary 
materials) and confirmed by comparison with those pub-
lished in the literature (Fig.  1) as: 20-hdroxy ecdysone (1) 
[36], phytol (2) [37], β-sitosterol (3) [38], stigmasterol (4) 
[38], palmitic acid (5) [39], luteolin (6) [38, 40], β-sitosterol-
3-O-β-d-glucopyranoside (7) [40, 41], pallidol (8) [42, 43] 
and isorhamnetin 3-O-β-galactopyranoside (9) [44, 45].

Gas Chromatography–Mass Spectrometry (GC–MS) 
analysis
The chemical composition of the ATH extract of A. leu-
coclada was investigated using gas chromatography-mass 

% Relative inhibition = [(Absorbance of EC− Absorbance of S)/Absorbance of EC]×100

https://www4.rcsb.org/
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spectrometry (GC–MS) analysis. A total of 27 metabo-
lites were identified (Table  1); accounting for 85.97% 
of the total compounds. The identified compounds 
(Fig.  2) belong to three main classes including terpe-
noids, fatty acids and their derivatives and steroids 
(31.27, 21.18, and 20.25%; respectively). Other identified 
compounds included straight-chain hydrocarbons and 
derivatives (5.59%), 1,2-benzene dicarboxylic acid, bis(2-
ethylhexyl) ester, 1,4-benzenediol, 2-(1,1-dımethylethyl)-
5-(2-propenyl)-, and chamazulene (5.43, 1.11, and 1.14%). 
Phytol and cholest-5-en-3-ol (Fig. 2) were the main com-
ponents (21.24, 12.50%; respectively).

In vitro determination of COX‑1 and COX‑2 inhibitory 
activity
In the present study, inhibitory effects of the defatted 
methanolic extract (ATD) and n-hexane (ATH) extract 
against COX-1 and COX-2 enzymes were examined 
in  vitro. The results (Fig.  3A and B) showed that the 
tested extracts displayed inhibition of COX-1 and COX-2 
enzymes in a concentration dependent manner being 
more selective towards COX-2 enzyme. Where  IC50 of 

ATD were 41.22, 14.4 μg/mL and of ATH were 16.74 
and 5.96 μg/mL, against COX-1 and COX-2, respec-
tively while ibuprofen  IC50 was 6.88 and 2.68, respectively 
(Table 2).

In silico studies
Isolated compounds from ATD extract along with com-
pounds identified by GC–MS profiling of ATH were 
subjected to molecular docking with COX-1 and COX-2 
proteins. The majority of the compounds manifested high 
binding affinities and good binding interactions. The 
docked purified metabolites from ATD showed scores for 
COX-1 and COX-2 ranged from -9 to -6.4 and -8.5 to -6.6 
kcal/mol, respectively, while docking scores of metabo-
lites that identified by GC–MS in ATH ranged from -8.9 
to -5.5 and -8.3 to -5.1 kcal/mol, respectively (Table  3), 
compared with binding scores of the drug reference; Ibu-
profen for COX-1 and 2 (-6.9 and -7.5 kcal/mol, respec-
tively). The flavone; luteolin exhibited the highest binding 
affinity to COX-2 (-8.5  kcal/mol) followed by the ster-
oids; β-sitosterol-3-O-β-D-glucoside (-8.4  kcal/mol), 
stigmasterol (-8.4  kcal/mol), 9,19-Cyclolanostan-3-ol, 

Fig. 1 Chemical structures of the isolated compounds from the defatted methanolic extract (ATD) of A. leucoclada 
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24,24-epoxymethano-, acetate (-8.3  kcal/mol), and 
20-hydroxy ecdysone (-8.1 kcal/mol). Among terpenoids, 
the diterpene villosin and the tetraterpene rhodopsin 
revealed utmost binding affinities (-7.7 and -7.6 kcal/mol, 
respectively), while 2-Hydroxy-3-[(9e)-9-octadecenoy-
loxy]propyl (9e)-9-octadecenoate unveiled the best score 
(-7.1 kcal/mol) among other fatty acid esters.

Discussion
Reviewing the relevant literature several studies were 
found reporting diverse chemical structures of the 
metabolic contents of some Atriplex species. While, 
in regards of A. leucoclada, previous investigations 
were not sufficient to describe the chemical profile of 

the plant. To achieve this purpose, the chemical com-
position of both defatted methanol (ATD) and hexane 
(ATH) extracts were investigated. The current find-
ings showed that all purified compounds, except for 
compound (1), were isolated for the first time from A. 
leucoclada [46]. Furthermore, compounds (6) and (8) 
were isolated for the first time from this genus. Com-
pound (1) was previously obtained from other Atri-
plex species as A. inflata and A. nummularia [16, 17], 
compounds (3) and (4) were previously reported in A. 
stocksii [15], compound (7) in A. canescens [47] and 
compound (9) in A. inflate [46], while compound (2) 
and (5) were identified by GC–MS only in the metha-
nol extract of A. halimus [48, 49].

Table 1 Chemical profile of n‑hexane extract (ATH) of A. leucoclada using GC–MS analysis

NO Compound Chemical class M.F M.Wt R.T (m) Area (%)

1. 4‑Thujanol, Cis‑(± .) Bicyclic monoterpene alcohol C10H18O 154 9.08 0.96

2. 1,4‑Benzenediol, 2‑(1,1‑dimethylethyl)‑5‑(2‑propenyl)‑ Hydroquinone C13H18O2 206 17.31 1.11

3. Spathulenol Sesquiterpene C15H24O 220 18.82 0.77

4. Neophytadiene Diterpene C20H38 278 24.50 3.48

5. 2‑Pentadecanone, 6,10,14‑trimethyl‑ Ketone C18H36O 268 24.60 3.51

6. Chamazulene Azulene derivative C14H16 184 25.00 1.14

7. 13‑Heptadecyn‑1‑ol Long‑chain fatty alcohol C17H32O 252 25.37 1.17

8. Hexadecanoic acid, methyl ester Fatty acid ester C17H34O2 270 26.30 6.45

9. 9‑Octadecenoic acid (Z) Fatty acid C18H34O2 282 27.63 0.65

10. 7,10‑Octadecadienoic acid, methyl ester Fatty acid ester C19H34O2 294 29.43 2.24

11. 9‑Octadecenoic Acid (Z)‑, methyl ester Fatty acid ester C19H36O2 296 29.57 4.01

12. Phytol Acyclic diterpene alcohol C20H40O 296 29.77 21.24

13. Heptadecanoic acid, 16‑methyl‑, methyl ester Fatty acid ester C19H38O2 298 30.09 1.86

14. [1,1′‑Bicyclopropyl]‑2‑octanoic acid, 2′‑hexyl‑, methyl ester Fatty acid ester C21H38O2 322 30.64 0.84

15. 2‑Hydroxy‑3‑[(9e)‑9‑octadecenoyloxy]propyl (9e)‑9‑octadecenoate Fatty acid ester C39H72O5 620 33.84 1.09

16. Villosin Diterpene C20H28O2 300 35.21 1.13

17. 1‑Heptatriacotanol Alcohol C37H76O 536 36.24 0.91

18. 9,19‑Cyclolanostan‑3‑ol, 24,24‑epoxymethano‑, acetate Steroid C33H54O3 498 36.35 0.81

19. Ethyl iso‑allocholate Steroid C26H44O5 436 36.63 1.15

20. 1,2‑Benzenedicarboxylic acid, bis(2‑ethylhexyl) ester Benzenedicarboxylic acid C24H38O4 390 36.75 5.43

21. 9‑Octadecenoic acid, 1,2,3‑propanetriyl ester, (E, E, E)‑ Fatty acid ester C57H104O6 884 39.39 1.12

22. Glycidyl oleate Fatty acid ester C21H38O3 338 39.55 0.94

23. Trilinolein Triacylglycerol C57H98O6 878 40.82 1.98

24. Rhodopin Carotenoid (tetraterpenoid) C40H58O 554 41.02 3.69

25. β‑ Sitosterol Steroid C29H50O 414 43.12 2.07

26. Cholest‑5‑en‑3‑ol Steroid C27H46O 414 43.79 12.50

27. Ursodeoxycholic acid Steroid C24H40O4 392 45.34 3.72

Terpenoids 31,27

Steroids 20.25

Fatty acids and fatty acids derivatives 21.18

Straight‑chain hydrocarbons and derivatives 5.59

Others 7.68

Total identified compounds % 85.97
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Interestingly, this study is the first to report GC–MS 
investigation of A. leucoclada. The current GC–MS 
analysis results enabled the tentative qualitative iden-
tification of numerous phytochemicals in ATH. The 
compounds identified have been interpreted as given 
in Table  1. Oxygenated and non-oxygenated hydro-
carbons, alcohols, phenolics, steroidal and terpenoi-
dal compounds were identified. Among the isolated 
compounds: phytol (21.24%) and cholest-5-en-3-ol 
(12.50%) are the major detected compounds. These 
results were similar to those reported for GC–MS 
analysis for A. lindleyi Moq [50].

Based upon the above recorded results, the anti-
inflammatory activity of A. leucoclada may be attributed 
to its content of palmitic (5) and β-sitosterol (3) that 
were previously reported to reduce expression of COX- 
1 and COX-2 [51–53]. Moreover, 20-hdroxy ecdysone (1) 
[54], stigmasterol (4) [55], luteolin (6) [56], β-sitosterol-
3-O-β-D-glucopyranoside (7) [57], and isorhamnetin 

3-O-β-galactopyranoside (9) [58] were also reported to 
suppress COX-2 expression. Also, computational study 
on phytol (2) indicated its efficient interaction with 
COX-1 and 2 enzymes [59]. Concerning pallidol (8), a 
resveratrol dimer, it was reported to have weak activity 
against COX enzymes [60, 61]

In regard of GC–MS results, the high anti-inflamma-
tory activity of the ATH fraction may be attributed to the 
synergistic effect of certain compounds e.g. 2-hexadecen-
1-ol [62] and hexadecanoic acid, methyl ester [63]. Also, 
ursodeoxycholic acid was reported to show COX-2 inhi-
bition [64]. From another point of view, neophytadiene 
significantly inhibited NO production and inflammatory 
cytokines TNF-α, IL-6 and IL-10 both in vitro and in vivo 
[65, 66], azulene derivative reverses osteoarthritic inflam-
mation through regulation of matrix metalloproteinases 
and NF-kβ pathway in in  vitro and in  vivo models [67] 
and villosin exerted inhibitory effects against NO pro-
duction with  IC50 = 15.5 μM [68].

Fig. 2 The most characteristic compounds identified in n‑hexane (ATH) extract of A. leucoclada using GC–MS analysis
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Most of the compounds identified in the ATD or ATH 
extracts were previously reported to be more selective 
for COX-2. This is compatible with the current results 
that indicated high selectivity towards COX-2 enzyme. 
As selective COX-2, anti-inflammatory agents have 
minimum GIT side effects, and so they are more appre-
ciated as per safety concern. Accordingly, the current 
findings acknowledge the metabolic content of A. leu-
coclada as a rich mixture of chemical entities that have 
promising potential of anti-inflammatory activity with 
limited side effects.

It is already stated that, computational studies played 
an effective role in drug development as it can provides 
a fast, cheap and easy method for expectation of the 
possible promising bioactive drugs. Herein, we exam-
ined the binding affinity of isolated (from ATD extract) 
as well as GC–MS identified compounds (in ATH 
extract) in this plant with key anti-inflammatory targets. 
Analysis of the binding with the two proteins COX-1 
and COX-2 revealed variable binding patterns depend-
ing on the nature of the compounds. Steroids that con-
stitute 44.44% of isolated compounds from ATD extract 
and 20.25% of detected compounds in ATH extract 
exhibited docking score with COX-2 ranged from -8.4 
to -7.4 kcal/mol. During this study, we explored some 
data that can be gleaned from analysis of steroids con-
formation and interactions at the cyclooxygenase active 
site. Previous studies that examined the binding of the 
substrate “arachidonic acid” into COX active site sug-
gested that the active site could be viewed as including 
three parts; proximal, central, and distal binding pock-
ets and that the distal and proximal binding pockets 
are important for stabilization of the substrate, while 
the central part that contains the catalytic Tyr385 is the 
place where substrate is transformed into  PGG2  [69]. 
Analysis of our docking results unveiled that steroids 
occupied the proximal binding pocket and may extends 
towards the central binding pocket. It was noted that 
presence of more hydrophilic groups at C-3 may con-
tribute to the increased binding affinity as exemplified 
in β-sitosterol3-O-β-D-glucopyranoside (-8.4 kcal/
mol) with glucosylation at C-3 where it exhibited flat 
inverted conformation compared to that of β-sitosterol, 
furthermore, one of the sugar hydroxyl groups formed 
two hydrogen bonds with His90 and Gln192 in the 
side pocket, a pocket that was generated in COX-2 due 
to Ile523 mutation in COX-1 to the smaller Val523 in 
COX-2 [69] (Fig.  4B), while β-sitosterol (-7.4 kcal/
mol) exhibited only covalent bonds with Tyr355 at the 

Fig. 3 The in vitro inhibitory effect of n‑hexane (ATH) and defatted 
methanol (ATD) extracts of A. leucoclada against COX‑1 (A) and COX‑2 
(B) enzymes using Ibuprofen as a positive control. Data in the figures 
expressed mean ± SEM (n = 3). ***P < 0.001 consider statistically 
significant compared to ibuprofen. ###P < 0.001 consider statistically 
significant compared to ATH group using one way ANOVA followed 
by Tukey’s post hoc test

Table 2 IC50 (μg/ml) values against COX‑1 and COX‑2 for 
n‑hexane and defatted methanol extracts from A. Leucoclada and 
the COX‑1/COX‑2 selectivityy index

Defatted methanol extract (ATD); n-hexane extract (ATH); Cyclooxygenase (COX); 
The half of the inhibitory concentration  (IC50). Selectivity index (SI) =  IC50 COX-1/
IC50 COX-2. Data in the Table expressed mean ± SEM (n = 3). Where ***P < 0.001 
consider statistically significant compared to ibuprofen and ###P < 0.001 consider 
statistically significant compared to ATH group using one-way ANOVA followed 
by Tukey’s post hoc test

COX‑1 COX‑2 SI

Ibuprofen 6.88 ± 0.27 2.68 ± 0.1 2.56

ATH 16.74 ± 0.94*** 5.96 ± 0.22*** 2.81

ATD 41.22 ± 1.18***, ### 14.4 ± 0.54***, ### 2.86
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constriction located near the entrance of the active site 
and with His90, Ser353, and His356 (Fig.  4A). Simi-
larly, presence of carbonyl group at C-6 and hydroxyl 
groups at C-14, C-20, C-22, and C-25 as in the case of 
20-hydroxyecdysone (-8.4 kcal/mol) may play a role 
in improving its binding affinity via formation of two 
hydrogen bonds between His356 and OH groups at 
C-20 and C-25, respectively and oxygen of the car-
bonyl group at C-6 exhibited two hydrogen bonds with 
Phe 580, and Ser581, in addition to hydrogen bonding 

between hydroxyl group at C-14 and Gln350 (Fig. 4C). 
Additionally, the current findings highlighted the fla-
vonoid luteolin that was one of the lead metabolites 
exhibiting the highest binding affinity to COX-2 (-8.5 
kcal/mol); analysis of the binding orientation of luteolin 
revealed that it formed one hydrogen bond with Trp387 
in the catalytic region of the active site and another 
hydrogen bond with Asn382 in addition to π-π stacking 
with His388 and three π-alkyl interactions with Ala202, 
His207, and His386 (Fig. 4D).

Table 3 Docking scores (kcal/mol) of isolated compounds from defatted methanolic (ATD) extract and compounds detected by GC–
MS in n‑hexane (ATH) extract of A. leucoclada against cyclooxygenase enzymes

No Compound COX‑1 COX‑2

Compounds isolated from ATD extract of A. leucoclada

 1 20‑hydroxy ecdysone ‑8.0 ‑8.1

 4 Stigmasterol ‑9.0 ‑8.4

 5 Palmitic acid ‑6.4 ‑6.6

 6 Luteolin ‑8.2 ‑8.5

 7 β‑sitosterol‑3‑O‑ β‑D glucoside ‑8.1 ‑8.4

 8 Pallidol ‑8.5 ‑8.1

 9 Isorhamnetin3‑O‑β‑D‑galactopyranoside ‑7.7 ‑7.8

Compounds detected in ATH extract of A. leucoclada

 1 4‑Thujanol, Cis ‑5.8 ‑5.4

 2 1,4‑Benzenediol, 2‑(1,1‑dimethylethyl)‑5‑(2‑propenyl)‑ ‑6.4 ‑6.3

 3 Spathulenol ‑5.9 ‑6.5

 4 Neophytadiene ‑6.5 ‑5.5

 5 2‑Pentadecanone, 6,10,14‑trimethyl‑ ‑6.2 ‑7.0

 6 Chamazulene ‑7.7 ‑7.6

 7 13‑Heptadecyn‑1‑ol ‑6.4 ‑6.5

 8 Hexadecanoic acid, methyl ester ‑6.1 ‑6.1

 9 9‑Octadecenoic acid (Z) ‑5.5 ‑6.7

 10 7,10‑Octadecadienoic acid, methyl ester ‑7.3 ‑6.0

 11 9‑Octadecenoic Acid (Z)‑, methyl ester ‑7.1 ‑6.1

 12 Phytol ‑6.2 ‑5.6

 13 Heptadecanoic acid, 16‑methyl‑, methyl ester ‑6.5 ‑6.4

 14 [1,1′‑Bicyclopropyl]‑2‑octanoic acid, 2′‑hexyl‑, methyl ester ‑6.4 ‑5.6

 15 2‑Hydroxy‑3‑[(9e)‑9‑octadecenoyloxy]propyl (9e)‑9‑octadecenoate ‑6.5 ‑7.1

 16 Villosin ‑7.3 ‑7.7

 17 1‑Heptatriacotanol ‑6.5 ‑5.2

 18 9,19‑Cyclolanostan‑3‑ol, 24,24‑epoxymethano‑, acetate ‑8.4 ‑8.3

 19 Ethyl iso‑allocholate ‑7.4 ‑7.4

 20 1,2‑Benzenedicarboxylic acid, bis(2‑ethylhexyl) ester ‑5.7 ‑6.3

 21 9‑Octadecenoic acid, 1,2,3‑propanetriyl ester, (E, E, E)‑ ‑6.1 ‑6.7

 22 Glycidyl oleate ‑7.3 ‑5.1

 23 Trilinolein ‑6.6 ‑6.7

 24 Rhodopin ‑8.0 ‑7.6

 25 β‑sitosterol ‑8.9 ‑7.5

 26 Cholest‑5‑en‑3‑ol ‑7.6 ‑7.4

 27 Ursodeoxycholic acid ‑7.4 ‑7.4
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Conclusion
The current study presented a detailed chromatographic 
exploration of A. leucoclada with successful isolation of 
nine compounds, eight of which were isolated for the 
first time from this species, moreover, GC–MS analy-
sis identified the non-polar components of the hexane 
extract of the plant. These findings will add to chemi-
cal profile of this species, as well as to Atriplex genus. 
Additionally, COX-1 and COX-2 inhibitory activity test-
ing noted the n-hexane and defatted methanol extracts 
for selective inhibitory activity against COX-2 enzyme. 
The molecular docking studies revealed high binding 
affinities and good binding interactions of most of the 
compounds with binding scores ranged from -8.5 to 
-6.6 kcal/mol for isolated compounds from ATD and 

-8.3 to -5.1 kcal/mol for compounds identified by GC–
MS in ATH. Accordingly, A. leucoclada is suggested 
as a valuable source of safe anti-inflammatory agents. 
Future studies are recommended for evaluating the anti-
inflammatory potential of the highlighted metabolites 
whether, alone or in combination with commercially 
used anti-inflammatory drugs.
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in the active site (gray) are depicted in line models. Ligands are represented by green stick model. Hydrogen bond (blue), π‑π stacking (pink), alkyl 
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