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Abstract
Background Patients with Polycystic ovary syndrome (PCOS) experienced endocrine disorders that may present 
vascular function changes. This study aimed to classify and predict PCOS by radial pulse wave parameters using 
machine learning (ML) methods and to provide evidence for objectifying pulse diagnosis in traditional Chinese 
medicine (TCM).

Methods A case-control study with 459 subjects divided into a PCOS group and a healthy (non-PCOS) group. The 
pulse wave parameters were measured and analyzed between the two groups. Seven supervised ML classification 
models were applied, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Trees, Random 
Forest, Logistic Regression, Voting, and Long Short Term Memory networks (LSTM). Parameters that were significantly 
different were selected as input features and stratified k-fold cross-validations training was applied to the models.

Results There were 316 subjects in the PCOS group and 143 subjects in the healthy group. Compared to the healthy 
group, the pulse wave parameters h3/h1 and w/t from both left and right sides were increased while h4, t4, t, As, 
h4/h1 from both sides and right t1 were decreased in the PCOS group (P < 0.01). Among the ML models evaluated, 
both the Voting and LSTM with ensemble learning capabilities, demonstrated competitive performance. These 
models achieved the highest results across all evaluation metrics. Specifically, they both attained a testing accuracy of 
72.174% and an F1 score of 0.818, their respective AUC values were 0.715 for the Voting and 0.722 for the LSTM.

Conclusion Radial pulse wave signal could identify most PCOS patients accurately (with a good F1 score) and is 
valuable for early detection and monitoring of PCOS with acceptable overall accuracy. This technique can stimulate 
the development of individualized PCOS risk assessment using mobile detection technology, furthermore, gives 
physicians an intuitive understanding of the objective pulse diagnosis of TCM.

Trial registration Not applicable.
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Background
Polycystic ovary syndrome (PCOS) is one of the most 
common gynaecological endocrine disorders in women 
of reproductive age, affecting 5–20% of women world-
wide [1]. PCOS is characterized by ovulatory dysfunction, 
hyperandrogenism, and polycystic ovarian morphology 
(PCOM). PCOS increases the risk of metabolic compli-
cations, cardiovascular disease, endometrial cancer, and 
mental health disorders [2–4]. The economic burden of 
PCOS is estimated at USD 8 billion annually [5]. There-
fore, early diagnosis of PCOS is essential to prevent the 
long-term complications of the disease and to reduce the 
medical burden.

Pulse diagnosis, which is a non-invasive, convenient, 
and simple method, is one of the most common diagnos-
tic methods in TCM. It is done by palpating the radial 
artery pulse as shown in Fig. 1, each pulse position is a 
reflection point of a certain internal organ system [6]. For 
centuries, the practitioner gains insights into patients’ 
physical conditions and constitutions by interpreting the 
characteristics of the pulse, the pulse can reflect the con-
ditions of internal organs, Qi (vital energy), and blood of 
individuals [7].

However, traditional pulse diagnosis relies on the pal-
pation sensitivity of the practitioners, the judgments 
are always limited due to subjective observations based 
on one’s experience. Consequently, the importance of 
objectifying and quantifying radial pulse waves has been 
drawing attention [8, 9]. Previous studies suggested that, 
compared to healthy individuals, changes in radial pulse 
wave in PCOS are related to hemodynamic changes, 
ventricular systolic function, and aortic compliance in 
the cardiovascular system [10, 11], and the pulse wave 
parameters varied at different body mass index (BMI) 
levels in PCOS [12].

Merely understanding specific relevant factors is not 
enough in actual clinical diagnosis and treatment of 
PCOS, to better serve the clinical needs, the applica-
tion of ML algorithms for diagnosis and predictions has 
been reported using different features, such as Raman 
spectroscopy of follicular fluid [13], PCOS genes [14, 15], 
ovary ultrasound images and reports [16, 17], or clinical 
data set [18–20]. However, the study about the ML pre-
diction model of PCOS based on pulse wave parameters 
has not been found yet. Some evidence supported that 
ML models using pulse waves are of great significance 
in disease predictions [21–25]. Therefore, through the 

Fig. 1 Pulse diagnosis on the radial artery and the corresponding internal organ systems. Pulse diagnosis is done by palpating three adjacent regions of 
the wrist of both hands, namely Cun (distal), Guan (middle), and Chi (proximal) position
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comparisons of ML prediction models, we intended to 
determine whether PCOS could be diagnosed and moni-
tored by radial pulse wave.

The objective of this study is to classify and predict 
PCOS by radial pulse wave parameters using machine 
learning methods and to provide evidence for objectify-
ing pulse diagnosis in TCM.

Methods
The study followed the Transparent Reporting of a Mul-
tivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines.

Study subjects
This case-control study involved two groups. The PCOS 
group included 316 patients with PCOS while the healthy 
group included 143 normal subjects. All the participants 
were recruited from the Shanghai University of TCM 
(SHUTCM), Shanghai Municipal Hospital of Traditional 
Chinese Medicine, Shuguang Hospital, and Yueyang 
Hospital affiliated with SHUTCM, from August 2018 to 
January 2022.

Inclusion criteria
Female participants aged 18–40 years old were eligible 
for this study. Based on “Chinese guidelines for diagnosis 
and treatment of polycystic ovary syndrome (2018)” [26], 
the diagnosis of PCOS was as follows:

a. oligomenorrhea or amenorrhea or irregular uterine 
bleeding is a necessary condition.

b. 1 of the following 2 criteria must be met: clinical 
and/or biochemical hyperandrogenism (HA), 
polycystic ovarian morphology (PCOM).

Participants in the healthy group were required to show 
none of the PCOS criteria and were free from gynaeco-
logical and organic diseases. All participants must sign 
the written informed consent.

Exclusion criteria
The exclusion criteria were as follows:

a. other diseases that may cause hyperandrogenism and 
abnormal ovulation;

b. participants with other apparent gynaecological 
diseases and organic diseases such as liver or kidney 
disorders;

c. participants with adenomyosis, Cushing’s syndrome, 
chromosomal abnormalities, congenital adrenal 
cortical hyperplasia, and chocolate cyst of the ovary;

d. participants with serious primary diseases in internal 
medicine and surgery;

e. patients with significant incomplete clinical data;
f. patients who were unable to cooperate.

Radial pulse signal collection
The pulse signals were collected from the Guan position 
of participants’ left and right hands using the Z-BOX 
pulse meter, radial pulse signals can be detected most 
clearly and easily at the Guan position. The time of col-
lection was from 9 AM to 11 Am or from 1 PM to 4:30 
PM. The participants were required to keep calm and 
prohibited to eat and drink 30 min before the test, they 
also had to avoid violent mood swings. During the 
test, the participant was required to breathe calmly, sit 
upright, keep the left arm relaxed, and spread forward 
the left forearm naturally, the wrist was placed on a pulse 
pillow with the palm facing up and the fingers slightly 
bent. The Z-BOX pulse meter was attached to the wrist 
where the pressure sensor was placed on Guan position, 
in the meantime, the participant should avoid speak-
ing or moving. A series of radial pulse signals within the 
pulse pressure range of 25–250  g were recorded con-
tinuously for 30s. The sampling process repeats with the 
right arm. The radial pulse signal with the highest main 
amplitude, apparent fluctuation of three peaks, and a 
steep ascending branch without incisure was selected for 
time-domain parameter analysis. As pulse signals can be 
affected by a variety of noise sources, including patient 
tremors, respiration, mechanical vibrations of instru-
ments, and power frequency interference. We used the 
PulseSystem software [jointly developed by our research 
group and East China University of Science and Technol-
ogy (Shanghai)] to de-noise pulse signals and extract the 
pulse wave parameters. Pulse signals are concentrated 
in the low-frequency range, so the software used a But-
terworth filter to remove high- and low-frequency noise. 
The filter order was set to 3, and the passband range was 
set to 0.2–20 Hz. To prevent bias, the pulse meter used 
for data collection was consistent, and data collection 
was done by the same executors (XF and LF) with ade-
quate training, double entry and verification are adopted 
for data entry by the same executors again.

Time-domain parameters of the radial pulse wave signal
Figure  2 shows the time-domain parameters which are 
commonly used in TCM radial pulse wave analysis. 30 
time-domain parameters were extracted for compari-
sons, including h1, h3, h4, h5, t1, t4, t5, t, w, As, Ad, h3/
h1, h4/h1, h5/h1, w/t, from both left and right Guan 
position. The interpretation of the meaning of pulse wave 
parameters was done by referring to “Pulse Diagnosis of 
Modern TCM” [27], each parameter corresponded to 
specify physiological significance. Parameters h1, h3, h4, 
and h5 are the main wave, tidal wave, dicrotic notch, and 
dicrotic wave amplitude accordingly. Parameter t is the 
time for a complete pulse cycle, t1 is the time between 
the starting point to the crest of the main wave, t4 is the 
time between the starting point to the dicrotic notch, 
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t5 is the time between the dicrotic notch to the ending 
point. Parameter w is the width of the main wave at its 
1/3 height. As is the area of the systolic phase while Ad 
is the area of the diastolic phase. The ratio h3/h1 reflects 
vascular wall compliance and peripheral resistance, 
h4/h1 reflects the level of peripheral resistance, h5/h1 
mainly reflects aortic compliance and aortic valve func-
tion, and w/t corresponds to the duration of elevated 
aortic pressure and is related to peripheral resistance. 
Figure 3 showed the flowchart of pulse wave parameters 
collection and analysis.

Statistical analysis of pulse wave parameters
Statistical analysis of radial pulse wave parameters was 
performed using IBM SPSS Statistics (version 26). All 
measurements from the two groups (PCOS patient group 
and healthy control group) did not conform to normal 
distribution. Therefore, independent samples Wilcoxon 
rank sum test (Mann-Whitney U test) was used to com-
pare between groups. The results were presented by 
median, M(P25, P75). The level of statistical significance 
was set at P < 0.05 for all the analyses.

Machine learning classification method
Machine Learning (ML) classification is used to predict 
categories, which are the PCOS group and the healthy 

group here. Figure 4 shows the flowchart of the machine 
learning classification process.

Supervised learning is used for the study, it is a type of 
machine learning where the predicted values are already 
known. Given the features and target variables, a model 
is built to accurately predict target values of unseen data, 
in our case, predict a subject’s class based on pulse wave 
parameters (P < 0.05). Seven supervised machine learning 
classifiers were used to build models, including K-Near-
est Neighbors (KNN), Support Vector Machine (SVM), 
Decision Trees (DT), Random Forest (RF), Logistic 
Regression (LR), Soft Voting (SV), and Long Short Term 
Memory networks (LSTM).

The pulse wave parameters dataset was split into a 
training set (75%) and a testing set (25%). The training set 
was used for model training and the testing set was used 
to evaluate final model performance. Data splitting is a 
crucial step to prevent overfitting since ML classifiers can 
perform relatively well on trained data [28]. Data stan-
dardization of features was done by subtracting the mean 
and dividing by variance so that all features were centred 
around zero and had a variance of one.

Stratified k-fold cross-validation was applied to the 
training data, the data were further split into train/test 
sets for 10 folds, the folds are made by preserving the 
percentage of subjects for each class, this technique is 

Fig. 2 The amplitude, time, and area parameters of the radial pulse diagram
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good for an imbalanced class as in our case. Models 
were trained using the seven classifiers, the best model 
parameters were tuned by the grid search. The model 
performance based on the training data was evaluated 
by accuracy, area under the ROC curve (AUC), and F1 
score, then, the evaluation was repeated on the testing 

set. The final evaluation aimed to check the general abil-
ity of models to predict unseen data.

Machine learning classifiers
K-Nearest Neighbors (KNN) is a non-parametric algo-
rithm that is popular for classification problems. KNN 

Fig. 4 Flowchart of PCOS and healthy group discrimination by machine learning classifiers. 15 parameters (P < 0.05) were used as the features for model 
training

 

Fig. 3 Flowchart of pulse wave parameters collection and analysis
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uses “k” numbers of closest labelled data points to predict 
new data points, prediction is made based on the major-
ity labels of the nearest neighbours. The determined 
value of k is 22 in this study.

Support Vectors Machines (SVM) work by finding the 
hyperplane that maximally separates the data points of 
different classes [29]. We applied the SVM radial basis 
function (RBF) kernel which is suitable for nonlinear data 
in this study.

Decision Trees (DT), also known as Classification and 
Regression Trees (CART)), can be used to predict cat-
egorical or continuous outcomes, which are commonly 
used in epidemiological and medical fields [30]. When a 
classification tree is trained, the tree learns a sequence 
of if-else questions about individual features to infer the 
class labels. The maximum depth determined by grid 
search was 2 here in this study.

Random Forest (RF) is one of the best ensemble learn-
ing methods of decision trees. Random Forest uses ran-
dom subsamples of training data and randomizing the 
algorithm for base-level classifiers (decision trees), a 
subset of features is randomly selected by decision trees 
and the best is chosen among these at each step of tree 
construction [31]. Random Forest models are less prone 
to overfitting and can achieve higher accuracy in disease 
prediction. A Random Forest with 300 decision trees and 
a maximum depth of 4 was determined in this study.

Logistic Regression (LR) calculates the probability of an 
observation belonging to the binary class. The predicted 

probability is compared to the default probability thresh-
old to make the classification.

A voting classifier with soft voting (SV) is chosen, the 
model trains on the ensemble of the five models above 
(KNN, SVM, DT, RF, LR), and the class label is predicted 
based on the highest average probability given to that 
class. This ensemble-based Voting classifier is expected 
to improve model performance compared to a single 
classifier [32].

Long Short-Term Memory networks (LSTM) are a type 
of recurrent neural network (RNN) architecture specifi-
cally designed to capture and process sequential and time 
series data, which have been widely used in speech rec-
ognition, natural language processing, and time series 
prediction [33, 34]. While a simple RNN can use past 
predictions to infer new ones, LSTMs were introduced 
to overcome the limitations of RNN, which hard to man-
age long-range dependencies due to the vanishing gradi-
ent problem [35]. After parameters tuning, we built the 
LSTM model with 2 LSTM layers and 1 Dense layer, 
each followed by a Dropout layer, lastly an output layer. 
The model architecture was stated in the supplementary 
material 1.

Classification metrics
In the present study, the main metrics used for model 
performance evaluation are accuracy, F1 score, and AUC.

The confusion matrix can summarize the model per-
formance as in Fig.  5. The true positives (TP) are the 
number of PCOS subjects correctly predicted; the true 
negatives (TN) are the number of healthy subjects cor-
rectly predicted; the false negatives (FN) are the number 
of healthy subjects incorrectly predicted; and the false 
positives are the number of PCOS subjects incorrectly 
predicted.

Table 1 Comparison of general information (n = 459)
Group Age BMI (kg/m2)
PCOS (n = 316) 27.00 (24.00, 29.75) 22.03 (19.91, 25.08)
Healthy (n = 143) 25.00 (21.00, 31.00) 20.44 (19.15, 21.77)
P 0.061 < 0.01*
*P < 0.01

Fig. 5 The confusion matrix
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Accuracy is the proportion of the correct predictions to 
the total number of observations. It is a commonly used 
metric to measure model performance in classification.

 
Accuracy =

TN + TP

TN + FN + FP + TP

Precision is the positive predictive value. It is the ratio of 
true positives to the sum of all positive predictions. High 
precision means having a lower false positive rate.

 
Precision =

TP

TP + FP

Table 2 Comparison of time-domain pulse wave parameters from left Guan position
Time domain parameters (left) PCOS group (n = 316) Healthy group (n = 143)

(n = 143)
MannWhitney U Test P

h1 51.1463(36.1461,62.1430) 51.0814(37.7732,68.6276) 20663.00 0.14
h3 42.0940(29.3900,51.8107) 39.9151(29.1578,52.5250) 22553.50 0.98
h4 12.2748(4.9953,20.7704) 17.0547(7.1223,26.6643) 18800.50 < 0.01**
h5 25.9800(16.5715,35.0660) 26.3911(16.6583,36.7083) 22180.00 0.75
t1 0.0436(0.0411,0.0478) 0.0439(0.0413,0.0473) 22432.00 0.9
t4 0.0665(0.0475,0.0849) 0.0810(0.0573,0.0960) 17108.50 < 0.01**
t5 0.1560(0.1320,0.1791) 0.1575(0.1326,0.1865) 21420.50 0.37
t 0.2199(0.2036,0.2416) 0.2351(0.2158,0.2572) 16446.00 < 0.01**
w 0.0616(0.0505,0.0706) 0.0577(0.0484,0.0688) 20269.50 0.08
As 1110.1580(562.0087,1820.6702) 1540.8545(726.5162,2432.4840) 18174.00 < 0.01**
Ad 2051.2545(1322.9600,3009.1210) 2042.1479(1306.9180,2853.1460) 22224.00 0.78
h3/h1 0.8620(0.7703,0.9068) 0.8056(0.7113,0.8768) 17230.00 < 0.01**
h4/h1 0.2716(0.1384,0.3915) 0.3533(0.1886,0.4463) 18570.00 < 0.01**
h/5h1 0.5197(0.4133,0.7125) 0.5021(0.3787,0.6911) 21547.00 0.43
w/t 0.2781(0.2431,0.3124) 0.2478(0.2119,0.2867) 15750.00 < 0.01**
*P < 0.05 **P < 0.01

Fig. 6 Box plot of age and BMI distribution
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Recall is the ratio of true positives to the sum of true pos-
itives and false negatives. It is also called sensitivity. High 
recall reflects a lower false negative rate. For the present 
study, high recall means predicted most PCOS subjects 
correctly.

 
Recall =

TP

TP + FN

F1 score is the harmonic mean of precision and recall, 
thus, it evaluates a model’s precision and recall ability. F1 
score ranges from 0 (worst) to 1 (best).

 
F1score = 2 × Precision × Recall

Precision + Recall

Area under the Receiver Operating Characteristic curve 
(AUC/ ROC AUC), is a useful metric to visualize and 
evaluate classification ability [36]. ROC graph reveals 
the relationship between true positive rate (TPR) and 
false positive rate (FPR). AUC ranges from 0 to 1.0, 0.5 
means random guessing, the larger the AUC the better 
the model is.

Results
Baseline characteristics
Table 1; Fig. 6 show the comparisons of age and BMI of 
the subjects from the PCOS group and healthy group. 
Subjects from different groups did not show significant 
differences in age (P > 0.05) but showed significant differ-
ences in BMI (P < 0.01). The BMI of the PCOS group was 
significantly higher than the healthy group.

Comparisons of time-domain parameters
The time-domain parameters of pulse diagrams from 
both left and right Guan positions were compared 
between the PCOS group and healthy control group 
using the Wilcoxon rank sum test. Tables 2 and 3 showed 
the results of the comparisons. For both the left and right 
sides, compared to the healthy group, the parameters 
h4, t4, t, As, h4/h1 were significantly lower in the PCOS 
group (P < 0.01) while the parameters h3/h1 and w/t were 
significantly higher in PCOS group (P < 0.01). The right 
t1 was significantly lower in the PCOS group compared 
to the healthy group (P < 0.01). No significant differences 
were observed in the rest of the pulse wave parameters 
between the groups (P > 0.05).

Table 3 Comparison of time-domain pulse wave parameters from the right Guan position
Time domain parameters (right) PCOS group (n = 316) Healthy group (n = 143)

(n = 143)
MannWhitney U Test P

h1 53.6468(39.4475,64.9978) 56.3246(41.1000,71.4271) 20346.00 0.09
h3 41.0358(30.5258,51.8072) 40.3392(29.0920,53.4807) 22365.00 0.86
h4 14.8259(7.1823,23.1606) 20.3658(11.8300,29.3906) 17541.00 < 0.01**
h5 23.8942(14.4083,36.8861) 26.5248(17.3289,34.6542) 21196.00 0.29
t1 0.0426(0.0405,0.0458) 0.0441(0.0415,0.0472) 19140.50 < 0.01**
t4 0.0752(0.0570,0.0905) 0.0929(0.0730,0.1014) 15079.00 < 0.01**
t5 0.1469(0.1233,0.1702) 0.1480(0.1289,0.1708) 21916.50 0.61
t 0.2199(0.2036,0.2416) 0.2351(0.2158,0.2572) 16446.00 < 0.01**
w 0.0556(0.0459,0.0660) 0.0523(0.0416,0.0651) 20568.50 0.12
As 1413.7820(762.0707,2039.2582) 1892.5390(1175.0580,2725.4790) 16729.00 < 0.01**
Ad 1961.8885(1163.8118,2810.0853) 1729.3390(1201.8840,2604.1810) 22138.00 0.73
h3/h1 0.8117(0.7123,0.8798) 0.7249(0.6472,0.8534) 17282.00 < 0.01**
h4/h1 0.3224(0.1935,0.4141) 0.3866(0.2749,0.4459) 17573.00 < 0.01**
h5/h1 0.4689(0.3546,0.6285) 0.4862(0.3920,0.5685) 22082.00 0.7
w/t 0.2582(0.2212,0.2844) 0.2308(0.1792,0.2741) 16914.00 < 0.01**
*P < 0.05 **P < 0.01

Table 4 Performance evaluation of models
Models Training results

(Stratified k-fold cross-validations)
Testing results

Accuracy AUC F1 score Accuracy AUC F1 score
KNN 72.672 ± 6.259 0.691 ± 0.105 0.823 ± 0.040 69.565 0.680 0.795
SVM 72.387 ± 4.543 0.696 ± 0.098 0.825 ± 0.027 72.174 0.694 0.818
Decision Trees 72.395 ± 4.307 0.624 ± 0.070 0.819 ± 0.032 71.304 0.646 0.811
Random Forest 72.689 ± 5.188 0.689 ± 0.118 0.825 ± 0.033 69.565 0.695 0.798
Logistic Regression 70.933 ± 3.874 0.698 ± 0.111 0.814 ± 0.028 72.174 0.704 0.814
Voting 73.546 ± 4.232 0.701 ± 0.115 0.831 ± 0.027 72.174 0.715 0.818
LSTM 74.135 ± 5.437 0.702 ± 0.115 0.828 ± 0.023 72.174 0.722 0.818
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Machine learning classification based on radial pulse wave 
parameters
15 parameters (P < 0.05) were selected as feature vari-
ables for model training including right t1 and h4, t4, 
t, As, h4/h1, h3/h1, w/t from both left and right sides. 
The target variables were the groups of the subjects. 

The performance metrics including accuracy, AUC, and 
F1 score were calculated, the summary of results is pre-
sented in Table 4, Fig. 7 and 8.

For the stratified k-fold cross-validation training, 
the result showed that KNN, SVM, Decision Trees, 
and Random Forest performed similarly by gaining 

Fig. 8 Testing results of machine learning models

 

Fig. 7 Stratified k-fold cross-validation training results of machine learning models
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similar accuracy scores. They have slightly lower perfor-
mance compared to LSTM and Voting ensemble. LSTM 
achieved the highest accuracy and AUC at 74.135 ± 5.437 
and 0.702 ± 0.115 respectively while Voting achieved the 
highest F1 score at 0.831 ± 0.027. The cross-validation 
results for each fold are visualized in Fig. 9.

For the testing set evaluation, SVM, Logistic Regres-
sion, Voting, and LSTM achieved the highest accuracy 
(72.17%). SVM, Voting, and LSTM got the highest F1 
score (0.818), LSTM again performed the best for AUC 
(0.722), thus, LSTM had the best testing performance. 
Figure  10 showed the AUC of the ROC graph among 
models and Fig.  11 compared the performance metrics 
between the training set and testing set. Both the Voting 
and LSTM exhibited similar levels of performance across 
all metrics.

Feature importance
The features contributing most to the Random Forest 
model were reported (Fig. 12). Random forest with train-
ing accuracy 72.689 ± 5.188%, AUC 0.689 ± 0.118, and F1 

score 0.825 ± 0.033. The top five features are right t4, left 
w/t, right t1, left As, and left t, these features contributed 
to 46.89% of importance over all features.

Discussion
The PCOS group and the healthy group were age-
matched (P > 0.05) but the BMI of the PCOS group was 
higher (P < 0.01) due to its metabolism disorders. The 
pulse wave parameters h3/h1, w/t, h4, t4, t, As, h4/h1 
from both sides and right t1 were significantly differ-
ence between groups (P < 0.01). Compared to healthy 
individuals, PCOS patients experienced poorer vascular 
compliance, faster heart rate, and reduced left ventricu-
lar systolic function. Results of ML classification proved 
that pulse signal analysis could be used to predict PCOS 
patients, among the seven models, LSTM achieved the 
best testing performance.

Radial pulse wave is affected by the pulsation of the 
heart and conditions of arteries, tissues, and organs; 
thus, it could contain rich physiological and pathologi-
cal information about individuals [37]. Time-domain 

Fig. 9 Results of stratified k-fold cross-validation for each fold, accuracy, AUC, and F1 score are visualized respectively
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analysis, which is one of the most widely used methods 
[9], was applied in this study to determine the correlation 
between PCOS and radial pulse wave parameters.

The metabolic disorder of PCOS causes vascular func-
tion changes. Studies reported that PCOS patients had 
evidence of an increased risk of hypertension [38], proven 
early atherosclerosis, and endothelial dysfunction, thus, 
increasing the risk of developing cardiovascular disease 
(CVD) compared to healthy women [39]. The relative risk 
for myocardial infarction is 7.4 for PCOS patients [40]. 
Radial pulse wave analysis can provide valuable informa-
tion on the cardiovascular health of PCOS women.

From the results of this study, we found that the pulse 
wave parameters h3/h1 and w/t from both left and right 
sides were significantly higher in the PCOS group than 
in the healthy group, meanwhile, parameters right t1, 
and h4, t4, t, As, h4/h1 from both sides were significantly 
lower in PCOS group. Higher h3/h1 and w/t reflect 
poorer arterial elasticity or higher peripheral resistance 
in the PCOS group. Liu et al. found that h3/h1 was higher 
in the mild and severe occlusion group of coronary heart 
disease (CHD) patients compared to the non-occlusion 
group [41], which proved that high h3/h1 is related to 
poor vascular compliance, a risk factor of CVD.

Parameter t1 corresponds to the rapid ejection period, 
t4 reflects the systolic time of the left ventricle, and t is 
the time of a cardiac cycle of the left ventricle, therefore 
lower in t1, t4 and t indicates a shorter systolic phase and 
a faster heart rate of PCOS patient. As is the area of the 

systolic phase, lower As in the PCOS group suggests a 
decrease in cardiac output, which may result in insuffi-
cient peripheral tissue perfusion. Our result agreed with 
the finding that suggested PCOS women had lower left 
ventricular ejection fraction [42]. Parameters h4 and h4/
h1 reflect the peripheral resistance of the artery, lower 
h4, and h4/h1 in the PCOS group probably because 
of decreasing in peripheral blood volume, as a result, 
the heartbeat increased compensatory. In brief, PCOS 
patients experienced poorer vascular compliance, faster 
heart rate, and reduced left ventricular systolic function 
compared to healthy individuals.

From the feature importance analysis of Random For-
est, we noted that the top five features are right t4, left 
w/t, right t1, left As, and left t, these features contributed 
to 46.89% of importance over all 15 features for classifica-
tion, the features are related to left ventricular function 
directly or indirectly. This result revealed that the left 
ventricle function is the prominent factor to distinguish 
PCOS patients from healthy individuals. The correlation 
between PCOS patients and left ventricular function is 
worth further exploration, previous research had also 
shown that PCOS women are associated with a higher 
left ventricular mass index and larger left atrial diameter 
[43]. For the t1 differed significantly only on the right 
wrist, we assumed that this is because the right wrist is 
more sensitive than the left wrist upon pulse wave detec-
tion, a study demonstrated that the predictive power of 

Fig. 10 Testing scores of Area under the Receiver Operating Characteristic curve (AUC).
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physical factors from the right wrist was higher than that 
of the left wrist [44].

During ML modelling, to reduce the data imbalanced 
effect, we applied a stratified k-fold cross-validation 
method. Then, the models were tuned by the grid search 
with cross-validation to get the best parameters. The 
cross-validations were repeated 10 times to ensure reli-
able results. Seven models were trained sequentially 
including KNN, SVM, Decision Trees, Random Forest, 
Logistic Regression, Voting, and LSTM. Rui Guo et al. 
found that SVM with Gaussian radial basis function is an 
effective tool for solving pattern recognition and func-
tion estimation problems and is suitable for pulse wave 
analysis [45]. On the other hand, Ding et al. found that 
Logistic Regression achieved the most satisfactory result 
among others in waveform classification [46], Logistic 
Regression classifier is consistent with the physiological 
process of the pulse wave. Su et al. proved that Random 
Forest could obtain higher accuracy in disease predic-
tion due to its bootstrap aggregation and randomization 
of predictors, and it is less prone to overfitting [25]. To 
improve the model performance, we applied ensemble 
learning methods by using a Voting classifier, which 

made decision based on the highest average probability 
given to certain class from the first five models. LSTMs 
are suitable for capturing the temporal patterns present 
in the pulse wave parameter data studied [47, 48].

Our findings showed that these prediction models indi-
cated similar performance in classifying the PCOS group 
and healthy group overall, but the Voting and LSTM did 
surpass the others. LSTM, a deep learning model known 
for its ability to capture temporal dependencies, dem-
onstrated competitive performance across all metrics. It 
was the best-performing model on testing data, which 
achieved an accuracy of 72.174%, an AUC of 0.722, and 
an F1 score of 0.818. The Voting ensemble, composed of 
base models KNN, SVM, Decision Trees, Random For-
est, and Logistic Regression, also performed remark-
ably well. It achieved an accuracy of 72.174%, an AUC of 
0.715, and an F1 score of 0.818. Notably, both have the 
best performance across all training and testing metrics, 
showcasing their potential for effective modelling. The F1 
scores from LSTM and Voting are considered at a good 
level, which means that the models can predict most of 
the PCOS cases and be accurate with them. However, the 
values of accuracy and AUC are only moderate and far 

Fig. 11 Model performance comparisons of training results and testing results. Training results came from the training data that was used for both train-
ing and testing while testing results came from the ability of the trained model to identify unseen testing data that were not used in training
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from excellent compared to the other ML disease clas-
sifiers (featuring pulse parameters) as mentioned previ-
ously. The lower accuracy and AUC may be caused by 
the limitations including relatively small sample sizes 
(n = 459), and an imbalanced dataset (70% PCOS cases: 
30% healthy cases).

In overall, the performance metrics on the testing data 
are generally slightly lower than those on the training 
data. This is expected as models tend to perform slightly 
worse on unseen data. None of the models seems to show 
significant overfitting, as the drop in performance from 
training to testing data is relatively small, and overfitting 
would occur only when a model performs well on train-
ing data but poorly on testing data.

Considering computational efficiency and simplicity, 
Voting might be the preferred option for model selec-
tion. It is important to note that LSTM, as a deep learn-
ing model, is a more computationally expensive model 
compared to Voting. LSTM training involves complex 
backpropagation through time steps, and hyperparam-
eter tuning can contribute to its computational cost. On 
the other hand, Voting comprising simpler base models 
generally requires less computation.

The correlation between pulse diagnosis and PCOS was 
again clarified in this study. By comparing the different 
prediction models, the results could provide a reference 
for other clinical research. This study is subject to several 
limitations, comprising (1) even though the participants 
were instructed to remain calm and refrain from eating 
or drinking 30 min prior to the test, it is still possible for 
biases to be introduced due to factors such as patient 
tremors, respiration, mechanical vibrations from instru-
ments, and power frequency interference; (2) although 
we debugged the equipment to a certain extent and 
tried our best to ensure a noise-free environment during 
data collection, the current level of science and technol-
ogy still has certain limitations to fully distinguish noise 
from pulse signals; (3) a relatively small sample size, we 
used ensemble methods, cross-validation, and hyper-
parameter tuning to overcome the limitation caused 
by small sample size to a certain extent, and the results 
were verified that there was no overfitting. However, we 
will expand the sample size in the future to provide more 
reliable assessment results. In the follow-up study, we 
will increase sample sizes, balance the dataset, integrate 
pulse wave analysis with frequency domain parameters, 
and investigate the relationship between pulse conditions 

Fig. 12 Feature importance of 15 features based on Random Forest
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with different PCOS phenotypes. To increase the predic-
tion ability in a way of TCM diagnostics, we suggest: (1) 
the diversifying of the pulse wave analysis methods; (2) 
the integration of the pulse data with tongue data and/or 
TCM symptoms.

In conclusion, there were significant differences in 
radial pulse waves between PCOS patients and healthy 
individuals. ML classification based on pulse wave analy-
sis could identify most PCOS patients accurately with 
good F1 score and is valuable for early detection and 
monitoring of PCOS with acceptable overall accuracy. 
Voting classifier and LSTM with ensemble learning abil-
ity gave the best model performance among others. This 
radial pulse wave-based ML prediction method can 
stimulate the development of individualized PCOS risk 
assessment using mobile detection technology, with the 
advantages of being simple, convenient, non-invasive, 
and cost-effective. Nonetheless, this study gives physi-
cians an intuitive understanding of the objective pulse 
diagnosis in TCM.
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