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Abstract 

Background Endometriosis is a common and complex syndrome characterized by the presence of endometrial‑like 
tissue outside the uterus. Chinese medicine has been recently found to show good efficacy in treating endometriosis. 
Our previous results revealed that Maqian fruit essential oil (MQEO) could inhibit the proliferation and induce apopto‑
sis of ectopic endometrial stromal cells (EESCs), but the mechanisms remain unclear. In this study, we aim to explore 
the molecular mechanism of MQEO’s specific effects in EESCs.

Methods We conducted a quantitative proteomics analysis by iTRAQ on EESCs treated with MQEO or DMSO. Then 
deep analysis was performed based on differentially expressed proteins, including Gene Ontology enrichment 
analysis, pathway enrichment analysis and protein interaction analysis. Candidate protein targets were subsequently 
verified by western blotting.

Results Among 6575 identified proteins, 435 proteins exhibited altered expression levels in MQEO‑treated EESCs. 
Of these proteins, most were distributed in signal transduction as well as immune system and the most significantly 
altered pathway was complement and coagulation cascades. Moreover, two differentially expressed proteins (Heme 
oxygenase 1 and Acyl‑CoA 6‑desaturase) were verified and they can be potential biomarkers for endometriosis 
treatment.

Conclusions Our proteomic analysis revealed distinct protein expression patterns induced by MQEO treatment 
in EESCs, highlighting the potential of MQEO for endometriosis treatment and biomarker discovery.
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Background
Endometriosis is estimated to affect 10% of reproduc-
tive-age women [1], with symptoms such as painful 
periods, chronic pelvic pain, infertility, painful sex, pain 
on defecation and urination, etc. Despite of its unclear 
pathogenesis, genetic and genomic, hormonal, angio-
genic, neurological, and immunological factors are all 
found to be implicated in endometriosis [2]. Nowadays, 
the mainstream treatments of endometriosis include 
surgery, medication and the combination of the two. 
Surgery often results in relapse due to the difficulty in 
removing multiple organs involved in endometriosis. 
Many medical treatments have unwanted side effects 
and the regular hormonal therapy limit fertility. Conse-
quently, new therapies which can relief symptoms while 
preserving fertility are urgently needed. In the past dec-
ade, Chinese herbal medicine and ethnic medicine were 
found to have good efficacy in endometriosis (such as 
alleviating dysmenorrhea, shrinking ovarian endome-
triotic cysts and promoting pregnancy) [3] with fewer 
side effects and lower recurrence rates after drug with-
drawal compared with traditional hormonal therapy [4, 
5].

Endemic to China Xishuangbanna Dai Autonomous 
Prefecture, Zanthoxylum myriacanthum var. pubescens 
Huang, also known as Maqian, is distinguished by its vil-
lous rachises, petiolules and leaves. With special lemon 
fragrance of its leaves and fruits, Maqian is widely con-
sumed as a cooking spice by Dai people. Meanwhile, 
it is also a traditional Dai herb for treating insect bite, 
swelling and pain, and gastrointestinal disorders [6]. The 
Maqian fruit essential oil (MQEO) is rich in limonene 
(67.06%) and shows strong antimicrobial and anti-inflam-
matory activities in LPS-stimulated macrophages and 
THP-1 cells [6, 7]. Oral administration of MQEO also 
showed protective effect in DSS-induced colitis in mice 
by attenuating MPO and MMP-9 expression and proin-
flammatory cytokine mRNAs in colon tissue [7]. Further-
more, our previous study showed that MQEO inhibited 
proliferation and induced apoptosis of human ectopic 
endometrial stromal cells in a dose-and time-depend-
ent manner [8]. However, the exact molecular targets of 
MQEO in endometrial stromal cells remain unknown. 
In recent years, with the development and application 
of omics technology, the pathogenesis of endometrio-
sis has been well studied [9, 10]. As we all know, genetic 
central dogma is one of the most important and funda-
mental rules in modern biology, and proteins play key 
roles in almost all cell functions. Thus, we utilized the 
isobaric tags for the relative and absolute quantitation 
(iTRAQ) method, one of the mature proteomic analysis 
techniques, to investigate potential molecular targets of 
MQEO in endometrial stromal cells.

Materials and methods
Cell culture and treatment
The primary ectopic endometrial stromal cells (EESCs) 
used in this study were derived from patients with ovar-
ian endometriosis who were histologically confirmed 
in Jiangxi Provincial Maternal and Child Health Hospi-
tal (Nanchang, China) [11] and were extracted as pre-
viously described [12, 13]. After subculture, a part of 
cells were frozen in a liquid nitrogen tank for ultra-low 
temperature preservation waiting for next resuscitation. 
Resuscitated cells were cultured in DMEM/F12 medium 
containing 10% fetal bovine serum, 100  IU/mL penicil-
lin and 0.1  mg/mL streptomycin. The essential oil from 
Maqian (MQEO) was provided by professor Zhang Ping, 
researcher at Xishuangbanna Tropical Botanical Garden, 
Chinese Academy of Sciences. The chemical composition 
of MQEO was similar to previously reported [7]. Freshly 
isolated EESCs were divided into experimental group and 
control group, which were treated with 0.075% MQEO 
(v/v) or 0.075% dimethyl sulfoxide (DMSO) for 48  h, 
respectively. All treatments were repeated in triplicate.

Protein extraction and proteolysis
Cells were washed twice in PBS after removal of growth 
media, centrifuged at 1000 g for 5 min to collect the cells, 
the cell pellets were lysed with RIPA lysis buffer (Beyo-
time, China) containing a protease inhibitor cocktail 
(Sigma-Aldrich, USA), incubated at 4 ℃ for 2 h. The cell 
debris was removed by centrifugation at 12,000 rpm at 4 
℃ for 15 min and the supernatant was the protein solu-
tion. The quality control was performed with the method 
of Bradford quantification and SDS-PAGE. The pro-
tein samples were diluted with 0.5 M TEAB beforehand 
to make the final concentration of urea lower than 2 M 
and SDS less than 0.1%. Then the protein samples were 
mixed with trypsin according to a ratio of 1:20, vortexed 
and centrifuged at low speed for 1 min, then incubated at 
37℃ for 4 h. The digested peptide liquid was removed for 
desalting and freeze-drying.

Peptide labeling and fractionation
An aliquot of 50μL isopropanol was mixed with room 
temperature iTRAQ labeling reagent. Peptide samples 
were dissolved in 0.5  M TEAB and added to the cor-
responding iTRAQ labeling reagent. Different iTRAQ 
labels were employed for different sample peptides. The 
labeled peptides were then left to stand at room tem-
perature for 2  h. The Shimadzu LC-20AB liquid phase 
system was used, and the separation column was a 5um 
4.6 × 250 mm Gemini C18 column for liquid phase sep-
aration of the sample. The dried peptide samples were 
reconstituted with mobile phase A (5% ACN pH 9.8) and 
injected, eluting at a flow rate of 1 mL/min by following 
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gradients: 5% mobile phase B (95% ACN, pH 9.8) for 
10  min, 5% to 35% mobile phase B for 40  min, 35% to 
95% mobile phase B for 1 min, mobile phase B for 3 min, 
and 5% mobile phase B for 10 min. The elution peak was 
monitored at a wavelength of 214  nm and one compo-
nent was collected per minute, and the samples were 
combined according to the chromatographic elution peak 
map to obtain 20 fractions, which were then freeze-dried.

HPLC and mass spectrometry detection
The dried peptide samples were reconstituted with 
mobile phase A (2% ACN, 0.1% FA), centrifuged at 
20,000  g for 10  min, and the supernatant was taken for 
injection. Separation was performed by Thermo Ulti-
Mate 3000 UHPLC. The sample was first enriched in 
trap column and desalted, and then entered a self-
packed C18 column (75  μm internal diameter, 3  μm 
column size, 25  cm column length) and separated at a 
flow rate of 300nL/min by the following effective gradi-
ent: 0 ~ 5 min, 5% mobile phase B (98% ACN, 0.1% FA); 
5 ~ 45  min, mobile phase B linearly increased from 5 to 
25%; 45 ~ 50  min, mobile phase B increased from 25 to 
35%; 50 ~ 52  min, mobile phase B rose from 35 to 80%; 
52 ~ 54 min, 80% mobile phase B; 54 ~ 60 min, 5% mobile 
phase B. The nanoliter liquid phase separation end was 
directly connected to the mass spectrometer. The pep-
tides separated by liquid phase chromatography were 
ionized by a nanoESI source and then passed to a tandem 
mass spectrometer Q-Exactive HF (Thermo Fisher Sci-
entific, San Jose, CA) for DDA (Data Dependent Acqui-
sition) mode detection. The main parameters were set: 
ion source voltage was set to 1.9 kV, MS1 scanning range 
was 350 ~ 1,500  m/z; resolution was set to 60,000; MS2 
starting m/z was fixed at 100; resolution was 15,000. The 
ion screening conditions for MS2 fragmentation: charge 
2 + to 6 + , and the top 20 parent ions with the peak inten-
sity exceeding 10,000. The ion fragmentation mode was 
HCD, and the fragment ions were detected in Orbitrap. 
The dynamic exclusion time was set to 30  s. The AGC 
was set to: MS1 3E6, MS2 1E5.

Protein identification and quantitation
The raw MS/MS data was converted into MGF format 
and then searched by the protein identification software 
Mascot through alignment in corresponding databases. 
In the meantime, quality control was performed to deter-
mine if a reanalysis step was needed. Next, the qualified 
data must pass a certain screening threshold to obtain 
the final credible protein identification results. Later, 
IQuant, an automated software independently developed 
by Beijing Genomics institution (BGI), was applied to 
quantify protein levels. Differentially expressed proteins 
were selected from the quantitative results. Further, we 

performed deep analysis based on differentially expressed 
proteins, including Gene Ontology (GO) enrichment 
analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis [14] and protein 
interaction analysis. All the procedures above were based 
on a false discovery rate (FDR) of no more than 1%.

Western blotting
Protein samples extracted from EESCs were processed 
by SDS-PAGE and transferred to the nitrocellulose 
membrane. The membrane was then blocked with PBS 
containing 5% skimmed milk power and incubated with 
primary antibodies at 4  °C overnight. Later, the mem-
brane was incubated with appropriate secondary IgG 
antibody for 1  h at room temperature. The result was 
examined by ECL chemiluminescence. Densitometry val-
ues were normalized to β-actin or GAPDH.

Statistical analysis
Measurement data were presented in the form of “the 
means ± standard deviations”. With SPSS (version 19.0), 
statistical analysis for multiple group comparisons was 
performed by oneway ANOVA. The difference between 
two groups was analyzed by Student’s t test. P < 0.05 was 
regarded as statistically significant.

Results
Protein identification and quantitation results
Based on the standard of 1% FDR, 44,716 peptides and 
6575 proteins were identified in total (Fig.  1 A). For 
these 6575 proteins, analysis of significant difference 
between DMSO and MQEQ treated groups was per-
formed. Proteins of significant difference were screened 
as fold change > 1.2 and Q-value < 0.05. According to this 
criterion, 435 proteins were defined to be differentially 
expressed proteins (DEPs), among which 285 were up-
regulated and 150 were down-regulated (Fig. 1B and C). 
The top 20 up-regulated and down-regulated proteins are 
listed separately in Tables 1 and 2.

GO enrichment analysis of DEPs
GO enrichment analysis shows the important or typical 
biology functions in measured samples. Molecular func-
tion analysis results showed that the majority of identi-
fied proteins were relevant to binding. Cell, cell part and 
organelle were the top 3 in cellular component. As for 
biological process, most proteins were involved in cellu-
lar process. In almost all GO items of DEPs, the number 
of MQEO up-regulated proteins was much more than 
that of down-regulated (Fig. 2).
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KEGG pathway enrichment analysis of DEPs
KEGG pathway enrichment analysis showed that 
MQEO-induced DEPs were involved in a wide range of 
pathways (Fig. 3A), whereas only 14 pathways were with 
significant changes (P < 0.05) (Fig. 3B). The top 10 signifi-
cantly altered pathways were as follows: complement and 
coagulation cascades (ko04610); staphylococcus aureus 
infection (ko05150); protein digestion and absorption 
(ko04974); cholesterol metabolism (ko04979); rheuma-
toid arthritis (ko05323); mineral absorption (ko04978); 
cytokine-cytokine receptor interaction (ko04060); 

neuroactive ligand-receptor interaction (ko04080); IL-17 
signaling pathway (ko04657); systemic lupus erythemato-
sus (ko05322).

Protein–protein interaction (PPI) of DEPs
In general, proteins interact with each other to form com-
plexes that perform their respective functions. The inter-
actions include direct (physical) and indirect (functional) 
associations. They stem from computational prediction, 
from knowledge transfer between organisms, and from 
interactions aggregated from other (primary) databases. 

Fig. 1 Identification and quantitation proteomic analysis results. A Unique peptide number distribution. The X‑axis indicates the unique peptide 
number of each protein and the Y‑axis indicates the corresponding protein number. Most of the identified proteins contain less than 10 peptides 
and protein quantity becomes less with the increase in peptide number. B Number of significantly differential expressed proteins. Totally 435 
proteins were defined to be significantly different, among which 285 were up‑regulated and 150 were down‑regulated. C Volcano plot of log2 
fold‑change (X‑axis) versus ‑log10 Qvalue (Y‑axis, indicating the probability that the protein is differentially expressed). Red dots represent proteins 
significantly up‑regulated, green for significantly down‑regulated, and gray for no‑significant change

Table 1 List of the top 20 up‑regulated proteins in MQEQ‑treated EESCs

Accession Protein name Fold change P value

Q14147 Probable ATP‑dependent RNA helicase DHX34 3.347755422 0.03866958

Q7Z5H4 Vomeronasal type‑1 receptor 5 2.844688021 0.01062212

P52823 Stanniocalcin‑1 2.673433739 0.000512193

P08254 Stromelysin‑1 2.639501666 0.0181334

O95500 Claudin‑14 2.392929207 0.01584208

P02748 Complement component C9 2.358412795 0.005135254

A6NK44 Glyoxalase domain‑containing protein 5 2.352060279 0.006570461

P02771 Alpha‑fetoprotein 2.273137612 0.001340501

Q99988 Growth/differentiation factor 15 2.268304555 0.000291106

P02741 C‑reactive protein 2.254483861 0.01495653

Q8WXE9 Stonin‑2 2.239639991 0.03200757

Q8NET8 Transient receptor potential cation channel subfamily V member 3 2.153177863 0.000571239

P01031 Complement C5 2.149578598 0.000935405

P09601 Heme oxygenase 1 2.143340453 7.36E‑06

P36575 Arrestin‑C 2.136414407 0.007485843

P10643 Complement component C7 2.12290508 0.001495639

Q8WTS1 1‑acylglycerol‑3‑phosphate O‑acyltransferase ABHD5 2.102369241 0.000321776

Q9UKQ9 Kallikrein‑9 2.095386419 0.0105733

Q03181 Peroxisome proliferator‑activated receptor delta 2.077167019 0.001605747

Q0VG06 Fanconi anemia core complex‑associated protein 100 2.074085963 0.000219121
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As shown in Fig. 4, PPI of MQEO induced DEPs is a com-
plex network.

Verification of iTRAQ results by western blotting
From Tables  1 and  2, we know that Heme oxyge-
nase 1 (HMOX1) is significantly up-regulated (fold 
change 2.143340453, P value 7.36E-06) and Acyl-CoA 

6-desaturase (fatty acid desaturase 2, FADS-2) is sig-
nificantly down-regulated (fold change 0.646179524, 
P value 6.12E-05) in MQEO-treated EESCs. Consist-
ent with iTRAQ results, compared with the control 
group, the western blotting results (Fig. 5) also showed 
that MQEO increased HMOX1 protein expression 
more than twofold and MQEO significantly decreased 
FADS-2 at 0.075% (v/v) concentration. Therefore, 

Table 2 List of the top 20 down‑regulated proteins in MQEQ‑treated EESCs

Accession Protein name Fold change P value

Q86Y22 Collagen alpha‑1(XXIII) chain 0.358118393 0.00015303

P45452 Collagenase 3 0.56253854 0.02214124

O95864 Acyl‑CoA 6‑desaturase 0.573638277 6.12E‑05

Q9Y5W5 Wnt inhibitory factor 1 0.579178503 0.003537251

Q9H2H9 Sodium‑coupled neutral amino acid transporter 1 0.587552607 0.002869714

P11388 DNA topoisomerase 2‑alpha 0.603146716 0.0124694

Q9NPB9 Atypical chemokine receptor 4 0.641899105 0.01359628

P02452 Collagen alpha‑1(I) chain 0.645907938 0.00014629

O00767 Acyl‑CoA desaturase 0.646179524 0.001044735

O14867 Transcription regulator protein BACH1 0.649429437 0.006773781

Q53QV2 Protein LBH 0.65004797 0.00046562

Q13322 Growth factor receptor‑bound protein 10 0.657127039 0.001246585

Q6ZU67 BEN domain‑containing protein 4 0.660648194 0.000941751

Q96MH7 Uncharacterized protein C5orf34 0.66755777 0.005640629

Q8N2N9 Ankyrin repeat domain‑containing protein 36B 0.671461157 0.03894651

Q71RG4 Transmembrane and ubiquitin‑like domain‑containing protein 2 0.675864553 0.000881633

P0DH78 RING finger protein 224 0.678190184 0.03047435

Q96JB3 Hypermethylated in cancer 2 protein 0.68153325 0.003271633

O00418 Eukaryotic elongation factor 2 kinase 0.693631423 0.003123135

Q29980 MHC class I polypeptide‑related sequence B 0.694639615 0.0133043

Fig. 2 GO analysis of DEPs. A GO classification of DEPs. The X‑axis indicates DEP protein count, and the Y‑axis indicates GO term. B GO classification 
of up/down‑regulated DEPs. The X‑axis indicates GO term, and the Y‑axis indicates up/down‑regulated protein count



Page 6 of 10Zhang et al. BMC Complementary Medicine and Therapies          (2023) 23:427 

altered protein expression levels induced by MQEO in 
EESCs were confirmed by western blotting.

Discussion
Compared with modern medicine, ethnic medicine has 
certain advantages: being environmentally friendly, effec-
tive in chronic and complex diseases, with fewer side 
effects, thus providing new ideas for drug development 
[15–21]. MQEO is extracted by hydrodistillation of dried 
Maqian fruit and has been shown to have very strong 
antimicrobial, anti-oxidant, anti-inflammatory, and anti-
diabetic effect [6, 7]. Gas chromatography-mass spec-
trometry (GC–MS) analysis result reveals that MQEO 
consists of 16 volatile compounds with limonene as the 
principal constituent [9]. It has been widely reported that 
limonene has a number of therapeutic effects, includ-
ing antimicrobial [22, 23], anti-inflammatory [24, 25], 
anti-tumor [26, 27], antioxidant [28, 29], neuroprotective 
and gastroprotective [30, 31]. MQEO exhibited much 
stronger anti-inflammatory effect than d-limonene alone 
[6], indicating that other major and minor ingredients in 
MQEO are also important for MQEO’s biological effects.

In our previous research, it was found that MQEO 
dosage-dependently reduced the viability, motility and 
migration of EESCs. But the exact molecular mecha-
nism remains unclear. Therefore, in this study we 
applied iTRAQ, a powerful proteomic-based method 
for biomarker screening, to explore MQEO’s effect on 
EESCs. As shown in the results, 44,716 peptides and 
6575 proteins were identified in total, among which 435 
DEPs were identified in the MQEO-treated group in 

comparison to the control group according to our crite-
ria. Further analysis showed that 285 DEPs were up-regu-
lated and 150 were down-regulated. These results showed 
that there are significant differences between MQEO-
treated EESCs and the control, which may be candidate 
therapeutic targets of MQEO in treating endometriosis.

Furthermore, GO enrichment analysis of DEPs 
revealed that binding and cellular process were the 
most highlighted molecular function and biological 
process respectively. These biological functions are 
closely associated with the process of endometrio-
sis. Besides, KEGG pathway analysis and PPI of DEPs 
showed a complex network, in which most DEPs were 
distributed in signal transduction as well as immune 
system with complement and coagulation cascades 
as the most significantly altered pathways. Our result 
is consistent with reported interaction between the 
complement system and the coagulation cascade in 
the development of endometriosis. Multi-omics analy-
sis has revealed that up-regulated expression of com-
plement (C1S, C1QA, C1R and C3) was positively 
correlated with tissue factor in endometriosis [32]. 
Endometriosis was considered as a chronic inflamma-
tory and immune dysfunctional disease with the char-
acteristics of ectopic endometrial tissue implantation 
and growth [33, 34]. The complement system, involved 
in inflammation and autoimmune disease, was one of 
the indispensable immune mechanisms in endome-
triosis [35]. Complement system plays an important 
role in innate immunity through chemotaxis, immune-
complex elimination, formation of membrane attack 

Fig. 3 Pathway analysis of DEPs. A Pathway classification of DEPs. X‑axis indicates DEP number, Y‑axis indicates pathway name. B Statistics 
of pathway enrichment of DEPs in each pairwise. Rich factor is the ratio of DEP number annotated in this pathway term to all protein number 
annotated in this pathway term. Greater rich factor means greater intensiveness. P value ranges from 0 ~ 1, and less P value means greater 
intensiveness
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Fig. 4 PPI Network of DEPs. Red nodes represent up‑regulated proteins; blue nodes represent down‑regulated proteins

Fig. 5 Expression level of representative DEPs analyzed by western blotting. Proteins HMOX1 is upregulated and protein FADS‑2 is downregulated. 
β‑actin or GAPDH was used as the loading control. *P < 0.05 compared with the control group
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complex and cell lysis. The formation of thrombus in 
coagulation cascades is somehow similar to comple-
ment cascades [36]. Markiewski [37] found that com-
plement and coagulation systems work together as 
partners in response to inflammatory. According to 
Markus and Amara [38, 39], thrombin substituted for 
the C3-dependent C5 convertase in the absence of C3; 
while in the presence of C3, thrombin did also gener-
ate C3a dose- and time-dependently. Briefly, the inter-
action between complement and coagulation cascade is 
of great clinical significance, since disruption of it may 
result in diseases.

Meanwhile, we performed a literature analysis of 
DEPs identified by iTRAQ and then verified by western 
blotting (Fig.  5). We found that HMOX1 and FADS-2 
were significantly up-regulated and down-regulated 
respectively in MQEO-treated EESCs compared with 
DMSO treated control, which may provide more details 
about the mechanism of MQEO in endometrial stromal 
cells. Promoting the degradation of heme into carbon 
monoxide (CO), iron (Fe2 +) and biliverdin, HMOX1 is 
an important anti-oxidative enzyme [40]. It is reported 
that HMOX1 is highly expressed in endometriosis [41, 
42] and gene analysis confirms that HMOX1 gene poly-
morphism is associated with endometriosis [43]. FADS-
2, a member of fatty acid desaturase, is rarely studied 
in endometriosis, but both FADS-2 and HMOX1 are 
involved in ferroptosis, a new programmed cell death 
characterized by the accumulation of lipid reactive 
oxygen species (ROS) and dependence of iron [44]. 
There are several intracellular pathways regulating fer-
roptosis, one of which is the p62-Keap1-Nrf2-HMOX1 
pathway [45]. Cellular stress activates p62 by its phos-
phorylation and stimulates the interaction between 
p62 and Kelch-like ECH-associated protein 1 (Keap1), 
resulting in disassociation of nuclear factor-E2-related 
factor 2 (Nrf2) from the p62/Keap1 complex. Then the 
free and phosphorylation-activated Nrf2 translocates to 
the nucleus and induces HMOX1 gene expression. As 
the result, HMOX1 degrades heme and releases Fe2 + , 
which impairs iron homeostasis and triggers ferrop-
tosis. Zeyu Wang proved that knockdown of HMOX1 
could reduce the sensitivity of cells to ferroptosis [46]. 
Consequently, HMOX1 was found to be a promoter 
of ferroptosis [47, 48]. On the contrary, knockdown 
of FADS2 decreases the ferroptosis-associated nega-
tive regulators at the mRNA level and increases the 
iron levels and lipid [49]. As a result, FADS-2 was 
regarded as a rate-limiting factor in ferroptosis [49, 
50]. Considering that endometriosis is characterized by 
ferroptosis resistance [51–53] and MQEO is able to up-
regulate Nrf2 [54], we propose that MQEO may active 

ferroptosis through up-regulating Nrf2-HMOX1 to 
achieve inhibition of EESCs. These may become poten-
tial endometriosis molecular treatment targets but 
more in-depth studies on the ferroptosis mechanisms 
underlying the functions of MQEO in EESCs are still 
warranted.

Conclusion
In conclusion, we applied an iTRAQ-based prot-
eomic method  to investigate the potential mecha-
nisms of MQEO’s effect in EESCs. The proteomic 
results revealed changed expression levels of a number 
of proteins involved in inflammatory and metabolic 
pathways. And the significantly differential expressed 
proteins were verified by western blotting. We identi-
fied HMOX1 and FADS-2 as potential endometrio-
sis molecular treatment targets in the future. Taken 
together, our results shed a new insight into the thera-
peutic intervention of endometriosis.
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