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Abstract 

Background Qihuang Granule (QHG) is a traditional prescription  that has exhibited potential in safeguarding 
against age-related maculopathy (AMD). Salvia miltiorrhiza (SM) and Fructus lycii (FL) are the main components 
of QHG. Ferroptosis, a newly discovered, iron-dependent, regulated cell death pathway, have been implicated 
in the pathogenesis of AMD. This study delves into the intricate mechanism by which SM/FL and QHG confer pro-
tection against AMD by modulating the ferroptosis pathway, employing a combination of network pharmacology 
and experimental validation.

Methods Bioactive compounds and potential targets of SM and FL were gathered from databases such as TCMSP, 
GeneCard, OMIM, and FerrDb, along with AMD-related genes and key genes responsible for ferroptosis regulation. 
Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein–protein 
interaction (PPI) network were performed to discover the potential mechanism. The construction of an interaction 
network involving AMD, ferroptosis, SM/FL potential target genes was facilitated by the STRING database and real-
ized using Cytoscape software. Subsequent validation was accomplished through molecular docking and in vitro cell 
experiments.

Results Noteworthy active compounds including quercetin, tanshinone IIA, luteolin, cryptotanshinone, and hub 
targets such as HIF-1α, EGFR, IL6, and VEGFA were identified. KEGG enrichment unveiled the HIF-1 signalling path-
way as profoundly enriched, and IL6 and VEGF were involved. The molecular docking revealed the significant active 
compounds with hub genes and quercetin showed good binding to HIF-1α, which is involved in inflammation 
and angiogenesis. Experimental results verified that both herbs and QHG could regulate key ferroptosis-related tar-
gets in the retinal pigment epithelium and inhibit the expression of HIF-1α, VEGFA, and IL-6, subsequently increase cell 
viability and decrease the ROS content induced by  H2O2.
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Conclusion This study demonstrates the molecular mechanism through which SM/FL and QHG protect against AMD 
and emerges as a plausible mechanism underlying this protection.

Keywords Age-related maculopathy (AMD), Ferroptosis, Oxidative stress, Traditional Chinese medicine formula, 
Network pharmacology

Background
Age-related macular degeneration (AMD) is a prelavent 
neurodegenerative disease characterized by the progres-
sive deterioration of the macula, which is responsible 
for sharp and detailed vision. Nowadays, AMD affects 
more than 50% of people over 80 worldwide. AMD is 
the primary cause of visual impairment and blindness 
on a global scale, particularly among the elderly popula-
tion. Recent statistics reveal a significant prevalence of 
AMD globally, with an estimated 196 million individuals 
affected by 2020. The impact of AMD on visual impair-
ment is substantial, accounting for approximately 8.7% of 
all blindness worldwide. In developed countries, AMD is 
the leading cause of blindness, particularly among older 
individuals [1, 2]. AMD not only has a negative impact 
on individuals’ lives but also poses a social and economic 
burden. Early diagnosis and treatment can effectively 
reduce vision loss in patients with AMD. Therefore, it is 
crucial to invest in raising public awareness and strength-
ening preventive measures as a way to alleviate the eco-
nomic burden of AMD.

The mechanisms involved in the development of AMD 
are intricate and multifactorial. These factors include 
genetic susceptibility, age-related dysfunction of normal 
retinal homeostasis, impaired lipid metabolism, immune 
activation leading to chronic inflammation, oxidative 
stress, and extracellular matrix (ECM) dysfunction [3]. 
Despite major advances, the exact stochastic relation-
ships among pathogenetic features are largely unknown. 
Understanding these mechanisms is crucial in preventing 
the progression of dry AMD to wet AMD and preserv-
ing the visual function of patients. Further research is 
urgently needed to shed light on the underlying mecha-
nisms of AMD and develop effective strategies to halt its 
progression and minimize visual impairment.

While several tissues are affected in AMD, includ-
ing photoreceptors, retinal pigment epithelium (RPE), 
Bruch’s membrane and choriocapillaris, the dysfunc-
tion of RPE is an early and crucial event in the molecu-
lar pathways that results in clinically relevant changes in 
AMD patients [4]. In the early stages of AMD, RPE cells 
susceptible to damage from various factors, leading to 
impaired function. This impairment reduces their abil-
ity to absorb and transport nutrients, resulting in inad-
equate nutrient supply and subsequent degenerative 
changes. As damaged RPE cells progressively die, "dry 

AMD" develops. This cell death triggers an inflammatory 
response, further harming the surrounding RPE cells and 
retinal tissue. Additionally, this inflammatory response 
can stimulate abnormal blood vessel growth, leading to 
the development of "wet AMD." In summary, the impair-
ment and death of RPE cells play a crucial role in the ini-
tiation and progression of AMD [5, 6].

AMD is clinically categorized into early and late stages, 
with the majority of cases falling into the early stage. This 
classification includes medium-sized drusen and retinal 
pigmentary changes. Early-stage AMD is prevalent and 
imposes a significant economic burden on society [7]. 
Currently, drug therapies like vitamin C, and vitamin E 
are commonly employed in the treatment of dry AMD 
[8]. However, the effectiveness of these therapies for all 
patients lacks sufficient evidence and outcomes may vary 
individually. Furthermore, there is currently no specific 
medication available to cure dry AMD. The primary 
objective of treatment is to decelerate disease progres-
sion and alleviate symptoms.

In recent years, the use of traditional Chinese medicine 
(TCM) for treating AMD has gained attention as a poten-
tial solution. “Qihuang” granule (QHG) is a traditional 
prescription of TCM and had been studied extensively. 
It contains compounds such as Salvia miltiorrhiza (SM) 
and Fructus lycii (FL), which have been found to have 
protective effects against  H2O2-induced inflammatory 
injury in human RPE cells and improve visual acuity and 
fundus conditions in dry AMD patients [9]. In addition, 
and SM, and FL are commonly used in the treatment of 
AMD, but the specific mechanisms behind their pharma-
cological effects are still not fully understood. By delving 
deeper into the components and mechanisms of action 
of these Chinese medicines, we can gain a better under-
standing of their therapeutic effects on age-related macu-
lar degeneration. Conducting further studies in this area 
is crucial as it will provide more scientific evidence for 
clinical treatment and help patients make informed deci-
sions regarding the use of traditional Chinese medicine 
for age-related macular degeneration.

Ferroptosis is a recently discovered form of regulated 
cell death that is dependent on iron and characterized 
by excessive lipid peroxidation and iron overload. It has 
been implicated in various conditions such as neurode-
generation, ischaemia–reperfusion injury, and cancer 
[10–12]. Studies on iron accumulation and elevated lipid 
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peroxidation, and their close association with ferropto-
sis in the ageing retina have implicated ferroptosis in the 
pathogenesis of AMD [13]. The activity of the lipid repair 
enzyme glutathione peroxidase 4 (GPX4) exerts an anti-
oxidative effect on ferroptotic processes, while solute car-
rier family 7 member 11 (SLC7A11) is part of System Xc-, 
which regulates ferroptosis together with the glutathione 
metabolic pathway by exchanging glutamate and cystine 
[10]. Therefore, the pathways related to GPX4 synthesis 
and system Xc- function are crucial for the regulation of 
ferroptosis. Given that ferroptosis is a potential thera-
peutic target for necroinflammatory diseases, further 
investigation into its underlying pathophysiological char-
acteristics and molecular mechanisms could provide a 
basis for developing interventional therapeutic strategies 
[14].

Network pharmacology is a meaningful approach 
for drug discovery [15, 16].Our study involves screen-
ing effective SM and FL ingredients and analyzing their 
AMD treatment targets. Additionally, we identified key 
genes involved in the regulation of ferroptosis. These tar-
gets guided us in examining the active ingredient target 
genes and pathways using network pharmacology, along 
with gene ontology (GO) and biological pathway (KEGG) 
functional enrichment analyses. Based on the results, 
molecular docking technology was used to analyze the 
optimal effective components from SM, and FL that dock 
with vital targets to explore the most appropriate com-
pound. By integrating the findings from network phar-
macology with in vitro experiments, our study establishes 
a theoretical foundation for understanding the molecular 
mechanisms underlying the protective effects of TCMs/
FLs and QHG against AMD.

Methods
Screening the main active compounds of SM and FL
The ingredients of SM and FL were obtained from the 
Traditional Chinese Medicine Systems Pharmacol-
ogy Database and Analysis Platform (TCMSP, https:// 
tcmspw. com/ tcmsp. php). TCMSP GeneCards is a com-
prehensive database integrating information from the 
Traditional Chinese Medicine Systems Pharmacology 
(TCMSP) and GeneCards databases. It provides infor-
mation on the interactions between Chinese herbal com-
pounds and targets, disease-associated genes, and drug 
targets, helping researchers understand the mechanisms 
of action and potential pharmacological effects of Chi-
nese herbal compounds. To obtain relevant targets of 
the main compounds of SM and FL, oral bioavailability 
(OB) ≥ 30% and drug-likeness (DL) ≥ 0.18 were selected 
as screening conditions in this study [17]. UniProt data-
base (https:// www. unipr ot. org/) was chosen to determine 
the gene name and identifiers of their targets.

Identification of AMD‑, and ferroptosis‑related target 
genes
Potential AMD-related targets were identified through 
GeneCards [18] (https:// www. genec ards. org/) and 
OMIM (Online Mendelian Inheritance in Man,  https:// 
www. omim. org/) [19], OMIM (Online Mendelian Inher-
itance in Man) is a human genetics database that col-
lects information on genetic diseases and related genes. 
It provides detailed information on disease descriptions, 
clinical features, inheritance patterns, and the functions 
of associated genes. The FerrDb database (http:// www. 
zhoun an. org/ ferrdb/) focuses on genes and proteins 
related to iron metabolism. It collects information on 
genes, proteins, and metabolic pathways associated with 
iron metabolism and related diseases. FerrDb provides 
detailed data on the functions of iron metabolism genes, 
expression patterns, and mutations associated with dis-
eases [20]. Overlapping potential target genes of SM/FL 
between AMD treatment and ferroptosis were acquired 
through Veeny 2.1 (https:// bioin fogp. cnb. csic. es/ tools/ 
venny/) intersection.

Construction and analysis of a protein–protein interaction 
(PPI) network
Taking the intersection of all the decoction targets, AMD 
targets, and ferroptosis targets, we identified the targets 
that are related to SM/FL-induced ferroptosis in AMD. 
To further identify the core regulatory targets, PPI analy-
sis was performed by submitting the overlapping targets 
of active compounds of SM/FL, ferroptosis, and AMD to 
the STRING biological database (https:// string- db. org/) 
with the species set to “Homo sapiens” and the minimum 
required interaction score was set to 0.40 [21]. Subse-
quently, the PPI results were exported from STRING and 
imported into Cytoscape (https:// cytos cape. org/, Ver-
sion 3.7.2), CytoNCA plug-in was used to calculate the 
parameters, and the hub targets that were related to SM/
FL-induced ferroptosis in AMD were identified accord-
ing to BC, CC, and degree. Finally, the “AMD-Ferropto-
sis-SM/FL Potential Targets Genes” visual network was 
constructed with Cytoscape software.

GO and KEGG enrichment analysis
After transferring the official gene symbols of the 
identified AMD-Ferroptosis-SM/FL potential target 
genes to associated Entrez IDs, Gene Ontology (GO) 
enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analy-
sis were carried out to further study the functions of 
the identified potential anti-AMD target genes based 
on R 4.0.2 and related R packages (colorspace, stringi, 
DOSE, clusterProfiler, ggplot2, enrichplot, pathview, 

https://tcmspw.com/tcmsp.php
https://tcmspw.com/tcmsp.php
https://www.uniprot.org/
https://www.genecards.org/
https://www.omim.org/
https://www.omim.org/
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
https://bioinfogp.cnb.csic.es/tools/venny/
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https://string-db.org/
https://cytoscape.org/
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BiocManager, and org.Hs.eg.db). Only functional 
terms and pathways with p values < 0.05 were consid-
ered statistically significant and retained.

Analysis of binding capacity between active ingredients 
and key target genes by molecular docking
Molecular docking is a widely employed method in 
drug discovery due to its capacity to accurately pre-
dict the conformation of small molecule ligands within 
their appropriate target binding sites and to assess the 
binding affinity [22–24]. In the present study, the main 
active compounds and hub genes of SM/FL-induced 
ferroptosis in AMD were molecularly docked. Candi-
date target proteins were selected with the following 
criteria: (1) proteins of human species, (2) with high 
degree values in the core PPI network, (3) associated 
with more significant bioactive compounds in the net-
work. The docking process combined AutoDock tools 
1.5.6 with Vina (ie, AutoDock Vina), is a novel strategy 
that has been shown to improve the speed and accu-
racy of molecular docking with a new scoring func-
tion, efficient optimization, and multithreading [25].

Experimental validation in vitro
Cell culture
Human RPE cells (ARPE-19, CL-0026, Procell Life 
Science & Technology, Wuhan, China) were cultured 
in DMEM (10566–016, Thermo Fisher Scientific, 
Waltham, USA), supplemented with 10% foetal bovine 
serum (1027–106, Thermo Fisher Scientific), 100 U/
mL penicillin and 50 U/mL streptomycin (PS2004HY, 
TBD, Tian Jin, China) at 37 ℃ in 5%  CO2. The cells 
showed obvious extension and the density was 
between 70 and 90%, indicating that the cells were in 
good condition. This research has been reviewed by 
the Ethics Committee of Guangdong Provincial Hos-
pital of Chinese Medicine, and it is believed that the 
project meets the requirements for exemption from 
ethical review and agrees to exempt the project from 
review.

To resemble AMD pathophysiology in ARPE-19 
cells, we induced oxidative stress with  H2O2 (200  μM, 
7722–84-1, Weng Jiang Reagent, Shaoguan, China). 
To examine the effect of SM/FL or QHG on RPE cells 
undergoing oxidative stress, cells were plated in 96-well 
plates at a density of 5 ×  103 cells per well and preincu-
bated with 2  g/l SM/FL or 2  g/l QHG for 24  h. Then 
the cells were further incubated with  H2O2 (200  μm) 
to induce oxidative stress. The cells were divided into 
four groups: control group (without drug),  H2O2 group, 
 H2O2 + SM/FL group and  H2O2 + QHG group.

Cell viability assay
RPE cells were preincubated with SM/FL or QHG for 
24 h, and then the cells were further incubated with  H2O2 
(200 μm) for 12, 24, and 48 h. Cell viability was analyzed 
with CCK-8 method (C0039, Beyotime Biotechnology, 
Shanghai, China) in accordance with the manufacturer’s 
protocol. After treatment, cells were harvested and incu-
bated with 10 μl of CCK-8 solution for 2 h at 37℃. The 
absorbance was measured at 450  nm with a microplate 
reader (Multiskoun, Thermo Fisher Scientific), and the 
optical density represents the proliferation of RPE cells.

Western blotting analysis
RPE cells were preincubated with SM/FL or QHG, and 
then incubated with  H2O2 (200  μm) for 6  h. Protein 
expression of HIA-1α, VEGFA, IL6, SLC7A11, and GPX4 
in each group was measured by Western blotting. Cells 
were washed with cold PBS, harvested in RIPA buffer 
(P0013B, Beyotime Biotechnology), incubated on ice for 
20 min and centrifuged for 5 min at 500 rpm. Then, pro-
tein concentration was quantified using a BCA protein 
assay kit (P0010, Beyotime Biotechnology). Proteins were 
separated by SDS-PAGE (S8010, Beijing Solarbio Sci-
ence & Technology. Beijing, China) and transferred to 
PVDF membranes by a Trans-Blot Turbo Transfer Sys-
tem. Membranes were blocked with 5% skim milk in for 
1 h and incubated with the following primary antibodies 
overnight at 4  °C: polyclonal rabbit antihuman HIA-1α 
(1:500, A11945, ABclonal, Wuhan, China), polyclonal 
rabbit antihuman VEGFA (1:500, ET1604-28, HUA-
BIO, Hangzhou, China), polyclonal rabbit antihuman 
IL-6(1:500, BS-6309R, Bioss, Beijing, China), polyclonal 
rabbit antihuman GPX4 (1:500, FNab03622, Wuhan Fine 
Biotech, Wuhan, China), polyclonal rabbit antihuman 
SLC7A11(1:500, FNab10533, Wuhan Fine Biotech) and 
anti-β-actin(1:500; BM0627, BOSTER, Wuhan, China). 
Protein bands were visualized by incubation with an anti-
rabbit secondary antibody (BA1055, 1:3000; BOSTER) 
or anti-mouse secondary antibody (BA1051, 1:3000; 
BOSTER) and chemiluminescence substrates (ECL Plus; 
TIANGEN, Beijing, China). Finally, the bands were quan-
tified by Image Lab software (Media Cybernetics, Silver 
Spring, Maryland, USA).

Measurements of ROS levels
ARPE-19 cells with different treatment were incubated 
with  H2O2 (200 μm) for 6 h and cellular ROS levels were 
measured by dihydroethidium (DHE) staining. The cells 
were washed with PBS twice and diluted, and 10 mM of 
DHE (S0033S, Beyotime Biotechnology) was incubated 
with the cells for 30 min at 37 °C, after which cells were 
washed with PBS again. ROS production was observed 
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with a fluorescence microscope (AE30/31, Nikon, Shang-
hai city, China). ImageJ software was applied to quantify 
and calculate the fluorescence intensity.

Statistical analysis
All the experiments were performed at least three times. 
The experimental data were statistically analyzed using 
GraphPad Prism software and SPSS20.0 Software. Single-
factor ANOVA was applied to assess differences in exper-
imental data between groups. p-value less than 0.05 were 
considered as statistically significant.

Result
Compound identification and target prediction
SM and FL are the primary components of QHG, and 
information about these components is presented in 
Table  1. According to the active ingredient screening 
thresholds, 109 active compounds were identified from 
TCMSP database (Supplementary 1), including 65 com-
pounds from SM and 44 compounds from FL. A total of 
106 reviewed or predicted target genes of the bioactive 
compounds in SM/FL were retrieved from the Uniprot 
database after eliminating duplicate values and con-
verting protein names to gene symbols. GeneCard and 
OMIM databases were searched, yielding a total of 2485 
AMD target genes. After combining the AMD-related 
targets and SM/FL-related targets, 56 overlapping targets 

were recognized as common genes (Fig. 1a). The results 
of compound-disease target network analysis are showed 
in Fig.  1b. The link between two circles represents the 
association of the targets. The top eight active com-
pounds corresponding to the intersection of disease and 
SM/FL targets are listed in Table 2.

Construction and analysis of the SM/FL‑Ferroptosis‑AMD 
target gene network
From the FerrDb database, we extracted 259 ferroptosis-
associated targets. The overlapping targets of ferrop-
tosis and AMD are shown in a Venn diagram in Fig. 2a. 

Table 1 Information of components in Qihuang Granule (QHG)

Botanical name Herbal name Chinese name Voucher no Ratio

Salvia miltiorrhiza Bunge Radix salvia miltiorrhiza Dan Shen SCM20170631 2

Lycium barbarum L Fruit lyceum barbarum Gou Qi SCM20177696 1

Leonurus cardiaca L Fructus leonuri Chong Wei Zi SCM20173782 1

Broussonetia kaempferi Siebold Fructus broussonetiae Chu Shi Zi SCM20172066 1

Fig. 1 Identification of the drug-disease interaction. a The Venn diagram illustrates the targets genes of the two herbs and AMD. b The intersection 
of identified target genes of active compounds in SM/FL and AMD in the Venn diagram. The purple circle represents the targets of disease 
and the bule circle represents the targets of active compounds of SM/FL

Table 2 Top eight active compounds corresponding to the 
intersection of SM/FL and AMD targets

Active ingredient Count

Quercetin 48

Luteolin 19

Tanshinone VI 9

Tanshinone iia 8

Beta-sitosterol 7

Oxy-propionic acid 6

4-methylenemiltirone 5

Cryptotanshinone 5
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Combining the three target sets, we identified 12 over-
lapping targets as hub targets for further study (Fig. 2b). 
Additionally, an AMD-Ferroptosis-SM/FL potential 
target network was constructed, in which quercetin, 
tanshinone IIA, luteolin, and cryptotanshinone were 
considered to be the main active components. The 
associations among the potential targets of AMD-Fer-
roptosis-SM/FL are shown in Fig.  2c. According to the 
degree value, a PPI network was constructed (Fig.  2d). 
Top five gene nodes were HIF-1α, EGFR, IL6, VEGFA, 
and NFE2L2, with degree values of 20, 18, 18, 16, and 14, 
respectively (Fig.  2e). These top compounds and genes 
play important role in the network.

GO and KEGG pathway enrichment analysis
We prepared a file of the overlapping targets of SM/FL-
ferroptosis-AMD genes and then used the Bioconductor 
package to perform a GO enrichment analysis(p < 0.05). 
A total of 12 core GO terms were enriched in the bio-
logical processes. These included RNA poly II-specific 
DNA-binding transcription factor binding, DNA-binding 
transcription factor binding, ubiquitin protein ligase bind-
ing, ubiquitin-like protein ligase binding, among others 
(Fig.  3a, b). Furthermore, enriched KEGG pathways were 
used to explore the mechanism and signaling pathways 
related to the SM/FL-ferroptosis pathway in the treatment 
of AMD. A total of 13 statistically significant signaling 

Fig. 2 Construction of AMD-Ferroptosis-SM/FL target gene network. a The Venn diagram revealed the intersection of target genes of AMD 
and ferroptosis; (b) The Venn diagram shows the AMD-Ferroptosis-SM/FL target gene network; (c) Important targets in the protein–protein 
interaction (PPI) network; (d) The PPI network of the AMD-Ferroptosis-SM/FL Target Gene; (e) The degree of 12 core targets in the PPI network in D 
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pathways were enriched (Fig.  3c, d). Notably, we focused 
on pathways other than those related to tumors. The top 
five pathways with the highest gene counts were the HIF-1 
signaling pathway, MAPK signaling pathway, P13K-Akt 
signaling pathway, Relaxin signaling pathway, and Ras sign-
aling pathway. These pathways could potentially mediate 
protective effects against AMD by reducing ferroptosis 
(Fig. 3e).

Molecular docking analysis
Molecular docking analysis was conducted to explore 
potential direct interactions between SM/FL and target 
proteins. The main active components, namely, quercetin, 
tanshinone IIA, luteolin, and crytotanshinone and the main 
hub genes were studied. A binding energy < -5 kcal   mol−1 
indicates good binding activity (Fig. 4a). Quercetin bound 
well to all the hub genes, especially HIF-1α, VEGFA, IL6, 

Fig. 3 The diagram for GO and KEGG enrichment analysis. a, b The GO enrichment analysis; (c, d) The KEGG pathway enrichment analysis. b, d 
The abscissa represents the proportion of genes of interest in the entry, and the ordinate represents each entry. The larger size of a dot indicates 
the larger number of genes annotated in the entry, and the redder color of a dot stands for the lower the p value. e The top 13 remarkably enriched 
KEGG analysis for the signaling pathway of potential target genes

Fig. 4 Molecular docking analysis. a Heatmap of binding between main active components and hub targets. The darker the color, the better 
the binding activity. CT: crytotanshinone; tan-IIA: tanshinone IIA; (b) Diagram of the docking between key quercetin and core target proteins
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RELA and ERGF et al. (Fig. 4b). However, tanshinone IIA, 
luteolin and crytotanshinone bound well only to RELA. 
Consequently, our focus narrowed to molecular docking 
analyses of HIF-1α and key targets within the HIF-1 path-
way, namely VEGFA and IL6, for further exploration.

Experimental validation in vitro
Pretreatment of RPE Cells with SM/FL or QHG attenuated 
oxidative stress‑induced cytotoxicity
To determine the effect of SM/FL or QHG on RPE cells 
undergoing oxidative stress, cell viability was measured. 
As shown in Fig. 5, although there were no detectable 
effects at 12 h, cell viability of RPE cells with treatment 
of  H2O2 alone resulted in a dramatic decrease at 24, 
and 48 h. Conversely, pretreatment with SM/FL signifi-
cantly improved cell viability after treatment with  H2O2 
at all time points. The protective effects were more 
pronounced with QHG. Furthermore, ROS generation 
was measured in RPE cells that were subjected to dif-
ferent treatments. The results suggested that ROS levels 
were significantly increased in the  H2O2 group, while 
this increase was alleviated in cells that were pretreated 
with SM/FL or QHG under oxidative stress conditions 
(Fig. 6a, b) (p < 0.05).

Pretreatment with SM/FL or QHG downregulated 
the expression of HIF‑1α and key proteins in related pathways 
in RPE cells under oxidative stress conditions
Increased expression of HIF-1α, VEGFA and IL6 was 
observed by Western blotting after treatment with 
 H2O2 alone. In contrast, preincubation with SM/FL or 
QHG markedly decreased the expression of HIF-1α, 
VEGFA and IL6 in cells after treatment with  H2O2 
(Fig.  7f ). Quantification of these results with ImageJ 

software revealed that the differences were statistically 
different, and the changes in the protein expression of 
HIF-1α were more pronounced (p < 0.05) (Fig. 7a, b, c).

Increased expression of ferroptosis‑related key targets in RPE 
cells that were pretreated with SM/FL or QHG under oxidative 
stress conditions
We also performed Western blotting analysis to exam-
ine the effects of  H2O2, SM/FL and QHG on the expres-
sion of the intracellular ferroptosis markers GPX4 and 
SLC7A11. Compared with RPE cells cultured in DMEM, 
cells exposed to  H2O2. showed significant downregula-
tion of GPX4 and SLC7A11. Notably, the effect of  H2O2 
was almost reversed in RPE cells that were pretreated 
with SM/FL or QHG (Fig.  7f ). The results of Western 
blotting analysis were also quantified, and SM/FL or 
QHG significantly increased the expression of GPX4 and 
SLC7A11 in RPE cells that were preincubated with these 
TCM agents under oxidative stress conditions. (p < 0.05) 
(Fig. 7d, e).

Discussion
Traditional Chinese medicine (TCM) has established its 
significance in disease prevention and treatment, offer-
ing a holistic approach through multiple ingredients 
that often influence diverse targets and pathways. In our 
investigation, we harnessed the power of network phar-
macology to unravel the potential mechanisms by which 
Salvia miltiorrhiza (SM) and Fructus lycii (FL), the pri-
mary compounds of Qihuang Granule (QHG), exert their 
protective effects against age-related macular degenera-
tion (AMD). Specifically, we delved into the ferroptosis-
related pathway, a pathway that mounting evidence has 
linked to AMD pathogenesis through its role in inducing 

Fig. 5 QHG and SM/FL prevented  H2O2 induced loss of cell viability. ARPE-19 cells were pretreated with SM/FL or QHG for 24 h, and then 
the cells were further incubated with  H2O2 for 12, 24, 48 h and the viability of RPE cells was determined by CCK-8 assay. Data are presented 
as the means ± SD of 3 independently repeated experiments (* compared  H2O2 group with control,  H2O2 + SM/FL,  H2O2 + QHG group * p < 0.05;  
** p < 0.01 *** p < 0.001)
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oxidative stress-mediated damage and inflammation [13, 
26, 27]. Our approach was complemented by in  vitro 
validation experiments, bolstering the robustness of our 
findings.

Through network pharmacology, we successfully iden-
tified 56 shared target genes among bioactive compounds 
in SM/FL and target genes implicated in AMD. Nota-
bly, quercetin, a key component of SM/FL, stood out as 
the compound with the highest number of associations 
with AMD-related genes and ferroptosis. This suggests 
quercetin’s paramount role in treating AMD by targeting 
ferroptosis. Subsequently, we pinpointed 12 core targets 
through which SM/FL may protect against AMD via fer-
roptosis regulation. Among these, HIF-1α, EGFR, IL6, 
VEGFA, and NFE2L2 emerged as the top five hub targets 
based on degree values within the protein–protein inter-
action (PPI) network. Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses 
illuminated these core targets’ involvement in biological 
processes, including RNA poly II-specific DNA-binding 
transcription factor binding, DNA-binding transcrip-
tion factor binding, ubiquitin protein ligase binding, 

and ubiquitin-like protein ligase binding, mediated by 
the HIF-1, MAPK, P13K-Akt, Relaxin, and Ras signaling 
pathways.

Molecular docking analysis provided further sub-
stantiation by confirming the interaction between 
active compounds in SM/FL and hub genes. These find-
ings underscore the effectiveness of SM/FL in treating 
AMD from a bioinformatics perspective, elucidating 
the underlying mechanisms of QHG’s actions. In line 
with the predictions from network pharmacology, our 
in  vitro experiments revealed that pre-treatment with 
SM/FL or QHG effectively countered  H2O2-induced 
declines in cell viability and the increase of HIF-1α, 
VEGFA, and IL6. Additionally, both SM/FL and QHG 
elevated the expression of key ferroptosis-related pro-
teins SLC7A11 and GPX4 while mitigating ferroptosis 
reactions and oxidative stress responses in RPE cells. 
These outcomes serve as a valuable corroboration of 
our network pharmacology analyses.

Qi Huang Granule (QHG), a traditional prescription 
comprising SM and FL as its primary components, has 
previously demonstrated its efficacy in improving visual 

Fig. 6 QHG and SM/FL alleviated oxidative stress response induced by  H2O2. ARPE-19 cells were pretreated with SM/FL or QHG for 24 h, and then 
the cells were further incubated with  H2O2 for 6 h and ROS was detected by Reactive Oxygen Species Assay. a Images and (b) quantification 
of dihydroethidium (DHE) staining for intracellular ROS, the original objective magnification is 10 × . Data are presented as the means ± SD of 3 
independently repeated experiments (* compared H2O2 group with control, # compared  H2O2 with  H2O2 + SM/FL,  H2O2 + QHG group *, # p < 0.05; 
**, ## p < 0.01 ***, ### p < 0.001)



Page 10 of 13Wang et al. BMC Complementary Medicine and Therapies          (2023) 23:420 

acuity and fundus conditions in dry AMD patients. SM, 
renowned for its antioxidative, neuroprotective, anti-
inflammatory, and antineoplastic properties, has been 
shown to mitigate RPE damage and hypoxia by sup-
pressing inflammation in the retina [28–32]. FL, a fix-
ture in traditional Chinese pharmacopeia for centuries, 
boasts potent antioxidant effects and the ability to scav-
enge superoxide anions and hydroxyl radicals, pivotal 
in reducing oxidative stress [33, 34]. FL extract pre-
treatment has exhibited protective effects against acute 
oxidative stress injuries in human RPE cells, fostering 
viable cell proliferation, reducing apoptosis, enhancing 
phagocytic capabilities, and curbing lipofuscin accu-
mulation [33, 35].

Our study pinpointed four active ingredients within 
SM/FL that play pivotal roles in AMD treatment by regu-
lating ferroptosis, underscoring their potential for fur-
ther research. Quercetin, the most abundant compound 
in SM/FL, boasts diverse biological functions such as 

antioxidant, anti-inflammatory, and anti-viral activities 
[36–38]. Our PPI research has identified quercetin as a 
potential mediator of ferroptosis through its ability to 
interact with multiple hub targets. Studies have shown 
that quercetin can inhibit ferroptosis in several condi-
tions, including inflammatory, neurodegenerative, and 
age-related diseases via several pathways [39, 40]. In 
age-related disease, quercetin can inhibit ferroptosis and 
inhibit oxidative stress, reduce inflammatory response, 
and restore mitochondrial function [41]. In AMD, 
quercetin could protect RPE cells from oxidative dam-
age and cellular senescence in vitro in a dose-dependent 
manner via the inhibition of proinflammatory molecules, 
or it could directly inhibit the intrinsic apoptosis path-
way [42]. In a mouse model of dry AMD, quercetin also 
reduced RPE sediments and Bruch’s membrane thickness 
[43]. Tanshinone IIA (tan-IIA), a major fat-soluble com-
ponent of Salvia miltiorrhiza, has demonstrated angio-
genesis, anti-inflammatory, and antioxidant activities. 

Fig. 7 QHG and SM/FL decreased protein levels of HIF-1α/VEGFA/IL6 and increased expression of SLC7A11 and GPX4 proteins. ARPE-19 cells were 
pretreated with SM/FL or QHG for 24 h, and then the cells were further incubated with  H2O2 for 6 h. Protein levels of HIF-1α (a), VEGFA (b), IL6 (c), 
SLC7A11 (d) and GPX4 (e) protein were detected by western blotting (f ) and normalized to that of β-actin. Data are presented as the means ± SD 
of 3 independently repeated experiments. (* compared  H2O2 group with control, # compared  H2O2 with  H2O2 + SM/FL,  H2O2 + QHG group *,  
# p < 0.05; **, ## p < 0.01 ***, ### p < 0.001)
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Tan-IIA can regulate ferroptosis through various path-
ways and our PPI network revealed that Tan-IIA may 
impact AMD by targeting RELA and TP63 [44, 45] In 
RPE cells, Tan-IIA exerts a protective effect against oxi-
dative stress by inhibiting HIF-1α secretion and apopto-
sis [46, 47].

Luteolin, known primarily for its anti-inflammatory 
activity, protects RPE cells from oxidative stress-induced 
cell death, mitigates epithelial-mesenchymal transforma-
tion, and suppresses IL-1β-induced adhesion in AMD 
[48–50]. Cryptotanshinone (CTS), a significant compo-
nent of SM, has garnered attention primarily in cancer 
and cardiovascular disease studies [51]. Our pharmaco-
logical network analysis unearthed CTS as a potential 
regulator of RELA, suggesting a novel avenue for CTS 
research in AMD.

As seen in the AMD-Ferroptosis-SM/FL Potential Tar-
gets Genes network, many target genes can be regulated 
by different active compounds and one active compound 
can target several genes. These results suggest that this 
therapy has multicomponent, multitarget biological 
attributes. Additionally, the PPI results suggest that the 
12 target proteins are not independent of each other but 
are linked and interact. These results also indicate that 
SM/FL can be involved in the alleviation and treatment 
of AMD through the regulation of multiple proteins.

HIF-1α emerged as a pivotal hub target, with the 
HIF-1α pathway ranking first in PPI and KEGG analyses. 
HIF-1α, a subunit of HIF-1, acts as a master regulator of 
hypoxia-inducible genes associated with inflammation, 
angiogenesis, cell proliferation/survival, and glucose/iron 
metabolism [52]. Notably, HIF-1α’s role in ferroptosis 
regulation has been documented. In diabetic nephropa-
thy, ferroptosis can trigger renal tubule damage through 
the HIF-1α pathway by upregulating HO-1 expression, 
leading to iron overload, excessive ROS production, 
and lipid peroxidation [53]. HIF-1α can also influence 
other ferroptotic genes such as Tf and Tfrc, impacting 
SLC7A11 expression [54]. Moreover, HIF-1α’s involve-
ment in AMD pathogenesis is well-established, with 
higher expression levels found in drusen tissue samples 
from elderly patients [55–58]. Our findings indicated that 
VEGFA and IL6 are part of the HIF-1α pathway. BIKUL 
DAS et al. found that, after applying siRNA to block HIF-
1A or VEGF in human RPE-19 cell lines, the expression 
of IL6, IL8, and MCP changed, indicating a relationship 
between HIF-1A, VEGF and IL6 [59]. Transcriptional 
activation of HIF-1α can upregulate the expression of 
VEGF in general and in RPE cells. It is thus a central mol-
ecule for triggering CNV formation [60] These results are 
congruent with our results that HIF-1a, VEGF, and IL6 is 
extremely important and may participate in the process 

of SM/FL or QHG against AMD by regulating ferropto-
sis. Our study identified the MAPK pathway’s involve-
ment in ferroptosis, with activation of MAPK signaling 
contributing to ferroptosis in various contexts, includ-
ing oxidative stress-induced RPE degeneration. These 
findings open avenues for investigating pharmacological 
inhibitors targeting the MAPK pathway as a potential 
combination therapy for AMD [61, 62].

Our in  vitro experiments further solidified the con-
nection between SM/FL, QHG, ferroptosis, and AMD. 
Western blotting demonstrated decreased expression of 
HIF-1α, VEGFA, and IL6, alongside increased SLC7A11 
and GPX4 expression in the SM/FL and QHG groups 
compared to the H2O2 group. This translates to not only 
potential therapeutic benefits but also a reduction in pro-
inflammatory factors that exacerbate AMD. The elevated 
cell viability and stability observed in SM/FL and QHG-
treated cells corroborate the network pharmacology 
findings.

One limitation of this study pertains to the absence of 
consideration for interactions between active ingredi-
ents, as well as the caveat that compound absorption in 
humans is not solely determined by the oral bioavailabil-
ity (OB). Further exploration is warranted to elucidate 
the intricate relationship between HIF-1α, VEGFA, and 
IL6 in the context of AMD.

Conclusion
In conclusion, our comprehensive approach, integrating 
network pharmacological analysis and in  vitro experi-
ments, sheds light on the mechanisms that underlie the 
protective effects of Salvia miltiorrhiza (SM) and Fruc-
tus lycii (FL), as well as their composite, Qihuang Gran-
ule (QHG), against age-related macular degeneration 
(AMD). These findings not only advance our under-
standing of the therapeutic mechanisms of traditional 
Chinese medicine but also present a promising strategy 
for deciphering the scientific rationale and therapeutic 
modalities of traditional Chinese medicine formulas in 
addressing complex diseases.
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