
El‑Sayad et al. 
BMC Complementary Medicine and Therapies          (2023) 23:242  
https://doi.org/10.1186/s12906‑023‑04076‑8

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Complementary
Medicine and Therapies

Repurposing drugs to treat trichinellosis: 
in vitro analysis of the anthelmintic activity 
of nifedipine and Chrysanthemum coronarium 
extract
Mona Hasan El‑Sayad1, Eman Sayed El‑Wakil2  , Zizi Hesham Moharam3, Naglaa Fathi Abd El‑Latif1  , 
Mosad A. Ghareeb4   and Heba Elhadad1*   

Abstract 

Albendazole is the most common benzimidazole derivative used for trichinellosis treatment but has many draw‑
backs. The quest for alternative compounds is, therefore, a target for researchers. This work aims to assess the in vitro 
anthelmintic effect of nifedipine, a calcium channel blocker, and a methanol extract of the flowers of Chrysanthemum 
coronarium as therapeutic repurposed drugs for treating different developmental stages of Trichinella spiralis in com‑
parison with the reference drug, albendazole. Adult worms and muscle larvae of Trichinella spiralis were incubated 
with different concentrations of the studied drugs. Drug effects were evaluated by parasitological and electron micro‑
scopic examination.

As a result, the effects of these drugs on muscle larvae were time and dose‑dependent. Moreover, the  LC50 after 48 h 
incubation was 81.25 µg/ml for albendazole, 1.24 µg/ml for nifedipine, and 229.48 µg/ml for C. coronarium. Also, 
the effects of the tested drugs were prominent on adult worms as the  LC50 was 89.77 µg/ml for albendazole, 1.87 µg/
ml for nifedipine, and 124.66 µg/ml for C. coronarium. SEM examination of the tegument of T. spiralis adult worms 
and larvae showed destruction of the adult worms’ tegument in all treated groups. The tegument morphological 
changes were in the form of marked swellings or whole body collapse with the disappearance of internal contents. 
Furthermore, in silico studies showed that nifedipine might act as a T. spiralis β‑tubulin polymerization inhibitor.

Our results suggest that nifedipine and C. coronarium extract may be useful therapeutic agents for treating trichinel‑
losis and warrant further assessment in animal disease models.
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Introduction
Trichinellosis is a zoonotic parasitic disease caused by 
nematodes of the genus Trichinella [1]. Consuming raw 
or undercooked pork containing Trichinella infective lar-
vae is the transmission route for various mammals [2]. T. 
spiralis is a parasite that completes its biological cycle in 
the same host; hence it is frequently used as a model to 
determine the efficacy of various anthelmintic drugs [3].

The primary anthelmintic drugs utilized in the clinical 
management of trichinellosis are benzimidazole deriva-
tives. However, they have numerous drawbacks [4, 5], as 
none of these drugs is powerful enough to kill encapsu-
lated and new-born larvae [6] due to their low bioavail-
ability [7], and the development of drug resistance [8]. 
Likewise, most of them are contraindicated in pregnant 
women and children below two years of age [3]. There-
fore, scientific research aims to discover a novel, secure, 
and effective anthelmintic agent against T. spiralis. In 
addition, drug repurposing has recently emerged as a 
tool for developing new indications for existing, failed, or 
abandoned drugs [9].

Nifedipine is a calcium channel blocker primarily used 
as an antihypertensive and antianginal medication. It 
inhibits the transmembrane influx of calcium into car-
diac and smooth muscles affecting their contractility [10]. 
Nematode muscle cells are similar to smooth muscles, 
with an important distinguishing feature dependent on 
extracellular calcium for contraction [11]. On the other 
hand, there is a growing need to find new therapeutic nat-
ural agents as a simple replacement for synthetic chemi-
cal agents [12, 13]. The Chrysanthemum genus belongs 
to the Asteraceae family, with nearly 300 species. It has 
undergone extensive research on the biological functions 
and chemical composition of its species. For instance, C. 
morifolium, a popular dietary supplement in China, has 
been shown to exhibit antihepatotoxic and antigenotoxic 
effects [14, 15]. Other effects include anti-inflammatory, 
humoral, and cellular immunomodulatory [16]. Addi-
tionally, the flowers were demonstrated to have insecti-
cidal and herbicide effects [17]. Moreover, C. coronarium 
has been tried as an antibacterial agent with promising 
results [18]. This study aims to assess the in vitro effects 
of nifedipine, a calcium channel blocker, and a metha-
nol extract of flowers of C. coronarium as anthelminthic 
agents for different developmental stages of T. spiralis in 
comparison with the reference drug, albendazole.

Materials and methods
Parasite
Trichinella spiralis was kindly provided by the Parasi-
tology Department, Theodor Bilharz Research Institute 
(TBRI), Giza, Egypt, from laboratory-bred infected 
Swiss albino mice. Mice were orally infected with 

200–300  T. spiralis larvae and maintained following 
the institutional and national guidelines in the animal 
house exposed to 12 h light/12 h dark cycles with a free 
access to standard pelleted diet) Delta group, Egypt) 
and water ad libitum [19].

Isolation of adult worms and muscle larvae
The collection of adult worms was typically performed 
at five days post-infection (dpi). Ten infected mice were 
sacrificed under light anesthesia by isoflurane inhalation 
(Forane®, UK). Then, the intestines of infected mice were 
removed and opened with scissors. The opened intestines 
were gently washed in phosphate-buffered saline (PBS) 
to remove the intestinal contents. Afterward, the small 
intestines were cut into 2 cm sections, slit longitudinally, 
and placed on a gauze in a beaker containing 250 ml of 
PBS for 3 h at 37 °C [20].

In addition, muscle larvae (ML) were obtained from 
infected mice on day 35 post-infection. Then, each mouse 
was dissected, and the muscles were digested in 200 ml 
of distilled water with 1% concentrated HCl and 1% pep-
sin. The mixture was continuously stirred with an elec-
tric stirrer for two hours at 37  °C. On a 200-mesh/inch 
screen, the larvae released from cysts were collected, 
washed twice in tap water, and then suspended in a coni-
cal flask in 150 ml of tap water. Finally, the supernatant 
fluid was removed, and a McMaster counting chamber 
was used to count the larvae in the sediment under a 
microscope [21].

Extraction and preparation of C. coronarium
Chrysanthemum coronarium fresh flowers were col-
lected from El-Fayoum Governorate, Egypt, in January 
2021. Botany specialists from the Department of Flora 
and Taxonomy, Faculty of Science, Alexandria, Egypt, 
established the identification and authentication of the 
collected plant. A voucher specimen number (C.c.f.2021) 
was deposited in the Medicinal Chemistry Department, 
TBRI. C. coronarium air-dried flowers (0.5  kg) were 
extracted four times via maceration using methanol (4L) 
at room temperature (22–26 ºC). The extract was con-
centrated via a rotary evaporator (BUCHI R-300, Swit-
zerland) at 40 ºC to obtain 46 g of methanol extract. The 
extraction yield was equal to 9.2% calculated by the fol-
lowing equation: Yield (%) = Dry extract weight/ dry pow-
der weight × 100 [22].

Identification of the binding site of nifedipine to T. spiralis 
β‑tubulin
Template‑based model construction
The FASTA formatted amino acid sequence of T. spiralis 
β-tubulin was obtained from the NCBI GenBank data-
base (GenBank: EFV50889) [23]. The I-TASSER service 
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(http:// zhang lab. ccmb. med. umich. edu/I- TASSER/) 
was used to identify binding sites and templates for this 
sequence [24]. Due to the presence of amino acids associ-
ated with nematode resistance in the binding site discov-
ered by I-TASSER, the D chain, which is present in the 
b-subunit of the heterotetrameric structure of Ovis aries 
(PDB ID: 3N2G D), was selected as a template [25]. T. spi-
ralis β-tubulin residues 1–428 were used in the homol-
ogy modeling method conducted with MODELLER 9v10 
software [26].

Deep learning‑based model construction
The Alphafold-2 deep-learning-based technique was 
used to create another model for T. spiralis β-tubulin 
[27]. Then, ten models were created, and the one with the 
lowest energy was selected for optimization. After that, 
a series of molecular dynamics simulations were carried 
out to refine the template-based and Alphafold-2-based 
models.

Molecular dynamic simulation
We essentially followed the iterative technique that had 
previously been reported. We simulated each generated 
model for 50 ns at 310 K, and ran five different trajecto-
ries. During the scoring process, we utilized RWplus [28].

Docking Study
The modeled structure of nifedipine was docked into the 
predetermined binding site in model-generated homol-
ogy modeling using AutoDock Vina. The docking grid-
box’s coordinates were set to be: x = 115.43, y = 90.11, 
z = 7.90. The ligand to binding site shape matching root 
means square (RMSD) threshold was set to 2.0  Å. The 
interaction energies were determined using the Charmm 
force field (v.1.02) with 10.0  Å as a non-bonded cutoff 
distance and distance-dependent dielectric. Then, 5.0  Å 
was set as an energy grid extending from the binding 
site. The tested compound retinol was energy minimized 
inside the selected binding pocket. The editing and visu-
alization of the generated binding poses were performed 
using PyMOL software [29].

Drug concentrations
Different concentrations of albendazole, nifedipine, and 
C. coronarium extract were investigated. Albendazole 
(Pharco Pharmaceuticals, Egypt) stock solution was pre-
pared in 1% dimethyl sulfoxide (DMSO) at 400  µg /ml 
concentration. Then, serial dilutions were carried out to 
obtain 200, 100, 50, and 25  µg/ml concentrations [30]. 
Different concentrations of nifedipine (25, 12.5, 6.25, 
3.125, 1.56, 0.78  µg/ml) were prepared from Epilat cap-
sules (Epico, Egypt). Next, C. coronarium (400  µg/ml) 
was prepared by dissolving 400 µg of the extract into one 

ml of distilled water. After that, serial dilutions were con-
ducted from this preparation to obtain 200, 100, 50, and 
25 µg/ml concentrations.

Experimental design
All experiments were carried out in a sterile 24-well 
tissue culture plate (SoCal BioMed, USA). Fifty mus-
cle larvae or 25 adult worms were incubated in 2  ml of 
Rapid Prototyping and Manufacturing Institute medium 
(RPMI)-1640 (Lonza, Belgium) containing 10% fetal calf 
serum, 200 U/ml penicillin, 200  μg/ml streptomycin 
(Omega Scientific, USA), and the desired drug concen-
tration [31]. Negative control (blank) containing only the 
parasite (adult worms or ML) in pure culture media or 
DMSO control were included in all assays and subjected 
to the same conditions as the experimental cultures. 
Then, the plates were sealed and incubated at 37 °C in an 
atmosphere containing 5%  CO2 for 1, 6, 24, 48, and 72 h. 
The observations were prolonged to 96  h for the ML. 
The experiments were carried out in duplicates, and data 
were compared with the DMSO control for albendazole 
and the corresponding blank control for nifedipine and C. 
coronarium. The efficacy of the studied drugs was evalu-
ated by parasitological and scanning electron microscope 
examination [19].

Parasitological studies
The viability of Trichinella stages cultured in vitro in dif-
ferent concentrations was evaluated by assessing their 
shapes and mobility. They were counted either alive or 
dead. The average value of the two experiments was cal-
culated [19].

Scanning electron microscope (SEM) examination
T. spiralis adult worms or ML were directly pipetted into 
a fresh fixation solution of 2.5% glutaraldehyde (w/v) in 
0.1 M sodium cacodylate at pH 7.2 and left overnight at 
37  °C. Trichinella stages were washed in 0.1  M sodium 
cacodylate buffer at pH 7.2 for 5 min, post-fixed in a 2% 
(w/v) osmium tetroxide in sodium cacodylate buffer for 
one hour. The specimens were dehydrated in an ethanol 
series and dried using liquid carbon dioxide. The dried 
parasite stages were sprinkled onto and mounted on 
stubs bearing double sided carbon adhesive tape. Then, 
samples were coated with gold using sputter coater 
(EIKO Engineering CO, Japan), and examined by SEM 
(Jeol Corp., Japan) at 5 to 20 kV in the scanning electron 
microscopy lab, at the Faculty of Science, Alexandria 
University, Egypt [32].

Statistical analysis
Data were presented as the mean ± standard devia-
tion (S.D.). The results were analyzed using IBM SPSS 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
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software package version 20.0 (IBM Corp, USA) [33]. 
The student’s t-test analyzed the significance of the differ-
ences between the experimental and the control groups. 
Moreover, the one way ANOVA and post hoc Tuky HSD 
with Bonferroni correction tests were applied for mul-
tigroup comparisons using the Rstatix package in Rstu-
dio (R version 4.2.3). P-value < 0.05 was significant, and 
P-value < 0.001 was highly significant. All graphs were 
generated by the ggplot2 package. The half-lethal con-
centration (LC50) at 48 h after incubation with different 
drugs was calculated based on the Quest Graph online 
program https:// www. aatbio. com/ tools/ ic50- calcu lator.

Results
Homology modelling and binding site prediction
Due to the lack of a crystallographic structure for T. 
spiralis β-tubulin, we generated a homology model by 
mining the known repertoire of helminth resistance 
mutations for a suitable template [34]. The structure of T. 
spiralis β-tubulin was generated by the O. aries β-tubulin 
(PDB ID: 3N2G; D subunit) as a starting point. There 
were 406 completely identical places and 18 partially 
identical positions aligned with the template and target 
sequences. With the I-TASSER platform, MODELLER 

software, and the PDB ID: 3N2G; D subunit as a start-
ing point, we could create a 3D model of the T. spiralis 
β-tubulin (Fig. 1).

For more confirmation, the β-tubulin sequence was also 
subjected to Alphafold-2 to build another 3D model using 
a different method (i.e., deep neural networking-based de 
novo model construction) [2]. The resulting best-scoring 
and the first template-based models were subjected to 
50 ns-long M.D simulations to relax the generated struc-
tures. In addition, the most populated structures for each 
model from each trajectory were extracted and compared. 
Upon alignment of the generated structures to each 
other, they were almost identical (RMSD = 1.16  Å). The 
Ramachandran plot analysis showed a reliability of 96.7% 
and placed all the amino acids corresponding to the co-
crystallized ligand’s binding site inside the permissible 
zones (Fig.  2). This model is high quality enough to be 
used in molecular docking. Figure 1 reveals that Phe167, 
Glu198, and Phe200, three of the most significant amino 
acids in helminth resistance, form the binding pocket [1]. 
Near the monomer–monomer interface of the heterodi-
mer (in the N-terminal domain of the B monomer), the 
proposed binding site in β-tubulin models consists of sev-
eral highly conserved hydrophobic amino acids (Leu240, 

Fig. 1 Structural alignment of two generated T. spiralis β‑tubulin models showing the ligand‑binding site. The cyan‑colored structure 
is the Alphafold2‑generated model, and the brick‑red‑colored structure is the template‑generated model (RMSD = 1.16 Å)

https://www.aatbio.com/tools/ic50-calculator
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Fig. 2 The Ramachandran plot highlights the amino acids’ preferred and forbidden zones

Fig. 3 Binding modes of nifedipine inside the T. spiralis β‑tubulin’s binding site alongside the two reference inhibitors (i.e., O. aries β‑tubulin 
co‑crystallized inhibitor and colchicine) (A‑C, respectively)
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Leu250, Leu253, and Phe266), and a few hydrophilic resi-
dues (Thr237, and Asn256).

Molecular docking
To investigate their binding modes, the O. aries 
β-tubulin co-crystallized inhibitor and nifedipine 
structures were docked into the generated T. spira-
lis β-tubulin model (i.e., the template-based one). The 
structure of colchicine, a well-known β-tubulin inhibi-
tor, was also docked as a reference inhibitor. The three 
ligands got comparable docking scores (-7.67, -7.54, 
and -7.41 kcal/mol, respectively).

Figure 3 shows that hydrophobic interactions are the key 
to the three ligands. The binding mode of the nifedipine 
structure was more convergent to that of the colchicine 
than that of the O. aries β-tubulin co-crystallized inhibi-
tor, where they established hydrophobic interactions with 
LEU-248, LEU-255, MET-259 (Figs.  3A and C). Accord-
ingly, it can be concluded that nifedipine might act as a T. 
spiralis β-tubulin polymerization inhibitor.

The effect of the studied drugs
The studied drugs showed a remarkable parasiticidal 
effect on T. spiralis. The effects on muscle larvae are 
shown in Table  1. At 25  µg/ml, albendazole showed a 
statistically significant effect after 96 h. It also killed all 
larvae after 48  h in concentrations starting at 100  µg/
ml. The statistically significant larvicidal effect was evi-
dent at a concentration of 100  µg/ml and above from 
the first hour of exposure. Moreover, the  LC50 of alben-
dazole was calculated to be 81.25  µg/ml. As regards 
nifedipine, a statistically significant larvicidal effect 
was obtained at a concentration of 0.78 µg/ml after 4 h. 
In addition, it killed all larvae after 72 h in concentra-
tions starting from 3.125 µg/ml. The  LC50 of nifedipine 
was calculated to be 1.24  µg/ml. C. coronarium killed 
100% of larvae at a high concentration (400 µg/ml) after 
96  h and it needed at least 48  h to exert its effect on 
incubated ML. A statistically significant difference was 
recorded initially at 200  µg/ml after 48  h (P ≤ 0.05). 
Then, the  LC50 was calculated to be 229.48 µg/ml.

Table 1 Survival numbers of T. spiralis muscle larvae incubated with different concentrations of studied drugs (n = 50)

The muscle larvae survival was represented as Mean ± S.D

Student’s t‑test was used to compare data with the corresponding control
* P value ≤ 0.05 significant; **P value ≤ 0.01 highly significant

ANOVA test was used for multigroup comparison regarding the different concentrations and incubation periods

Bold p‑values indicate significant differences between groups at alpha level < 0.05

LC50 at 48 h was calculated based on The Quest Graph online program https:// www. aatbio. com/ tools/ ic50‑ calcu lator

Drugs Dose µg/ml Exposure Times (h.) ANOVA p LC50

1 h 4 h 24 h 48 h 72 h 96 h

Blank control 50.0 ± 0.0 48.5 ± 2.1 44.0 ± 1.4 39.5 ± 3.5 35.0 ± 2.8 26.0 ± 1.4

DMSO control 48.5 ± 2.1 44.5 ± 2.1 40.5 ± 0.7 36.0 ± 1.4 30.0 ± 0.0 22.0 ± 1.4

Albendazole 25 47.0 ± 2.83 45.5 ± 0.71 41.5 ± 0.71 34.0 ± 1.41 28.0 ± 1.41 19.5 ± 0.71* 0.013 81.25 µg/ml

50 46.0 ± 1.41 43.0 ± 0.00* 36.0 ± 1.41* 28.0 ± 1.41** 16.0 ± 1.41** 10.0 ± 1.41**  < 0.001
100 40.5 ± 0.71* 36.0 ± 1.41** 19.0 ± 0.00** 2.5 ± 0.71** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001
200 33.5 ± 2.12** 16.0 ± 1.41** 7.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001
400 22.5 ± 3.54** 10.0 ± 1.41** 2.5 ± 3.54** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001

ANOVA p  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Nifedipine 0.78 46.0 ± 1.41 39.5 ± 0.71** 39.0 ± 2.83 37.0 ± 2.83 31.0 ± 0.00 20.5 ± 2.12 0.134 1.24 µg/ml

1.56 42.0 ± 1.41* 34.0 ± 1.41** 26.0 ± 1.41** 22.0 ± 1.41** 19.0 ± 0.00** 14.0 ± 2.83 0.002
3.125 38.5 ± 2.12* 26.5 ± 2.12** 20.0 ± 1.41** 10.5 ± 0.71** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001
6.25 35.0 ± 2.83** 20.0 ± 1.41** 13.0 ± 2.83** 3.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001
12.5 30.0 ± 1.41** 15.0 ± 2.83** 8.5 ± 0.71** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001

ANOVA p 0.0026  < 0.001  < 0.001  < 0.0001  < 0.0001  < 0.0001
C. coronarium 25 50.0 ± 0.00 48.5 ± 0.71 46.5 ± 0.71 40.5 ± 0.71 34.0 ± 1.41 24.0 ± 1.41 0.081 229.48 µg/ml

50 49.0 ± 0.00 48.5 ± 0.71 44.5 ± 0.71 40.0 ± 1.41 29.5 ± 3.54 21.0 ± 1.41 0.007
100 47.0 ± 0.00 45.0 ± 0.00 42.0 ± 1.41 36.5 ± 2.12 23.0 ± 2.83 15.0 ± 2.83 0.001
200 47.0 ± 0.00 44.5 ± 0.71 40.5 ± 0.71 29.0 ± 2.83* 16.0 ± 1.41** 7.5 ± 2.12**  < 0.001
400 47.0 ± 2.83 42.0 ± 1.41 38.0 ± 1.41 20.0 ± 1.41** 9.0 ± 2.83** 0.0 ± 0.00**  < 0.001

ANOVA p 0.171 0.002 0.003  < 0.001  < 0.001  < 0.001

https://www.aatbio.com/tools/ic50-calculator
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Table  2 shows the effects of the tested drugs on adult 
worms. At low doses of 25 and 50  µg/ml, albendazole 
showed a non-statistically significant effect even after 72 h. 
The statistically significant effect was evident starting from 
4  h of exposure at 100  µg/ml (P ≤ 0.05) or higher concen-
trations (P ≤ 0.01). Albendazole killed all worms after 24 h 
in concentrations starting from 200  µg/ml. The  LC50 of 
albendazole was calculated to be 89.77  µg/ml. Regarding 
nifedipine, a statistically significant effect was obtained at 
a concentration of 1.56  µg/ml after 4  h (P ≤ 0.05). Nifedi-
pine killed all worms after 4  h in concentration starting 
from 6.25 µg/ml. The  LC50 of nifedipine was calculated to 
be 1.87 µg/ml. C. coronarium caused the death of all adult 
worms at high concentrations (200  µg/ml and 400  µg/ml) 
after 72 h. A statistically significant difference was recorded 
initially after incubation at 100 µg/ml for 72 h (P ≤ 0.05). The 
 LC50 of C. coronarium was calculated to be 124.66 µg/ml.

The effects of the studied drugs on muscle larvae and 
adult worms were dose (Fig. 4) and time (Fig. 5) depend-
ant. However, incubating muscle larvae with different 
concentrations of C. coronarium does not affect their 

survival in the first 24 h. There was no significant differ-
ence between blank and DMSO controls at all test incu-
bation periods. A comparison of the newly tried drugs, 
nifedipine and C. coronarium with the reference drug, 
albendazole at the closest concentrations to the calcu-
lated  LC50 is shown in (Table  3). Statistically significant 
differences were recorded between the studied drugs and 
albendazole on muscle larvae and adult worms.

Scanning electron microscope findings
SEM examination of the tegument of T. spiralis ML from 
the control groups showed the typical coiling behaviour 
and the characteristic pattern of normal tegument with 
longitudinal ridges and transverse creases. Conversely, 
tegument destruction in the treated groups was apparent 
since multiple degenerative changes, such as the appear-
ance of blebs, multiple vesicles, and loss of normal annu-
lation (Fig. 6). This destruction was especially evident in 
the subgroup treated with albendazole.

Examination of adult worms by the SEM revealed that 
the tegument of T. spiralis adult worms from the control 

Table 2 Survival numbers of T. spiralis adult worms incubated with different concentrations of studied drugs (n = 25)

The survival of adult worms was represented as Mean ± S.D

Student’s t‑test was used to compare data with the corresponding control
* P value ≤ 0.05 significant, **P value ≤ 0.01 highly significant

ANOVA test was used for multigroup comparison regarding the different concentrations and incubation periods

Bold p‑values indicate significant differences between groups at alpha level < 0.05

LC50 at 48 h was calculated based on The Quest Graph online program https:// www. aatbio. com/ tools/ ic50‑ calcu lator

Drugs Dose µg/ml Exposure Times (h) ANOVA p LC50 µg/ml

1 h 4 h 24 h 48 h 72 h

Blank control 25.0 ± 0.0 23.5 ± 0.7 21.0 ± 1.4 18.0 ± 1.4 14.5 ± 0.7

DMSO control 23.5 ± 0.7 21.0 ± 1.4 19.0 ± 1.4 16.5 ± 2.1 11.0 ± 2.8

Albendazole 25 24.5 ± 0.71 22.5 ± 0.71 19.5 ± 0.71 16.5 ± 2.12 15.0 ± 2.83 0.698 89.77 µg/ml

50 22.0 ± 1.41 21.0 ± 1.41 16.0 ± 1.41 13.5 ± 2.12 11.5 ± 0.71 0.017
100 22.0 ± 1.41 16.5 ± 2.12* 6.5 ± 3.54** 2.0 ± 0.00** 0.0 ± 0.00** 0.002
200 10.5 ± 0.71** 8.0 ± 1.41** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001
400 4.0 ± 1.41** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00** 0.01

ANOVA p  < 0.0001  < 0.0001  < 0.001  < 0.001  < 0.001
Nifedipine 0.78 24.0 ± 1.41 22.5 ± 0.71 19.5 ± 2.12 17.0 ± 2.83 14.0 ± 4.24 0.998 1.87 µg/ml

1.56 21.5 ± 2.12 17.5 ± 2.1* 12.5 ± 2.12* 10.0 ± 1.41* 7.5 ± 3.54* 0.031
3.125 11.5 ± 0.71** 6.0 ± 1.41** 2.0 ± 1.41** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001
6.25 10.5 ± 0.71** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00**  < 0.001
12.5 6.0 ± 1.41** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00** 0.0 ± 0.00** 0.002

ANOVA p  < 0.001  < 0.0001  < 0.001  < 0.001 0.007
C. coronarium 25 25.0 ± 0.00 24.0 ± 1.41 21.0 ± 0.00 19.5 ± 0.71 16.5 ± 2.12 0.417 124.66 µg/ml

50 25.0 ± 0.00 23.5 ± 0.71 19.5 ± 0.71 16.5 ± 0.71 13.0 ± 2.83 0.758

100 23.0 ± 0.00 22.0 ± 0.00 18.0 ± 1.41 13.0 ± 2.83 5.0 ± 2.83* 0.011
200 22.0 ± 1.41 20.5 ± 0.71 15.5 ± 2.12* 5.5 ± 3.54** 0.0 ± 0.00**  < 0.001
400 19.5 ± 0.71* 17.0 ± 2.8* 8.0 ± 1.41** 2.5 ± 0.71** 0.0 ± 0.00**  < 0.001

ANOVA p 0.002 0.026 0.001 0.001 0.001

https://www.aatbio.com/tools/ic50-calculator
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Fig. 4 Proportions of T. spiralis ML and adult worms survival at the different concentrations of the studied drugs. Data normalization relative 
to the corresponding control was performed

Fig. 5 Proportions of T. spiralis ML and adult worms survival at different incubation times with studied drugs. Data normalization relative 
to the corresponding control was performed
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Table 3 The effect of nifedipine and C. coronarium on T. spiralis developmental stages compared to the reference drug, albendazole, 
48 h after incubation

F statistic & *P obtained by ANOVA test

p1: p3 obtained by Tukey HSD post hoc test with Bonferroni correction

P1 comparing albendazole and nifedipine, p2 comparing albendazole and coronium while, p3 comparing nifedipine and coronium

Bold p‑values indicate significant differences between groups at alpha level < 0.05

Drugs Albendazole (100 µg/
ml)

Nifedipine (1.56 µg/ml) C. coronarium (200 µg/
ml)

F *P‑value

Muscle larvae
Mean ± SD 2.5 ± 0.71 22.0 ± 1.41 29.0 ± 2.83 137.4 0.001
Post hoc p1 = 0.0025 p2 = 0.0012

p3 = 0.0623

Adult worms
Mean ± SD 2.0 ± 0.00 10.0 ± 1.41 5.5 ± 3.54 11.207 0.041
Post hoc p1 = 0.04 p2 = 0.559

p3 = 0.083

Fig. 6 SEM findings of the cultured T. spiralis muscle larvae after 48 h incubation. A, B: blank control group showing normal cuticle with transverse 
creases and longitudinal ridges, C, D: albendazole (100 µg/ml) treated group, E,F: nifedipine (1.56 µg/ml) treated group, G, H: C. coronarium extract 
(200 µg/ml) treated group
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group showed normal cuticles with hypodermal glands 
opening and tapering ends. In contrast, the incubation 
of adult worms with either albendazole or nifedipine 
caused marked destruction of the adult worms. The 
tegument showed areas with marked swellings, multiple 
large blebs, fissures, and vesicles. In addition, sloughing 
of some areas of the tegument was observed. C. coronar-
ium treated groups showed body collapse as well as the 
appearance of areas of decreased opacity (Fig. 7).

Discussion
T. spiralis is a worldwide nematode infecting various 
mammalian hosts, including humans, with possible seri-
ous complications [35]. The limitations of benzimidazole 

derivatives to treat the parasite’s encapsulated larval 
stages, in addition to the negative drug reactions, includ-
ing mortality, encephalitis, convulsions, and severe drug 
eruptions, have motivated medical researchers to dis-
cover novel, safe, and efficient anthelminthic agents [2, 
36, 37]. Repurposing the currently available drugs and 
the use of medicinal plants have emerged as two power-
ful strategies in the search for new treatment options.

In the present study, albendazole was used as the ref-
erence drug for the treatment of T. spiralis. The effect of 
albendazole was the strongest compared to other drugs. 
 LC50 was nearly similar between muscle larvae and adults 
(104.21  µg/ml vs. 96.03  µg/ml). However, higher  LC50 
value against adult worms was reported by Kaiser et  al. 

Fig. 7 SEM findings of the cultured T. spiralis adult worms after 48 h incubation. A, B: blank control group showing normal adult worm cuticle 
with hypodermal glands openings and tapering end, C, D: albendazole (100 µg/ml) treated group, E,F: nifedipine (1.56 µg/ml) treated group, G, H: 
C. coronarium extract (200 µg/ml) treated group
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(> 200 µg/ml) against the adult worms. Also, Priotti et al. 
studied the effect of albendazole on adult worms and 
reported that worms’ viability was 72% 48 h after incuba-
tion with albendazole.

Nifedipine is a potent calcium channel antagonist used 
to treat hypertension by blocking calcium input into 
endothelial cells, causing intense relaxation [38]. Nifedi-
pine gained attention due to the discovery of its anti-
parasitic properties, mainly against Plasmodium spp. and 
also against other parasites such as Schistosoma, Leish-
mania, and Microsporidia [39–42]. The results of the 
present in silico studies indicate that nifedipine might act 
as a T. spiralis β-tubulin polymerization inhibitor. More-
over, it has a lethal activity against muscle larvae and 
apostdult stages of T. spiralis in  vitro. This remarkable 
effect was found to occur in a dose and time-dependent 
manner. The adult worms seemed more susceptible than 
muscle larvae since no viable adult worms were found 
after 4  h incubation with nifedipine at a concentration 
of 6.25 μg/ml. Similarly, Silva-Moraes et al. evaluated the 
effect of nifedipine on schistosomula, and adult worms 
cultures to provide new therapeutic strategies for Schisto-
soma mansoni treatment. Results displayed a significant 
antischistosomal effect even on the initial life cycle stages 
of the parasite [39]. Also, a previous study has evalu-
ated the effect of the same drug on the filarial nematode; 
Acanthocheilonema viteae, and reported that it reduces 
calcium influx across the muscle membrane [43].

Nowadays, there is a broad consensus that diverse 
plant-derived products have inhibitory effects on many 
infectious agents. The chemical heterogeneity of the C. 
coronarium’s composition was thought to be responsible 
for its numerous biological activities [44–46]. Though it 
has been shown to exhibit antibacterial, antifungal, and 
antiviral properties [18, 47, 48], not much is known about 
its antiparasitic activity. In the present study, C. coro-
narium showed a potentially lethal activity against T. spi-
ralis muscle larvae and adult worms in vitro. The adults 
were more susceptible than the muscle larvae, as a lower 
 LC50 after 48 h incubation was computed (124.66 µg/ml 
vs. 229.48  µg/ml). These results are in agreement with 
Bar-Eyal et al. [49], who found that adding C. coronarium 
to the soil as a green manure to suppress the root-knot 
nematodes Meloidogyne incognita and M. javanica was 
fatal. Other studies assessed the antibacterial proper-
ties of C. coronarium essential oil [48, 50]. These inves-
tigations showed that the essential oil has antibacterial 
activity against Gram-positive bacteria but not against 
Gram-negative bacteria, which goes in hand with previ-
ous literature reports that Gram-positive bacteria are 
more responsive to essential oil therapies than Gram-
negative bacteria [51, 52].

Changes in the tegument of helminths are considered 
a good indicator for the possible anthelmintic activity of 
a drug [53]. Blebbing occurs as the parasite attempts to 
replace the damaged surface membrane in response to 
drug action. Albendazole disrupts the parasite’s meta-
bolic pathways, resulting in diminished ATP production, 
interfering with cell motility and maintaining cell shape 
[54, 55] In the present study, the ultra-structural effects 
of the studied drugs on T. spiralis were evident. Similar 
results were reported by Fahmy et  al. [56], who applied 
clove oil (Syzygium aromaticum) against adults and mus-
cle larvae of T. spiralis.

As far as we know, this is the first report presenting 
the results of the anthelmintic activity of nifedipine 
and C. coronarium  against T. spiralis. Both drugs had 
remarkable lethal effects on adult forms and mus-
cle larvae. However, one limitation of this study is 
that in vivo experiments are more useful than in vitro 
experiments, as many in vitro active drugs are inac-
tive in living organisms. Therefore, further in vitro 
and in  vivo studies should be performed to confirm 
the described findings and fully assess the antiparasitic 
efficacy of these drugs. HPLC–MS metabolite profil-
ing of C. coronarium extract followed by bio-guided 
fractionation and isolation to purify its major compo-
nents is strongly recommended in future perspectives.
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