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Abstract
Background  Dendrobium nobile and Dendrobium chrysotoxum are important species of the genus Dendrobium and 
have great economic and medicinal value. However, the medicinal properties of these two plants remain poorly 
understood. This study aimed to investigate the medical properties of D. nobile and D. chrysotoxum by conducting a 
comprehensive chemical profiling of the two plants. Additionally, active compounds and predictive targets for anti-
hepatoma activity in D. chrysotoxum extracts were identified using Network Pharmacology.

Results  Chemical profiling showed that altogether 65 phytochemicals were identified from D. nobile and D. 
chrysotoxum, with major classes as alkaloids, terpenoids, flavonoids, bibenzyls and phenanthrenes. About 18 
compounds were identified as the important differential metabolites in D. nobile and D. chrysotoxum. Furtherly, CCK-8 
results showed that the extracts of stems and leaves of D. nobile and D. chrysotoxum could inhibit the growth of 
Huh-7 cells, and the anti-hepatoma activity of extracts were dose-dependent. Among the extracts, the extract of D. 
chrysotoxum showed significant anti-hepatoma activity. In order to find the potential mechanism of anti-hepatoma 
activity of D. chrysotoxum, five key compounds and nine key targets were obtained through constructing and 
analyzing the compound-target-pathway network. The five key compounds were chrysotobibenzyl, chrysotoxin, 
moscatilin, gigantol and chrysotoxene. Nine key targets, including GAPDH, EGFR, ESR1, HRAS, SRC, CCND1, HIF1A, 
ERBB2 and MTOR, could be considered as the core targets of the anti-hepatoma activity of D. chrysotoxum.

Conclusions  In this study, the chemical composition difference and anti-hepatoma activity of stems and leaves of 
D. nobile and D. chrysotoxum were compared, and the potential anti-hepatoma mechanism of D. chrysotoxum was 
revealed in a multi-target and multi-pathway manner.
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Introduction
Hepatoma is the major cause of cancer associated mortal-
ity. In fact, since cancer treatment is often accompanied 
by side effects, there is a growing demand for innocuous 
and more effective anticancer drugs [1]. Phytochemi-
cals isolated from medicinal plants have been largely 
neglected in this context, although their pharmacological 
activities have been well investigated in the past, and they 
may have considerable medicinal potential [2]. In partic-
ular, medicinal plants could be and more effective in the 
treatment of various diseases, including cancer [3]. Vari-
ous biomolecules presented in the plant extract such as 
alkaloids, terpenoids, polyphenols, polysaccharides, fla-
vonoids, tannins, saponins, phenolics, amino acids, and 
proteins are natural sources of therapeutic drugs [4–8].

With approximately 1,400 native species, Dendrobium 
is one of the largest families of orchids and is widely 
distributed around the world [9]. Recent pharmacologi-
cal studies have shown that Dendrobium has a wealth of 
medicinal effects, such as hepatoprotective, anti-inflam-
matory, anti-angiogenic and anti-oxidative properties [9, 
10]. The stems of D. nobile and D. chrysotoxum have great 
economic and medicinal value and are listed in the Chi-
nese Pharmacopoeia of 2020 (Fig. 1A, B and C) [11]. The 
chemical constituents of D. nobile and D. chrysotoxum 

are mainly alkaloids, terpenoids, polyphenols, flavonoids, 
phenanthrenes, bibenzyls and amino acids [12–14]. 
Recent pharmacological studies have shown that compo-
nents of the stems of Dendrobium, possess a broad range 
of activities, encompassing hepatoprotective, anti-prolif-
erative activity toward cancer cells, immunostimulating, 
anti-diabetic activity, cataractogenesis-inhibiting activ-
ity, neuroprotective activity, anti-inflammatory activity, 
anti-platelet aggregation activity and hemagglutininat-
ing activities and also exert beneficial actions on colonic 
health and alleviate symptoms of hyperthyroidism [15–
17]. Because only the stems of D. nobile and D. chryso-
toxum are permitted for use according to the Chinese 
Pharmacopoeia, their leaves are largely discarded [18]. 
However, the leaves of these Dendrobium plants possess 
chemical constituents similar to those found in the stems 
[19–21].

Plant extracts act on certain molecular targets due to 
the synergistic effects of their chemical compounds and 
the fact that they could interact with many targets simul-
taneously [3, 22]. In recent years, network pharmaco-
logical analysis has been effectively applied to predict the 
relationship between protein targets, active compounds 
and related diseases. This approach attempts to explore 
disease-related, multiple active compounds and targets, 
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Fig. 1  Plants and metabolites. (A, B, C) Dendrobium species planting base in Wenshan, Yunnan
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thus allowing to characterize the multi-target mechanism 
of bioactive compounds [23, 24]. This analysis can pro-
vide insights into the link between Traditional Chinese 
Medicine (TCM) bioactive compounds and diseases, 
possibly revealing the pharmacological properties of 
multiple biomolecules found in medicinal plants [25].

Screening and identification of active components from 
TCM is rather challenging due to the diversity and com-
plexity of chemical components. Herein, comprehensive 
metabolite profiling of the D. nobile and D. chrysotoxum 
were conducted by LC-MS using an untargeted metabo-
lomics approach. The anti-hepatoma activities of the 
extracts from the stems and leaves of D. Nobile and D. 
chrysotoxum were compared by CCK-8 assay. A network 
pharmacology approach was applied to characterize the 
possible mechanism of action of D. chrysotoxum com-
pounds on the human hepatoma Huh-7 cell line. Active 
compounds and potential targets of D. chrysotoxum, as 
well as related genes of hepatoma were obtained from 
the public databases, while the potential targets and 
signalling pathways were determined by protein-pro-
tein interaction (PPI), gene ontology (GO) and pathway 
enrichment analyses. Ultimately, the compound-target 
and target-pathway networks were constructed. This 
study compared the chemical composition and anti-hep-
atoma activity of D. nobile and D. chrysotoxum extracts, 
and revealed the potential anti-hepatoma action mecha-
nism of D. chrysotoxum using a multi-target and multi-
pathway approach.

Materials and methods
Reagents and materials
Methanol (MeOH), acetonitrile and ethanol were 
obtained from Thermo Fisher Scientific (Waltham, MA, 
USA). 5-Fluorouracil was bought from Macklin Bio-
chemica Co., Ltd.(Shanghai, China). CCK-8 kit was 
bought from Beyotime Biotechnology(Shanghai, China); 
Phosphate Buffered Saline (PBS) was bought from Bio-
logical Industries (The State of Israel); DMEM medium; 
Fetal bovine serum (FBS); Antibiotics; Trypsin were 
bought from Thermo Fisher Scientific (Massachusetts, 
US).

D. nobile and D. chrysotoxum were harvested from 
Wenshan, Yunnan Province, China. The experiment was 
conducted using at 3-year-old wild-cultured D. nobile 
and D. chrysotoxum, which were collected in February.

Human hepatocellular carcinoma (Huh7 cell line) 
was purchased from Hangzhou Qiannuo Biotechnol-
ogy Co., Ltd (Yuanlong Commercial Building, Baiyang 
Street, Qiantang District, Hangzhou, China). Normal 
human hepatocytes (Lo2 cells line) was purchased from 
Shanghai Cell Bank, Chinese Academy of Sciences (No. 
320 Yueyang Road, Xuhui District, Shanghai, China). 
( Note:We used only Huh-7 and Lo2 (normal human 

hepatocytes) cell lines in our experiments, and no other 
human samples were used.)

Extraction procedure
The stems and leaves of the D. nobile and D. chrysotoxum 
were cut into small segments completely dried at 50–60 
℃. Then crushed by a pulverizer and put into a sealed 
bag for storage. 10  g of crushed stems and leaves were 
extracted with 500 mL of 70% methanol aqueous solu-
tion with ultrasonic for 45  min respectively, the filtrate 
was collected, concentrated by a rotary evaporator, and 
freeze-dried [26].

Liquid chromatography tandem mass spectrometry (LC–
MS/MS) analysis for metabolite identification
Sample preparation for metabolomics
The tissue samples were dried at 55℃ and ground into 
a fine powder. Approximately 0.01 g of root was homog-
enized with 10 mL of MeOH/H2O (70:30, v/v), centri-
fuged for 5 min and subjected to ultrasonic treatment for 
20 min. The sample was then centrifuged at 10,000 rpm 
for 10  min, and the resulting supernatant solution was 
passed through a 0.22-µm pore-size membrane. The fil-
trate was transferred to sample vials for LC-MS/MS anal-
ysis [26].

UPLC-Q-TOF-MS/MS analysis method
Chromatographic separation was achieved using an 
Waters ACQUITY UPLC HSS T3 column (1.8  μm, 
2.1 mm × 100.0 mm; Waters Corporation, Milford, MA, 
USA). The column temperature and flow rate were set at 
40℃ and 0.4 mL·min− 1, respectively. The injection vol-
ume and detection wavelength of the chromatographic 
column were set at 1 µL and 254  nm, respectively. The 
mobile phase was composed of water (A) and acetonitrile 
(B), with a gradient elution program of 4% B (0–1 min), 
4–50% B (1–7  min), 50–70% B (7–8  min), 70–95% B 
(8–12  min), 95% B (12–15  min), 95 − 4% B (15–16  min) 
and 4% B (16–18 min).

Mass spectrometric detection was performed in elec-
trospray mode using a Xevo G2-XS Q-Tof mass spec-
trometer detector (Waters Corporation, Milford, MA, 
USA). Argon was used as the desolvation and colli-
sion gas. The full-scan data range was 50 − 1,200 Da, the 
source temperature was 100 °C, the desolvation tempera-
ture was 400 °C and the scanning frequency was 1.000 s. 
The locking spray standard was 400 mg·mL− 1 with a col-
lision energy of 6.000 V for the low collision energy scan 
and 30 to 70 V for the high collision energy scan of the 
mass spectrometer, and the UPLC system was controlled 
by MassLynx4.1 software (Waters Corporation, Milford, 
MA, USA).
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CCK-8 assay of plant extracts and cytotoxicity tests
Human hepatoma Huh-7 cells were maintained routinely 
in DMEM supplemented with 10% FBS and 1% antibiot-
ics in a humidified atmosphere of 5% CO2/50% air [27]. 
The anti-hepatoma activity of extracts from the stems 
and leaves of the D. nobile and D. chrysotoxum were 
determined by CCK-8 assay. 100 µL cell suspension were 
cultured in a 96-well plate for 24 h, then the medium was 
removed, and the cells were incubated with different con-
centrations of the extracts, the extracts were dissolved in 
DMEM medium containing 10% FBS and 1% antibiotics 
for 48  h. 10 µL CCK-8 solution was added to each well 
for 2 h, the absorbance was measured at 450 nm using a 
microplate reader. The absorbance of blank group with-
out cells was Abs blank. 5-Fluorouracil was used as a 
positive control [28]. The cell inhibition rate of extract 
solution was calculated according to the following 
formula.

	
Inhibition rate (%) = 1−Abssample−Absblank

Abscontrol−Absblank
×100

To evaluate the effect of D. nobile and D. chrysotoxum on 
the viability of Lo2 cells (normal human hepatocytes), 
cytotoxicity assays were performed using the Cell Count-
ing Kit-8. We used the method of Xia et al. as a reference 
for experimental design, briefly, cells in the logarithmic 
growth phase were subjected to the cell passage cultiva-
tion and finally 100 µL of cell suspension (cell density of 
1 × 10 5 /mL) was added to each well of the 96-well plate. 
The blank control was cell-free cell culture medium. The 
final concentrations of the experimental group were 0, 
50, 100, 150, 200, 250, 500 µg/mL, and 6 replicate wells 
were added for each concentration, and each group was 
repeated 3 times. For the control group, only 100 µL of 
cell culture medium was added. After incubation for 24 h, 
10 µL of CCK-8 was added to each well and incubated for 
2 h. The absorbance (OD) was measured at 450 nm on an 
enzyme marker [29].

	
Survival rate (%) = 1−ODsample−ODblank

ODcontrol−ODblank
×100

Network pharmacology analysis
Database construction and prediction of potential targets
The SIMILES and InChIKey of the chemical components 
of aerial part of D. chrysotoxum were collected from the 
PubChem database. The GI absorption and bioavail-
ability score of the compounds were calculated by Swis-
sADME, and the compounds with GI absorption were 
high and bioavailability score > 0.3 were screened. The 
Swiss Target Prediction database was used to obtain the 
target corresponding of the components [30]. Use “Liver 

cancer” as the key words, the liver cancer related genes 
were screened out by DisGeNET [31], GeneCards [32], 
OMIM [33]. The obtained targets of the constituents and 
the disease targets of liver cancer were unified as UniProt 
ID through the UniProt database [34].

Network construction
Cytoscape software was used to construct the “drug 
components-target” network to explain the interactions 
between the core chemical components of D. chryso-
toxum and potential targets in liver cancer therapy. In 
order to better analyze the protein-protein interaction, 
the PPI network of potential targets was constructed by 
using the STRING database using the common target of 
the liver cancer related genes and target corresponding of 
the components, the species was defined as Homo sapi-
ens [35]. The “drug components-target” network and PPI 
network was imported into Cytoscape software for topo-
logical attribute analysis, and the key nodes and degree 
values in the network map were analyzed to obtain the 
core components and targets of D. chrysotoxum.

Biological function and pathway analysis
In order to illustrate the role of the core target in the 
gene function and signal pathway of the active ingredi-
ent in the treatment of liver cancer. David database was 
used to perform gene ontology (GO) function and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis to explore the mechanism of anti-
hepatoma activity of D. chrysotoxum [36–39].

Data analysis
We used the method of Xia et al. as a reference for data 
analysis, mass spectrometry data were collected using 
MassLynx V4.2 software (Waters Corporation, Milford, 
MA, USA) for automatic peak identification, peak match-
ing, peak alignment, peak extraction, peak integration 
and normalization. The metabolites and their possible 
cleavage modes were identified using secondary mass 
spectrometry data, Unifi (Waters Corporation, Milford, 
MA, USA), online databases (SciFinder, Chemspider and 
PubMed) and data from previous studies. Unsupervised 
principal component analysis (PCA) and supervised 
orthogonal partial least squares discriminant analysis 
(OPLS-DA) were performed using SIMCA-P 14.1 (Umet-
rics Corporation, Umea, Sweden) software [29].

Results
Overview of the metabolomes of different tissues
Comprehensive metabolite profiling of the D. nobile 
and D. chrysotoxum was conducted by LC-MS using an 
untargeted metabolomics approach. By observing the 
trend of ion peaks in BPI and the clustering of metabo-
lite species between samples, it was indicated that there 
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was a high similarity in the accumulation of metabolites 
between different tissues of the same Dendrobium spe-
cies (Fig.  2A and B). In order to analyze the differences 
of accumulated metabolites between different samples, 
the identified metabolite types were assigned to different 
samples (Fig. 2B). In D. nobile, the major metabolite types 
were alkaloids (21 metabolites), terpenoids (8 metabo-
lites), flavonoids (3 metabolites) and phenanthrenes (3 
metabolites); in D. chrysotoxum, the largest number of 
metabolite types belonged to bibenzyls (4 metabolites), 
phenanthrenes (3 metabolites) and phenolic acids (2 
metabolites) (Figure S1). Notably, As for the metabolites 
specifically enriched in D. nobile, alkaloids were abun-
dant in stems but also were observed in leaves (Fig. 2B). 
In both plants, the predominant differential metabolites 
were alkaloids and bibenzyls.

Metabolomic multivariate statistical analysis of D. nobile 
and D. chrysotoxum
Metabolic profiling of D. nobile and D. chrysotoxum
Using our in-house and public databases, we tentatively 
identified 65 metabolites of negative and positive ion 
modes, and thus gave a comprehensive metabolome for 
the stems and leaves of D. nobile and D. chrysotoxum 
(Tables S1, S2, S3 and S4). The majority of metabolite 
types were alkaloids, terpenoids, bibenzyls, phenan-
threnes, phenolic acids, flavonoids, carboxylic acids. 
Figure  3A presents two heat-maps corresponding to 
the relative contents of different metabolites in stems 
and leaves of different Dendrobium species. As shown 
in Fig.  3A, alkaloids had significantly greater metabo-
lite diversity, especially in stems and leaves of D. nob-
ile, such as dendrobine, N-isopentenyl-dendrobinium, 
N-isopentenyl-dendroxinium, N-methyldendrobinium, 
homocrepidine B and dendroxine. Different content of 
phenanthrene, as the main metabolite, was detected in 
the stems of the two Dendrobium species. Chemometric 
analysis was applied to determine metabolites abundance 

Fig. 2  Differentially accumulated metabolites among the four tissues of two Dendrobium species. (A)The base peak ion chromatogram (BPI) of different 
samples; (B) A heatmap of the abundance of metabolites in the four tissues of two Dendrobium species

 



Page 6 of 11Jie et al. BMC Complementary Medicine and Therapies          (2023) 23:217 

of D. nobile and D. chrysotoxum. The results of PCA and 
OPLS-DA analysis showed that D. nobile and D. chryso-
toxum species were clearly separated, with significant 
differences in chemical profiles between the two spe-
cies. In addition, the metabolites in the stems and leaves 
of D. nobile differed more markedly (Fig. 3B-C). The VIP 

value ≥ 1.0 derived from the OPLS-DA analysis revealed 
the differences in metabolite profiles between D. nobile 
and D. chrysotoxum (Fig. 4). Notably, 18 compounds were 
identified as important differential metabolites between 
D. nobile and D. chrysotoxum, including alkaloids, phen-
anthrenes and terpenoids.

Fig. 4  The values of VIP of the D. nobile and D. chrysotoxum

 

Fig. 3  The results of non-targeted metabolomics and chemometric analysis of D. nobile and D. chrysotoxum. (A) Heat map of metabolomics and chemo-
metrics clustering of D. nobile and D. chrysotoxum; (B) Principal component analysis of D. nobile and D. chrysotoxum; (C) OPLS-DA analysis of D. nobile and 
D. chrysotoxum
(D. nobile-S: D. nobile stem;D. nobile-L: D. nobile leaf; D. chrysotoxum-S: D. chrysotoxum stem; D. chrysotoxum-L: D. chrysotoxum leaf; No.1–5: Number of 
repetitions)
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Evaluations of in vitro anti-hepatoma activity
CCK-8 results showed that all four extracts could inhibit 
the growth of Huh-7 cells, and the anti-hepatoma activity 
of extracts were dose-dependent (Figure S2). According 
to the Table 1, among the extracts, the extract of leaves 
of D. chrysotoxum showed the strongest anti-hepatoma 
activity, while the stems extract of D. nobile showed the 
weakest anti-hepatoma activity. In addition, the inhibi-
tory activity of ethanolic extract of D. chrysanthum leaves 
against HeLa human cervical cancer cells was evaluated 
by in vitro and in vivo assays with an IC50 value of 450 µg/
mL [18, 40], and this result was in excellent agreement 
with our experimental data. As shown in Fig. S3, the 
Lo2 cells (normal human hepatocytes) survival rate was 
above 90% at all concentration gradients of Dendrobium 
samples. The results showed that all Dendrobium extracts 
with the same concentration are nontoxicity to normal 
cells.

Network pharmacology analysis
PPI network analysis
Because the stems and leaves of D. chrysotoxum have 
greater anti-hepatoma activity than that observed in 
D. nobile, the former species was selected. About 1526 
liver cancer related targets were obtained by DisGeNET, 
GeneCards and OMIM. Finally, 112 potential targets for 
anti-hepatoma activity of D. chrysotoxum were obtained, 
the PPI network of the 112 potential targets were con-
structed by using the STRING database (Fig.  5A). The 
required interaction score was set to 0.400. Protein-pro-
tein interaction (PPI) network topological features, which 
have been widely used in bioinformatics to predict dis-
ease-related gene and drug targets [41]. According to the 
topological attribute analysis of PPI network, GAPDH, 
EGFR, ESR1, HRAS, SRC, CCND1, HIF1A, ERBB2 and 
MTOR were the protein nodes with high degree and 
could be considered as the core-targets of the anti-hepa-
toma activity of D. chrysotoxum (Fig. 5B).

Pathway enrichment analysis
DAVID is a biological information database that can pro-
vide systematic and comprehensive biological function 

annotation information for large-scale gene or protein 
lists, helping users to extract biological information from 
them [42]. Biological function analysis of anti-hepatoma 
activity of chemical components were performed by 
David database. The GO enrichment results for the first 
12 terms of biological process, cellular component and 
molecular function are shown in Fig.  5C. According to 
statistical analysis, the results of the first 20 KEGG path-
ways were shown in Fig.  5D, including prostate cancer, 
pathways in cancer, endocrine resistance, EGFR tyrosine 
kinase inhibitor resistance, central carbon metabolism in 
cancer, FoxO signaling pathway, etc.

Herbs-chemicals-targets-pathways-therapeutic effects 
network analysis
22 components were identified by UPLC-Q-TOF-MS, 
6 non-target proteins were eliminated and 454 targets 
were obtained by Pubchem, SwissADME and Swiss target 
prediction. Chrysotobibenzyl, chrysotoxin, moscatilin, 
gigantol and chrysotoxene were identified as core compo-
nents by correlation analysis of “drug components-target”.

Discussion
Plants are unique in the richness and diversity of their 
secondary metabolism, the literatures suggest that the 
number of metabolites produced in the plant kingdom 
exceeds 200,000 [43]. More and more researchers are 
paying attention to the study of plant secondary metab-
olism and pharmacological efficacy [44–48]. Although 
there are hundreds of millions of phytochemicals, only 
a small number have been isolated and identified from 
plants [49, 50]. The advancement of metabolomics in 
terms of techniques for measuring small molecule com-
position has enabled the rapid assay and quantification 
of numerous the endogenous metabolites of an organ-
ism [51]. With the optimization of the analytics platform, 
such as gas or liquid chromatography mass spectrom-
etry  (GC-MS and LC-MS, respectively) and nuclear 
magnetic resonance spectroscopy (NMR), have enabled 
characterizing the dynamic of metabolites [52–54]. 
Based on this, UPLC-Q-TOF-MS was used to identify 
D. nobile and D. chrysotoxum comprehensive metabo-
lome in different tissues. Research shows that the levels 
of compounds from different Dendrobium varied greatly. 
In D. nobile, the major metabolite types were alkaloids, 
terpenoids, flavonoids and phenanthrenes, however, in 
D. chrysotoxum, the largest number of metabolite types 
belonged to bibenzyls, phenanthrenes and phenolic 
acids, which was consistent with previous studies [55–
57]. Notably, D. nobile stem is abundant and diversified in 
alkaloids, such as dendrobine, N-isopentenyl-dendrobin-
ium and N-methyldendrobinium, in D. chrysotoxum, 
bibenzyls and phenanthrenes secondary metabolites 
were significantly accumulated, such as chrysotobibenzyl, 

Table 1  Anti-hepatoma activity of four extracts determined by 
CCK-8 (Each lower case indicates significant differences(P < 0.05))
Sample X̄ ± SD

Anti-hepato-
ma activity 
IC50(µg/mL)

5-Fluorouracil 30.04 ± 1.16a

D. Nobile-Stem 1315.67 ± 37.50e

D. Nobile-Leaf 815.00 ± 70.73c

D. chrysotoxum-Stem 1051.67 ± 48.09d

D. chrysotoxum-Leaf 493.50 ± 28.56b
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chrysotoxin, moscatilin, and chrysotoxene. Therefore, 
these secondary metabolites can be used as quality mark-
ers for the two Dendrobium species, providing a refer-
ence for species identification and quality control of 
Dendrobium. Furthermore, chemometric analysis of the 
metabolites differences between the two species revealed 
that they are quite different in evolution [58, 59]. There-
fore, integrated metabolomics based on UPLC-Q-TOF-
MS and chemometric analysis provides new insights for 
quality-oriented identification of chemical profiles of tra-
ditional chinese herbal medicines.

Modern pharmacological studies have shown that D. 
nobile and D. chrysotoxum has had a strong anti-cancer 

effect [15, 60]. For example, D. chrysotoxum natural 
products caused moderate growth delay in xenografted 
human hepatoma Bel7402 and melanoma A375 and 
induced significant vascular shutdown within 4  h of 
administering 100  mg/kg of the drug [61]. In addition, 
D. nobile extracts down regulated the expression level of 
decoy receptor-3 and synergized with Fas ligand to bring 
about apoptotic cell death in pancreatic adenocarcinoma 
cells [62]. However, the inhibition rates of the two den-
drobium species on hepatocellular carcinoma cells were 
different. The study showed that the anti-hepatoma effect 
of D. chrysotoxum was significantly better than that of 
D. nobile, and it was worth noting that D. chrysotoxum 

Fig. 5  Construction of PPI network and identification of core targets. (A) The PPI network of potential targets was constructed. The darker the color, the 
higher the degree of the node; (B) According to the degree of the nodes, the top 9 targets were selected as the core targets. (C) The top 12 items in the 
GO biological process, cellular component and molecular function; (D) The top 20 items in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling 
pathway. (Note: The PPI network contained 112 nodes, 1192 edges, an average node degree of 21.3. Each node in the figure represents a protein, and the 
connections between the nodes represent the interaction between the proteins)

 



Page 9 of 11Jie et al. BMC Complementary Medicine and Therapies          (2023) 23:217 

leaves had the strong anti-hepatoma effect. Due to the 
wide variation in the types and contents of secondary 
metabolites of different Dendrobium species, the differ-
ences in their active ingredients may lead to the differ-
ences in their pharmacological activities.

The result of KEGG enrichment indicated that the 
112 potential targets were highly enriched in the EGFR 
tyrosine kinase inhibitor resistance and FoX O signaling 
pathway. It has been confirmed that EGFR targets have 
a significant impact on the proliferation and migration 
of liver cancer cells [63, 64], which is consistent with the 
results of network pharmacological analysis in this study. 
In addition, FoX O signaling pathway related to a variety 
of tumors. The research of Yang et al. and Wang et al. 
indicated that FOXO1 is weakly expressed in liver cancer 
tissue, which results in abnormal cell proliferation and 
cell apoptosis [65, 66]. The influence of D. chrysotoxum 
on hepatocellular carcinoma inhibition may depend on 
making an impact on EGFR tyrosine kinase inhibitor 
resistance pathway and FoX O signaling pathway.

The stems of D. nobile and D. chrysotoxum had a long 
history of medicinal use, but the leaves are often dis-
carded during the production of medicinal materials. 
And the leaves on the Dendrobium stems are sometimes 
peeled for aesthetic reasons. However, the metabolite fin-
gerprint results here indicated that there were still a large 
number of bioactive compounds in the leaves of D. nobile 
and D. chrysotoxum. Previous pharmacological studies 
also have shown that have also shown that Dendrobium 
leaves play an important role in dermatologic disorders, 
metabolic syndromes, nervous system disorders, and 
musculoskeletal system disorders [18]. Therefore, it is 
necessary to develop an approach for the secondary utili-
zation of leaves. Moreover, comprehensive metabolomics 
results showed that leaves of D. nobile and D. chryso-
toxum were rich in many bioactive components and had 
excellent pharmacological effects (Fig.  3; Table  1), indi-
cating that the leaves should be preserved as much as 
possible in the process of crude drug production. How-
ever, in traditional processing of Dendrobiums, the leaves 
were removed after thoroughly washing. Therefore, 
Dendrobium leaves show potential for the research and 
development of pharmacological biomolecules.

Conclusions
In this study, mass spectrometry-based metabolomic and 
multivariate statistical analysis were conducted to screen 
the differential metabolites in D. nobile and D. chryso-
toxum. We screened differential ions in the positive-
ion and negative-ion model of UPLC-Q-TOF-MS/MS 
using OPLS-DA and PCA. CCK-8 results showed that 
D. nobile and D. chrysotoxum extracts could inhibit the 
growth of Huh-7 cells, and the anti-hepatoma activity of 
extracts were dose-dependent. Network pharmacology 

analysis revealed chrysotobibenzyl, chrysotoxin, mosca-
tilin, gigantol and chrysotoxene as relevant compounds 
for D. chrysotoxum anti-hepatoma activity. Our research 
provided a effective method for rapid screening and 
identification of the differential metabolites in different 
Dendrobium species, and provided candidate chemical 
markers for herb quality screening of D. nobile and D. 
chrysotoxum.
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