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Abstract 

Background Spermacoce princeae (K. Schum) has been used in the treatment of bacterial skin infections in Uganda. 
Pharmacological studies revealed that extracts of S. princeae exhibited antibacterial, antioxidant, and sun protection 
potential. This study aimed at isolating and identifying pure compounds from the extracts based on comprehensive 
analytical characterization by multiple analytical techniques.

Methods The plant samples were extracted by sequential maceration using n-hexane, ethyl acetate, methanol, and 
distilled water. The compounds were isolated using a combination of chromatographic techniques and their struc-
tures were elucidated by multiple spectroscopic techniques. The antibacterial and antifungal activity determination of 
the isolated compounds was carried out using an agar well diffusion and potato dextrose assay against Pseudomonas 
aeruginosa, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Candida albicans, and Aspergillus flavus while 
the antioxidant activity was screened with the 2,2-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay. The sun 
protection factor was determined using a Shimadzu Ultra Violet-visible (UV–VIS) double beam spectrophotometer 
between 290 to 320 nm.

Results Eleven compounds; quercetin (1), kaempferol-3-O-rutinoside (2), rutin (3, 12), myo-inositol (4), asperulosidic 
acid (5), hexadecanoic acid (6), β-sitosterol (7), stigmasterol (8), campesterol (9), ursolic acid (10), and β-sitosterol 
glucoside (11) were identified in the S. princeae extracts. Compound 2 had good antifungal activity against C. albicans 
(zone of inhibition, 23.0 ± 0.1 mm). Compound 10 showed antibacterial and antifungal activity against S. aureus, P. 
aeruginosa, C. albicans, and A. flavus. Compound 2 had a good percentage radical scavenging effect  (IC50 = 64.81 µg/
ml) and a good sun protection factor (SPF = 26.83).

Conclusion This study reports the first-time isolation and identification of compounds 1 to 11 from S. princeae, which 
contribute to its antimicrobial, antioxidant, and sun protection potential.
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Introduction
Spermacoce princeae from the genus Spermacoce is an 
annual flowering herb endemic to tropical Asia, Africa, 
and East India [1, 2]. Spermacoce is a genus of the family 
Rubiaceae comprising about 275 species. The plants have 
fimbriate stipules connected to the petioles, with white 
flowers at maturity arranged in compact lateral inflores-
cences [3–5]. Species from the genus have been reported 
to possess medicinal properties. For example; the seeds 
of Spermacoce hispida in India alleviate liver and kidney 
damage associated with oxidative stress [6], S. princeae 
in Kenya and Cameroon has been used to treat bacte-
rial infection [3]. S. princeae is locally known as “Ekaiza 
nkoju” in the Kiswahili language [7]. In Uganda, the plant 
is known as either “musanvuma/enkokoma enkazi” in 
Luganda or “Kisakimu” in the Rutoro dialect [8]. Aqueous 
extracts from leaves and roots are used for the manage-
ment and treatment of malaria, cancer, wounds, eye and 
skin diseases, among others [3, 7, 9]. Water extracts of S. 
princeae fresh leaves are taken orally by pregnant women 
to induce labor during childbirth or are applied on skin 
cuts to treat wounds. In Central and Eastern Uganda, dry 
leaves are pounded, mixed with oil, and smeared on the 
skin to treat skin infections [10]. Previous phytochemical 
screening of S. princeae extracts revealeds the presence 
of saponins, alkaloids, glycosides, tannins, flavonoids, 
and terpenoids [1, 2]. Our previous pharmacologi-
cal study showed that S. princeae extracts (MeOH and 
water) were active against S. aureus, K. pneumoniae, and 
P. aeruginosa. The same study revealed that the methanol 
and aqueous extracts exhibited good antioxidant activ-
ity [11]. Some species of the genera Spermacoce have 
been studied and more than 60 compounds from differ-
ent compound classes have been isolated. For example; 
stigmasterol, benzo-isoquinoline, and sitostenone among 
others have been isolated from S. exilis, S. verticillate, 
and S. articularis [12, 13]. There is no report on the active 
compounds from S. princeae (K. Schum) and their iso-
lation. The purpose of this paper is to isolate and deter-
mine active compounds from S. princeae extracts and to 
study their antibacterial, antifungal, antioxidant, and sun 
protection activities.

Materials and methods
Sample collection and preparation
Plant collection and extraction were carried out as 
previously reported [11]. After identification and 
authentication (Mr. Rwaburindore Portase, Makerere 
University Herbarium, Department of Botany), the 
leaves of S. princeace were collected along the shores 
of Ndura water stream, 2  km from the Makerere Uni-
versity Biological field station, Fort portal. The plant 

sample was collected with the assistance of local lead-
ers and indigenous people after obtaining permission 
from National Forestry Authority. A Voucher speci-
men number, 002 in account number 50892, has been 
deposited at the Makerere University Herbarium, Col-
lege of Natural Sciences, Department of Plant Science, 
Microbiology, and Biotechnology for future reference. 
The samples were air-dried at room temperature for 
28 days. The dry samples were then ground into a fine 
powder. The powders were then sealed in air-tight pol-
ythene bags and stored in a cool dry place. The pow-
dered sample (1.0  kg) was extracted sequentially by 
maceration using n-hexane, ethyl acetate, methanol, 
and distilled water. The extraction was carried out five 
times using 3 L of solvent at each time. The extracts 
were filtered through cotton fabric followed by What-
man No.1 filter paper and concentrated using a rotary 
evaporator (Buchi, R300) at 40 °C to dryness. The dried 
extracts were transferred to sample bottles which were 
placed in a desiccator containing anhydrous sodium 
sulphate to remove any traces of water. The dried 
extracts were later put in tightly stoppered sample bot-
tles and stored in a refrigerator. Figure  1 shows the 
flow chart of the experimental procedures of the study. 
Sequential extraction allows a set of phytochemicals to 
be extracted according to polarity, starting with apolar 
substances, such as essentiaol oils, going to polar com-
pounds such as flavonoids [14].

Fig. 1 Flow chart of the procedures carried out in the study
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Isolation and purification of compounds from extracts
The methanol extract (16.2  g) was subjected to column 
chromatography using a gradient solvent system of 
n-hexane/ethyl acetate (EtOAc) and EtOAc/methanol 
(MeOH) affording 12 fractions  (M1-12), after monitoring 
separation using analytical thin layer chromatography 
(TLC) on aluminum plates precoated with silica gel. The 
TLC plates were used to develop the solvent system used 
in the purification of the compounds [15–17]. Fraction 
 M3 (0.313  g) was subjected to column chromatography 
using a gradient solvent system of n-hexane/EtOAc (from 
7:3 to 1:1, v/v), and EtOAc/MeOH (95:5, v/v) to obtain 
16 sub-fractions  (C1-16). Sub-fraction  C16 was purified 
on Sephadex LH-20 with  CHCl3/MeOH (1:1, v/v) to 
obtain compound 1 (12  mg). Fraction  M9 (1.693  g) was 
subjected to column chromatography on silica gel with 
n-hexane/EtOAc to obtain 13 subfractions  (P1-13). Sub-
fraction  P8 was purified on silica gel using n-hexane/
EtOAc (75:25, v/v) to obtain compound 2 (14.2  mg). 
Fraction  M10 (5.398  g) was subjected to column chro-
matography using a gradient solvent system of EtOAc/
MeOH to yield 9 subfractions  (J1-9). Subfraction  J4 was 
purified on a silica gel column using EtOAc/tert butanol/
H2O (65:25:9, v/v/v) to obtain compound 3 (15 mg) [18]. 
Compound 4 (5 mg) which crystallized out of subfraction 
 J7, was filtered off, and washed with pure MeOH. Frac-
tion  M11 (2.921 g) was purified on silica gel with EtOAc/
MeOH/H2O (20:3:2, v/v/v) to obtain 14 subfractions 
 (N1-14). Subfraction  N7 was subjected to repeated column 
chromatography with EtOAc/MeOH/H2O (20: 3: 2 v/v/v) 
to yield compound 5 (5 mg) [19].

The EtOAc extract (20.253  g) was subjected to silica 
gel column chromatography with n-hexane/EtOAc and 
EtOAc/MeOH affording 21 fractions  (E1-21) [20, 21]. 
Fraction  E5 was subjected to repeated column chroma-
tography on silica gel with n-hexane/CH2Cl2 (1:1, v/v) to 
obtain compound 6 (15.1  mg) and fraction  E6 (0.343  g) 
with n-hexane/CH2Cl2 (4:1, v/v) to obtain 24 subfrac-
tions  (E6(1–24)). Subfraction E-6–3 precipitated needle-like 
crystals, which were washed with pure hexane to obtain a 
mixture of compounds 7, 8, and 9 (10.0 mg). Fraction  E13 
(1.021 g) was washed with pure EtOAc followed by pure 
MeOH. The MeOH filtrate  (E13m) was subjected to silica 
gel column chromatography using acetonitrile (MeCN) 
to obtain compound 10 (23  mg). Fraction  E18 (0.803  g) 
was subjected to repeated column chromatography on 
silica gel using n-hexane/EtOAc (100:30, v/v) to obtain 
compound 11 (5.7 mg).

The aqueous extract (76 g) was partitioned in  CH2Cl2/
H2O (1:1, v/v) in a separating funnel [18, 22]. The mix-
ture was shaken for 10  min and left for phase separa-
tion. The organic layer was collected and evaporated on 
a rotary evaporator at 40 0C up to dryness. The organic 

extract (70.5 mg) was subjected to silica gel column chro-
matography using n-hexane/EtOAc (1:1, v/v) affording 
6 subfractions  (AO1-6). Subfraction  AO6 (10  mg) was 
purified using preparative TLC with a solvent system of 
EtOAc/tert-butanol/H2O/acetic acid (20:3:1:1, v/v/v/v) to 
obtain compound 12 (4.9 mg).

Spectroscopic analysis of the isolated compounds
The Fourier transform infrared  (FT-IR) and UV/VIS 
spectra of isolated compounds were recorded on a Perki-
nElmer FT-IR and double-beam UV/VIS Frontier spec-
trophotometer respectively [23]. All nuclear magnetic 
resonance (NMR) spectra were recorded on a Bruker 
Avance II 400  MHz instrument (resonance frequencies 
400.13  MHz for 1H and 100.61  MHz for 13C) equipped 
with a 5  mm  N2-cooled broadband cryo-probe-head 
(Prodigy) with z–gradients at room temperature with 
standard Bruker pulse programs. The samples were dis-
solved in 0.6 ml of either  CDCl3, DMSO-d6, MeO-d4, or 
 D2O (all Eurisotop, Saint-Aubin, France). Chemical shifts 
are given in ppm, referenced to residual solvent signals 
 (CDCl3: δH/δC 7.26 / 77.0 ppm, DMSO-d6: δH/δC 2.49 / 
39.6 ppm, MeO-d4: δH/δC 3.31 / 49.0 ppm) or in the case 
of  D2O by addition of one drop of acetone δH/δC 2.22 / 
30.9  ppm) [24]. Ultra-Performance Convergence Chro-
matography Quadrupole Time-of-Flight Mass Spectrom-
etry  (UPC2-QTof-MS) was used to support the structural 
assignment of the compounds [25, 26]. The structures of 
the compounds were identified by interpretation of their 
spectral data and by comparison with those reported in 
the literature.

GC–MS/FID analysis
Gas Chromatography (Agilent Technologies 5975C) cou-
pled to mass spectrometry (MSD inert XL TAD) and a 
flame ionization detector (FID) were used to analyze 
subfraction E-6–3 from which the MS of compounds 7, 
8, and 9 were recorded. The MS detector was operated 
in the electron-impact (EI) mode at 70  eV using a tem-
perature of 280  °C. The mass scanning range was set to 
29–1050 amu (atomic mass unit), and the solvent cut-
ting time was 4  min. The FID was operated at 400  °C, 
with  H2 flow of 30  mL/ min, air flow of 400  mL/ min, 
and makeup flow (combined) of 25  mL/ min. The GC 
device was fitted with a UltiMetal VF-5ht capillary col-
umn (30  m × 250  µm × 0.10  µm, Agilent J&W). The col-
umn temperature program was set as follows: initial 
T = 65  °C isothermal for 5  min, ramp to 380  °C (rate, 
10  °C/ min), and maintain at 380  °C for 8  min. Helium 
was used as a carrier gas, with a gas flow of 2.5 mL/ min. 
Injection (1.0 μL) was performed by an autosampler in 
a cold multimode inlet (MMI), which was kept at 65  °C 
for 6  s, increased to 380  °C at 500  °C/ min, and then 
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held for 5  min (cold split injection). The split ratio was 
set to 15:1 (split flow, 37.5  mL/ min). The total analysis 
time was 44.50  min. Compounds were analyzed with 
GC as their trimethylsilyl derivatives. 200 μL of silylat-
ing agent composed of 9:1, v/v of N,N-bis(trimethylsilyl)-
trifluoroacetamide (BSTFA, ≥ 99%, Sigma-Aldrich) and 
trimethylchlorosilane (TMCS, ≥ 99%, Sigma-Aldrich) 
respectively were added to each vial, which contained 
5  mg of homogenized sample [27–30]. Five drops of 
hydrous pyridine (99.8%, Sigma-Aldrich) were also added 
to each vial before the vortex. All spectra were ana-
lyzed with Enhanced ChemStation (MSD ChemStation 
F.01.01.2317), deconvoluted, and then evaluated using 
the Mass Hunter Workstation software. The compounds 
were identified by comparison with Wiley10 and the 
National Institute of Standard and Technology (NIST17) 
mass spectral library.

Spectroscopic data of the isolated compounds
Quercetin (1) [31, 32]: yellow powder: FT-IR: 3214, 
2924, 1652, 1598, 1504, 1441, 1366, 1259, 1163, 1089 and 
1008  cm−1: UV λmax MeOH (nm); 255 and 370: 1H-NMR 
(400 MHz,  CD3OD), δH 7.73 (H-2’, d, J = 2.1 Hz, 1H), 7.63 
(H-6’, dd, J = 2.1, 8.5 Hz, 1H), 6.88 (H-5’, d, J = 8.5 Hz, 1H), 
6.39 (H-8, d, J = 2.0 Hz, 1H) and 6.18, (H-6, d, J = 2.0 Hz, 
1H); 13C-NMR (100 MHz,  CD3OD): δC 177.4 (C-4), 165.7 
(C-7), 162.6 (C-5), 158.3 (C-9), 148.8 (C-4’), 148.1 (C-2), 
146.3 (C-3’), 137.2 (C-3), 124.3 (C-1’), 121.7 (C-6’), 116.3 
(C-5’), 115.9 (C-2’), 104.5 (C-10), 99.2 (C-6) and 94.3 
(C-8):  UPC2-QTof-MS (positive mode) m/z 341.0058 
[M +  K]+,  C15H10O7.

Kaempferol-3-O-rutinoside (2) [33, 34]: yellow pow-
der: FT-IR: 3285, 2916, 1652, 1598, 1498, 1359, 1179 
and 1065  cm−1

: UV λmax MeOH (nm); 266 and 349: 1H-
NMR (400 MHz,  CD3OD), δH 8.07 (H-2’/6’, d, J = 8.9 Hz, 
2H), 6.89 (H-3’/5’, d, J = 8.9  Hz, 2H), 6.42 (H-8, d, 
J = 2.0 Hz, 1H), 6.21 (H-6, d, J = 2.0 Hz, 1H), 5.12 (H-1’’, 
d, J = 7.6 Hz, 1H), 4.51 (H-1’’’, d, J = 1.5 Hz, 1H), 3.81 (H-6 
‘‘a, d, J = 10.5 Hz, 1H), 3.63 (H-2 ‘‘‘, dd, J = 3.3, 1.5 Hz, 1H), 
3.52 (H-3 ‘‘‘, dd, J = 9.4, 3.3 Hz, 1H), 3.45 (H-5 ‘‘‘, m, 1H), 
3.44 (H-2 ‘‘, m, 1H), 3.41 (H-3 ‘‘, m, 1H), 3.37 (H-6 ‘‘b, m, 
1H), 3.33 (H-5 ‘‘, m, 1H), 3.28 (H-4 ‘‘‘, m, 1H), 3.25 (H-4 
‘‘, m, 1H), and 1.12 (H-6 ‘‘‘, d, J = 6.2  Hz, 3H); 13C-NMR 
(100  MHz,  CD3OD), δC 179.4 (C-4), 166.2 (C-7), 163.1 
(C-5), 161.5 (C-4’),159.6 (C-2), 158.5 (C-9), 135.6 (C-3), 
132.4 (C-2’/6 ‘) 122.7 (C-1’), 116.2 (C-3’/5 ‘), 105.6 (C-10), 
104.7 (C-1’’), 102.4 (C-1’’’), 100.1 (C-6), 95.0 (C-8), 78.1 
(C-3’’), 77.2 (C-5’’), 75.7 (C-2’’), 74.0 (C-4’’’), 72.4 (C-3’’’), 
72.2 (C-2’’’), 71.4 (C-4’’), 69.7 (C-5’’’), 68.5 (C-6’’), 18.0 
(C-6’’’):  UPC2-QTof-MS (negative mode) m/z 593.1529 
[M-H]−,  C27H30O15.

Rutin (3, 12) [35, 36]: yellow powder: FT-IR; 3332, 
2941, 2537, 1646, 1593, 1497, 1452, 1356, 1284, 1202, 

1059, 999, 965 and 941   cm−1: UV λmax (nm); 257 and 
358 nm: 1H-NMR (400 MHz,  CD3OD), δH 7.66 (H-2’, d, 
J = 2.1 Hz, 1H), 7.63 (H-6’, dd, J = 8.4, 2.1 Hz, 1H), 6.87 
(H-5’, d, J = 8.4  Hz, 1H), 6.40 (H-8, d, J = 2.0  Hz, 1H), 
6.21 (H-6, d, J = 2.0  Hz, 1H), 5.11 (H-1’’, d, J = 7.6  Hz, 
1H), 4.52 (H-1’’’, d, J = 1.5  Hz, 1H), 3.81 (H-6 ‘‘a, dd, 
J = 10.9, 1.2  Hz, 1H), 3.63 (H-2 ‘‘‘, dd, J = 3.4, 1.7  Hz, 
1H), 3.53 (H-3 ‘‘‘, dd, J = 9.5, 3.4  Hz, 1H), 3.46 (H-2 ‘‘, 
m, 1H), 3.45 (H-5 ‘‘‘, m, 1H), 3.41 (H-3 ‘‘, m, 1H), 3.39 
(H-6 ‘‘b, m, 1H), 3.32 (H-5 ‘‘, m, 1H), 3.28 (H-4 ‘‘‘, m, 
1H), 3.26 (H-4 ‘‘, m, 1H), 1.12 (H-6 ‘‘‘, d, J = 6.2  Hz, 
3H). 13C-NMR (100  MHz,  CD3OD); δC 179.4 (C-4), 
166.1 (C-7), 163.0 (C-5), 159.3 (C-2), 158.5 (C-9), 149.8 
(C-4’), 145.8 (C-3’), 135.6 (C-3), 123.5 (C-6’), 123.1 
(C-1’), 117.7 (C-2’), 116.1 (C-5’), 105.6 (C-10), 104.7 
(C-1’’), 102.4 (C-1’’’), 99.9 (C-6), 94.8 (C-8), 78.3 (C-3’’), 
77.2 (C-5’’), 75.7 (C-2’’), 73.9 (C-4’’’), 72.2 (C-3’’’), 72.1 
(C-2’’’), 71.4 (C-4’’), 69.6 (C-5’’’), 68.5 (C-6’’), 17.9 
(C-6’’’):  UPC2-QTof-MS (positive mode) m/z 633.1426 
[M +  Na]+,  C27H30O16.

Myo-inositol (4) [37]: white crystalline solid: FT-IR: 
3304, 1634, 1408 and 1050   cm−1: 1H-NMR (400  MHz, 
 D2O), δH 4.04 (H-4, t, J = 2.8  Hz 1H), 3.61 (H-2/6, dd, 
J = 10.0, 9.4  Hz, 2H), 3.52 (H-3/5, dd, J = 10.0, 2.8  Hz, 
2H), 3.26 (H-1, t, J = 9.4  Hz, 1H); 13C-NMR (100  MHz, 
 CD3OD): δC 75.0 (C-1), 73.0 (C-2,6), 72.8 (C-4), 71.8 
(C-3,5):  UPC2-QTof-MS (positive mode) m/z 203.0526 
[M +  Na]+,  C6H12O6.

Asperulosidic acid (5) [38]: white solid: FT-IR: 3339, 
2902, 1578, 1410, 1250, 1075, 1029 and 931   cm−1: UV 
λmax MeOH (nm); 252: 1H-NMR (400  MHz,  CD3OD), 
7.42 (H-3, s, 1H), 5.98 (H-7, s, 1H), 4.97 (H-1, d, 
J = 8.8  Hz, 1H), 4.94 (H-10a, d, J = 15  Hz, 1H), 4.89 
(H-6, m, 1H), 4.81 (H-10b, d, J = 15  Hz, 1H), 4.71 (H-1’, 
d, J = 7.8  Hz, 1H), 3.84 (H-6’a, dd, J = 12.3, 1.6  Hz, 2H), 
3.62 (H-6’b, dd, J = 12.3, 6.0 Hz, 1H), 3.38 (H-3’, m, 1H), 
3.26 (H-4’,H-5’ m, 2H), 3.23 (H-2’, dd, J = 9.1, 7.8 Hz, 1H), 
3.05 (H-5, br.t, J = 3.1, 1H), 2.59 (H-9, pseudo-t, J = 8.2 Hz, 
1H), 2.09 (H-12, s, 3H); 13C-NMR (100  MHz,  CD3OD): 
δC 172.6 (C-11), 170.2 (C-13), 151.6 (C-3), 146.2 (C-8), 
131.8 (C-7), 113.7 (C-4), 100.7 (C-1), 100.4 (C-1 ‘), 78.6 
(C-5’), 78.0 (C-3’), 76.0 (C-6), 75.1 (C-2’), 71.8 (C-3’), 64.1 
(C-10), 63.1 (C-6’), 47.0 (C-9), 43.7 (C-5), 20.9 (C-12). 
 UPC2-QTof-MS (negative mode) m/z 431.1186 [M-H]−, 
 C18H24O12.

Hexadecanoic acid (6) [39]: oily liquid: FTIR: 3380, 2955, 
2915, 2848, 1698, 1464, 1464, 1292 and 940  cm−1: 1H NMR 
(400 MHz,  CDCl3), δH 2.34 (H-2, t, 2H), 1.62 (H-3, p, 2H), 
1.28 (H-15, m, 2H), 1.25 (H-4,5,6,7,8,9,10,11,12, m, 2H) 
and 0.88 (3H, t, H-16); 13C NMR (100  MHz,  CDCl3): δC 
180.0 (C-1), 34.2 (C-2), 32.2 (C-14), 29.9 (C-10–13), 29.8 
(C-5/6), 29.6 (C-4), 29.5 (C-8), 29.4 (C-9), 29.2 (C-7), 24.9 
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(C-3), 22.9 (C-15), and 14.3 (C-16):  UPC2-QTof-MS (nega-
tive mode) m/z 255.2329 [M-H]−;  C16H32O2.

β-Sitosterol (7) [21, 40]: white needle-like crystals: 
FT-IR: 3329, 2933, 2866, 1689, 1456, 1374, 1192, 1052, 
960 and 838   cm−1: 1H-NMR (400  MHz,  CDCl3), δH 
5.35 (H-6, m, 1H), 3.52 (H-3, m, 1H), 2.30 (H-4a, ddd, 
J = 13.1, 5.1, 1.9 Hz), 2.25 (H-4b, dm, J = 13.1 Hz), 2.01 
(H-12a, m, 1H), 1.98 (H-7a, m, 1H), 1.85 (H-1a, m, 
1H), 1.84 (H-2a, H-16a, m, 2H), 1.67 (H-25, m, 1H), 
1.58 (H-15a, m, 1H,), 1.54 (H-7b, m, 1H), 1.51 (H-2b, 
m, 1H), 1.50 (H-11a, m, 1H), 1.46 (H-11b, m, 1H), 1.45 
(H-8, m, 1H), 1.36 (H-20, m, 1H), 1.33 (H-22a, m, 1H), 
1.27 (H-16b, m, 1H), 1.25 (H-241, m 2H,), 1.17 (H-23, 
m, 1H), 1.16 (H-12b, m, 1H), 1.12 (H-17, m, 1H), 1.08 
(H-1b, m, 1H), 1.07 (H-15b, m, 1H), 1.02 (H-22b, m, 
1H), 1.01 (H-19, s, 3H), 1.00 (H-14, m, 1H), 0.93 (H-9, 
H-24, m, 2H), 0.92 (H-21, d, J = 6.7  Hz, 3H), 0.85 
(H-242, t, J = 7.4 Hz, 3H), 0.84 (H-27, d, J = 7.5 Hz, 3H), 
0.82 (H-26, d, J = 6.9 Hz, 3H), 0.68 (H-18, s, 3H);

13C-NMR  (CDCl3) 140.8 (C-5), 121.7 (C-6), 71.8 
(C-3), 56.8 (C-14), 56.1 (C-17), 50.2 (C-9), 45.9 (C-24), 
42.3 (C-4, C-13), 39.8 (C-12), 37.3 (C-1), 36.5 (C-10), 
36.2 (C-20), 34.0 (C-22), 31.93 (C-8), 31.91 (C-7), 31.7 
(C-2), 29.2 (C-25), 28.2 (C-16), 26.1 (C-23), 24.3 (C-15), 
23.1 (C-241), 21.1 (C-11), 19.8 (C-27), 19.4 (C-19), 19.0 
(C-26), 18.3 (C-21), 12.0 (C-242), 11.9 (C-18): GC–MS 
molecular mass 413 [M]+.,calculated for  C29H49O.

Stigmasterol (8) [41]: white needle-like crystals: 
FT-IR (see FT-IR of compound 7): 1H-NMR (400 MHz, 
 CDCl3), δH 5.35 (H-6, m, 1H), 5.16 (H-22, dd, J = 15.2, 
8.5 Hz, 1H), 5.02 (H-23, dd, J = 15.2, 8.5 Hz, 1H), 3.52 
(H-3, m, 1H), 2.30 (H-4a, ddd, J = 13.1, 5.1, 1.9  Hz), 
2.25 (H-4b, dm, J = 13.1  Hz), 2.05 (H-20, m, 1H), 2.01 
(H-12a, m, 1H), 1.98 (H-7a, m, 1H), 1.85 (H-1a, m, 1H), 
1.84 (H-2a, H-16a, m, 2H), 1.67 (H-25, m, 1H), 1.58 
(H-15a, m, 1H), 1.54 (H-7b, H-24, m, 2H), 1.51 (H-2b, 
m, 1H), 1.50 (H-11a, m, 1H), 1.46 (H-11b, m, 1H), 1.45 
(H-8, m, 1H), 1.27 (H-16b, m, 1H), 1.25 (H-241, m 2H,), 
1.16 (H-12b, m, 1H), 1.12 (H-17, m, 1H), 1.08 (H-1b, 
m, 1H), 1.07 (H-15b, m, 1H), 1.02 (H-21, d, J = 6.5 Hz, 
3H), 1.01 (H-19, s, 3H), 1.00 (H-14, m, 1H), 0.93 (H-9, 
H-24, m, 2H), 0.85 (H-242, t, J = 7.4 Hz, 3H), 0.84 (H-27, 
d, J = 7.5  Hz, 3H), 0.82 (H-26, d, J = 6.9  Hz, 3H), 0.68 
(H-18, s, 3H);

13C-NMR  (CDCl3) 140.8 (C-5), 138.3 (C-22), 129.3 
(C-23), 121.7 (C-6), 71.8 (C-3), 56.8 (C-14), 56.1 (C-17), 
51.2 (C-24), 50.2 (C-9), 42.3 (C-4, C-13), 40.5 (C-20), 
39.8 (C-12), 37.3 (C-1), 36.5 (C-10), 31.93 (C-8), 31.91 
(C-7), 31.7 (C-2), 29.2 (C-25), 28.2 (C-16), 24.3 (C-15), 
23.1 (C-241), 21.1 (C-11), 21.2 (C-21), 19.8 (C-27), 19.4 
(C-19), 19.0 (C-26), 12.0 (C-242), 11.9 (C-18); GC–MS 
molecular mass 411 [M]+. , calculated for  C29H47O.

Campesterol (9): white need-like crystals: FT-IR (see 
FT-IR of compound 7): RT, 27.2 min: GC–MS molecu-
lar mass 399 [M]+. , calculated for  C28H47O.

Ursolic acid (10) [42, 43]: white solids: FT-IR: 3379, 
2919, 1687, 1454, 1372, 1162, 1035 and 800   cm−1: 1H 
-NMR (400  MHz, DMSO-d6), δH 5.10 (br.t, J = 3.3, 
H-12), 2.98 (dd, J = 10.2, 5.6, H-3), 2.10 (d, J = 11.3, 
H-18), 1.90 (m, H-16a), 1.83 (m, H-11a + b), 1.82 (m, 
H-15a), 1.52 (m, H-22a + b), 1.51 (m, H-1a, H-16b), 
1.46 (m, H-6a), 1.44 (m, H2a + b, H-9), 1.42 (m, H-7a, 
H-21a), 1.29 (m, H-6b, H-19), 1.26 (m, H-21b), 1.25 (m, 
H-7b), 1.02 (s, H-27), 0.97 (m, H-15b), 0.92 (m, H-20), 
0.90 (m, H-1b), 0.89 (d, J = 6.6, H-29), 0.88 (s, H-23), 
0.85 (s, H-25), 0.80 (d, J = 6.4, H-30), 0.74 (s, H-26), 
0–66 (m, H-5), 0.66 (s, H-24); 13C -NMR (100  MHz, 
DMSO-d6), δc 178.4 (C-28), 138.3 (C-13), 124.4 
(C-12), 76.8 (C-3), 54.8 (C-5), 52.4 (C-18), 47.0 (C- 9), 
46.8 (C-17), 41.8 (C-14), 39.2 (C-8), 38.62 (C-20), 38.56 
(C-19), 38.5 (C-4), 38.2 (C-1), 36.6 (C-22), 36.5 (C-10), 
32.7 (C-7), 30.2 (C-21), 28.2 (C-23), 27.5 (C-15), 27.0 
(C-2), 23.8 (C-16), 23.2 (C-27), 22.8 (C-11), 21.1 
(C-29), 18.0 (C-6), 17.14 (C-30), 17.06 (C-26), 16.0 
(C-24), 15.2 (C-25);  UPC2-QTof-MS m/z 455.3518 
[M-H]+,  C30H48O3.

β-Sitosterol glucoside (11) [20, 44]: white solids: 
FT-IR: 3380, 2935, 2868, 1454, 1372, 1254, 1162, 1035, 
925 and 799   cm−1: 1H -NMR (400  MHz, DMSO-d6), 
δH 5.31 (m, H-6), 4.89 (d, J = 4.8, 3’-OH), 4.87 (d, 
J = 4.8, 2’-OH), 4.86 (d, J = 4.7, 4’-OH), 4.43 (t, J = 6.0, 
6’-OH), 4.20 (d, J = 7.7, H-1’), 3.63 (dd, J = 11.7, 5.5, 
H-6’a), 3.39 (m, H-6’b), 3.45 (m, H-3), 3.10 (m, H-3’), 
3.08 (m, H-5’), 3.00 (m, H-4’), 2.88 (ddd, J = 8.6, 
7.7, 4.8, H-2’), 2.35 (br.dd, J = 13.6, 3.4, H-4a), 2.11 
(pseudo-t, J = 13.6, H-4b), 1.95 (m, H-12a), 1.91 (m, 
H-7a), 1.80 (m, H-2a), 1.78 (m, H-1a, H-16a), 1.62 
(m, H-25), 1.53 (m, H-15a), 1.49 (m, H-7b), 1.47 
(m, H-2b), 1.46 (m, H-11a), 1.39 (m, H-11b), 1.38 
(m, H-8), 1.32 (m, H-20), 1.29 (m, H-22a), 1.22 (m, 
H-16b, H-28a + b), 1.13 (m, H-12b, H-23a + b), 1.09 
(m, H-17), 1.03 (m, H-15b), 0.99 (m, H-22b), 0.97 (m, 
H-1b, H-14), 0.94 (s, H-19), 0.90 (m, H-9, H-24), 0.89 
(d, J = 6.6, H-21), 0.81 (t, J = 7.1, H-29), 0.80 (d, J = 6.7, 
H-27), 0.78 (d, J = 6.7, H-26), 0.64 (s, H-18); 13C -NMR 
(100  MHz, DMSO-d6), δc 140.4 (C-5), 121.2 (C-6), 
100.9 (C-1’), 77.0 (C-3), 76.9 (C-3’, C-5’), 73.6 (C-2′9, 
70.2 (C-4’), 61.2 (C-6’), 56.2 (C-14), 55.4 (C-17), 49.6 
(C- 9), 45.1 (C-24), 41.8 (C-13), 39.3 (C-12), 38.3 (C-4), 
36.8 (C-1), 36.2 (C-10), 35.5 (C-20), 33.3 (C-22), 31.53 
(C-8), 31.48 (C-7), 29.3 (C-2), 28.7 (C-25), 27.8 (C-16), 
25.4 (C-23), 23.9 (C-15), 22.6 (C-28), 20.6 (C-11), 19.7 
(C-27), 19.1 (C-19), 18.9 (C-26), 18.6 (C-21), 11.8 
(C-29), 11.7 (C-18).
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Antibacterial and antifungal screening of the isolated 
compounds
The antibacterial activity of the isolated compounds was 
investigated according to the agar well diffusion method 
[45, 46]. Muller-Hinton agar was used for bacterial 
growth. The inoculum was a culture of each bacterial spe-
cies in 10 ml of Muller Hinton agar diluted in the same 
medium to a final concentration of 1 ×  103  CFU/ml (0.5 
NTU – McFarland scale). Wells were made using a 6 mm 
diameter of sterile cork borer. For antibacterial screening, 
the tested compound (10 mg/ml), ciprofloxacin (100 μl), 
and DMSO as negative control were added to each well 
separately. The plates were incubated at 37  °C for 24  h. 
Antifungal tests were carried out using 100 µl of suspen-
sion containing a culture of fungi on potato dextrose agar 
(PDA) incubated at room temperature for 72 h. The anti-
microbial activity of the compounds was determined by 
measuring the diameter of the clear zone around the well. 
Three replicates were carried out for each experiment 
[47].

Antioxidant activity of the isolated compounds
The antioxidant activity of the isolated compounds was 
determined by a 2,2-diphenyl-1-picryl-hydrazyl (DPPH) 
assay [48]. A 0.5  mM DPPH solution was prepared by 
dissolving 19.7 mg of DPPH in 100 ml of distilled meth-
anol and kept in the dark for 45  min at room tempera-
ture. Methanoic solution of the isolated compounds and 
of ascorbic acid as a standard were prepared (2.0 mg/ml 
each) and diluted to lower concentrations (1000, 500, 
250, 125, 62.5 µg/ml). The prepared solutions and DPPH 
(2000  µl each) were mixed in a cuvette and kept in the 
dark for 15 min to stabilize. The absorbance of the mix-
ture was measured at 517  nm on a Shimadzu UV–VIS 
double-beam spectrophotometer against a blank. The 

concentration of the compound (antioxidant) required 
to decrease the initial DPPH concentration by 50%  (IC50) 
was calculated using Logit regression analysis. A lower 
 IC50 value corresponded to a larger scavenging power. 
All experiments were performed in triplicate and values 
were expressed as mean ± standard deviation (SD).

Sun protection potential of the isolated compounds
The sun protection factor was determined according to a 
modified method reported by Dutra et al. (2004). The com-
pounds were dissolved in methanol without ultra-sonication 
to a concentration 2  mg/ml. The absorption data of each 
sample was measured on a JENWAY UV–VIS single beam 
spectrophotometer between 290 to 320 nm every 5 nm, and 
methanol as a blank. Para amino-benzoic acid was used as a 
standard sunscreen. Four measurements were averaged and 
the sun protection factor was determined using the Mansur 
equation [49].

Data analysis
All data were analyzed using descriptive statistics as 
implemented by Microsoft Excel. The results were gener-
ally expressed as mean ± standard deviation (SD).

Results
Eleven bioactive compounds were isolated from the 
extracts (Fig. 2), namely; quercetin (1), kaempferol-3-O-
rutinoside (2), rutin (3), myo-inositol (4), asperulosidic 
acid (5), hexadecanoic acid (6), β-sitosterol (7), stig-
masterol (8), campesterol (9), ursolic acid (10), and 
β-sitosterol glucoside (11). All compounds were com-
prehensively analytically characterized and the data 
compared to literature values. Compounds 1, 2, 3, 4, 
and 5 were isolated from the methanolic extract. Com-
pounds 6, 7, 8, 9, 10, and 11 from the ethyl acetate 

Fig. 2 Flow chart showing the isolation and bioactivity testing of the compounds
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extract and compound 12 from the aqueous extract. 
Figure 2 shows the flow chart of the isolation and bio-
activity of the identified compounds. Some of these 
compounds have been reported previously to occur in 
plants of the same genus, such as S. verticillate, S. artic-
ularis, S. exilis, and S. hispida [6, 12, 13].

GC–MS analysis of subfraction E-6–3 led to the 
identification of compound 9, campesterol. The 

GC–MS data were compared with Wiley10 and the 
National Institute of Standards and Technology 
(NIST17) mass spectral libraries. The GC–MS spec-
trum of subfraction E-6–3 showed three peaks at RT 
(min); 27.21, 27.45, and 27.86 (Fig. 3). Analysis of the 
peak signals showed a molecular ion at; m/z 472 for 
campesterol (9) at 27.20  min, m/z 484 for stigmas-
terol (8) at 27.45 min, and m/z 486 for β-sitosterol (7). 

Fig. 3 GC–MS profile of subfraction E-6–3 containing compounds 7, 8 and 9 

Fig. 4 Mass chromatogram of compound 9 
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Characteristic fragment ions at m/z 382 for campes-
terol were observed (Fig. 4) while fragment ions at m/z 
394 and 396, typical of stigmasterol and β-sitosterol 
respectively, were linked to the peaks at 27.45 and 
27.86 min. All the peaks showed a molecular ion peak 
at m/z 129 which is a characteristic fragment of this 
phytosterol group [50].

Antibacterial and antifungal activity of the isolated 
compounds
The antibacterial and antifungal activity of isolated com-
pounds 2, 3, 7, 8, 9, 10, and 11 were examined against bac-
terial (S. aureus, E. coli, K. pneumoniae, and P. aeruginosa) 
and fungal (C. albicans and A. flavus) strains as shown in 
Fig.  5. Compound 10 showed activity against S. aureus 

Fig. 5 Diameter of inhibition zones for compounds (2, 3, 7–11) against bacterial/fungal strains

Fig. 6 Sun protection potential of the isolated compounds 2, 3, and 7–11 
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(20.0 ± 0.1 mm), P. aeruginosa (18.0 ± 0.1 mm), C. albicans 
(12.0 ± 0.1 mm), and A. flavus (20.5 ± 0.3 mm). Compound 
2 showed activity against C. albicans (23.0 ± 0.1 mm). The 
data indicated that compound 10 displayed a wide degree 
of antibacterial and antifungal activity on the different 
tested micro-organisms. The other tested compounds did 
not show any activity against the tested bacterial and fungal 
strains. The quantity of compounds 1, 4, 5, and 6 was only 

sufficient for spectroscopic analysis, but not for bioactivity 
testing.

Antioxidant activity of the isolated compounds by DPPH 
(free radical scavenging) activity
Compounds 2 and 3 showed a good radical scavenging 
activity of 83.87 and 58.58% respectively. Compound 2 
showed the highest radical scavenging activity among the 

Fig. 7 Chemical structures of compounds 1–11 isolated from S. princeae 
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extracted compounds tested  (IC50 = 64.81 µg/ml). Ascor-
bic acid  (IC50 = 2.59 ×  10–16 µg/ml) was used as a positive 
control to determine the effectiveness of the extract in 
scavenging the free radicals. Compounds 7, 8, 9, 10, and 
11 were only used for antimicrobial analysis.

Sun protection potential of isolated compounds 2, 3, 
and 7—11
The sun protection potential of the isolated compounds 
is as shown in Fig. 6. Para-aminobenzoic acid (standard) 
was used to determine the effectiveness of the extract 
in protecting the skin against UV light. Compounds 2 
(26.83 ± 0.27) and 3 (24.92 ± 0.31) showed a good ability 
to protect the skin against ultraviolet (UV) light.

Discussion
Phytochemical analysis of the MeOH extract of S. 
princeae yielded three flavonoids (1–3), a monoterpene 
(4), an iridoid (5) characteristic of the family Rubiaceae 
[51], and an essential oil (6). Flavonoids (2, 3) were the 
phytochemicals identified also in the aqueous extract. 
Triterpenoids (7–11) were the major phytochemicals 
in the EtOAc extract [1]. Figure  7 shows the chemical 

structures of the isolated compounds. This is the first 
report of the isolated active compounds from the aer-
ial parts S. princeae. From Fig.  5, compounds 2 and 10 
showed potential as antibacterial and antifungal agents. 
This agrees with a previous report, in which compound 
(10) from Sambucus australis has been reported to 
exhibit antibacterial activity against S. aureus, and P. aer-
uginosa [22, 43]. According to Namukobe et  al. (2021), 
the EtOAc extract of S. princeae did not have any anti-
bacterial potential. In this study, it was noticed that 
compound 10 which showed a good antibacterial and 
antifungal activity was isolated from the EtOAc extract.

Compounds 2, and  10 demonstrated efficacy against 
C. albicans, S. aureus and P. aeruginosa strains. Thus, 
they could be used as antibacterial and antifungal agents. 
Antimicrobial flavonoids have multiple cellular targets 
and form complexes with proteins through nonspecific 
forces such as hydrogen bonding, hydrophobic effects, 
and covalent bond formation [52]. Thus, their mode of 
action (Table  1) may be related to their ability to inac-
tivate microbial adhesins, enzymes, and cell envelope 
transport proteins [53, 54].

The identified compounds could explain the use 
of the plant in the treatment of skin infections and 

Table 1 Chemical identification numbers (CID) and summary of the mode of action of compounds 1–11 

Compound Molecular formula CID Mode of action

1 C15H10O7 5280343 Compounds 1, 2 and 3 form 
complexes with proteins through 
nonspecific forces such as hydrogen 
donation [52, 55]

2 C27H30O15 5318767

3 C27H30O16 5280805

4 C6H12O6 892 Chelation of ferric ions and suppres-
sion of hydroxyl radicals [56]

5 C18H24O12 11968867 Suppresses NF-κB and MAPK Signal-
ing Pathways in LPS-Induced RAW 
264.7 Macrophages [57]

6 C16H32O2 985 Regulates cell proliferation by 
induced retinoic acid receptors [58]

7 C29H50O 222284 Reduces the phosphorylation of 
nuclear factor-kB p65 by binding 
U937 cells to TNF-a-stimulated HAEC 
[59]

8 C29H48O 5280794 Bonds with glucocorticoid receptors 
to induce the production of prosta-
glandins and other pro-inflammatory 
mediators [60]

9 C28H48O 173183 A secondary massager in the colon 
(HT29), breast (MCF7) or prostate 
(LNCap) cancer cells that activates 
ceramide metabolism [61]

10 C30H48O3 64945 Stimulates the nuclear translocation 
of glucocorticoid receptors [62]

11 C35H60O6 296119 Reduces the phosphorylation of 
nuclear factor-kB p65 by binding 
U937 cells to TNF-a-stimulated HAEC 
[59]
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adjuvant effects in other diseases such as cancer or dia-
betes. From Table 2, both compounds 2 and 3 showed 
good antioxidant activity  (IC50 = 64.81 and 666.85  µg/
ml) indicating that the antioxidant activity of S. 
princeae methanol extract with  IC50 = 61.26 µg/ml [11] 
was due to the presence of these compounds. By their 
antioxidant activity, the compounds could serve radical 
scavengers [63]. The antioxidant activity of flavonoids 
depends on the arrangement of functional groups in 
the aromatic structure. The configuration, substitu-
tion pattern, and total number of hydroxyl groups sub-
stantially influence the antioxidant activity. The B ring 
hydroxyl configuration is the most significant deter-
minant of antioxidant activity because it can donate 
hydrogen and an electron to hydroxyl, peroxyl, and per-
oxynitrite radicals, in turn giving rise to a relatively sta-
ble flavonoid radical [52, 64].

Sunscreens are chemicals that absorb UV rays protect-
ing the skin from damaging solar radiation. [65]. In Fig. 6, 
compounds 2 and 3 showed high a level of against UV 
light compared to the standard para-aminobenzoic acid. 
The other compounds only exhibited a low level of pro-
tection against UV light. The recorded sun protection 
potential of the isolated compounds was better than that 
of crude methanolic and aqueous extract of S. princeae 
[11]. Solar ultraviolet radiation is made up of UV-C (200–
280 nm), UV-B (280–320 nm), and UV-A (320–400 nm) 
[65]. UV-C is filtered out by the ozone layer and the most 
biologically damaging radiation, UV-B, and UV-A radia-
tion are responsible for inducing skin cancer. The use of 
skin care products supplemented with several effective 
sunscreen agents may be an effective approach for reduc-
ing UV-B generated reactive oxygen spices as well as 
mediated photo-aging [66].

Some of the isolated compounds have been previ-
ously reported to possess variable biological activities 
with different mode of action as summaries in Table 1. 
Compounds 1, 2, and 3 have antibacterial, antifungal, 
antioxidant, and sun protection potential [52, 67–69]. 
Compound 5 has been reported to exhibit antioxidant 
activity, one of the studied has reported a good renal 
interstitial fibrosis effects, characterized by the accu-
mulation of excess extracellular matrix and renal tissue 

damage in the kidney [57, 70]. However, its antibacte-
rial potential is still lacking. Similar compounds such 
as asperulosidic acid methyl ester, have been reported 
to possess good antifungal activity against C. albicans 
(8.33 mm zone of inhibition diameter) [71]. Compound 
4 is a major form through which plants store phos-
phorus [72, 73] and has been reported as a metabolic 
mediator during the transcription of stimuli-respon-
sive genes in stress response and hormones. It is used 
in treating mood disorders but no studies have been 
carried out to investigate its antioxidant, sun protec-
tion and antibacterial potential [56, 74]. Compounds 7, 
8, 9 and 11 have antibacterial and antioxidant activity 
[75–77].

Conclusion
This study provides the scientific basis for the ethnophar-
macological use of S. princeae for the treatment of skin 
infections, with 11 bioactive compounds having been 
isolated from the extracts and unambiguously identified. 
Compound 2, kaempferol-3-O-rutinoside has antifun-
gal activity against C. albicans. Compound 10, ursolic 
acid shows various antibacterial and antifungal activities 
against S. aureus, P. aeruginosa, C. albicans and A. flavus. 
Therefore, these compounds explain the effects observed 
and used in traditional medicine. They should be consid-
ered in drug formulations and be further evaluated for 
their cytotoxicity, to establish their mode of action, sensi-
tivity, and selectivity. In future work, we will address fur-
ther in-dept analysis of the compounds contained in the 
n-hexane and aqueous extracts of Spermacoce princeae.

Abbreviations
DCM  Dichloromethane
EtOAc  Ethyl acetate
MeOH  Methanol
Hex  n-Hexane
DMSO  Dimethyl sulfoxide
UV  Ultra Violet
VIS  Visible
NMR  Nuclear Magnetic Resonance
Q-ToF  Quadrupole time- of-flight
MS  Mass spectroscopy
GC  Gas chromatography
FID  Flame Ionization Detector
MHz  Megahertz

Table 2 DPPH percentage scavenging activity of the compounds 2 and 3 

2, kaempferol-3-O-rutinoside; 3, rutin;  IC50, concentration of the compound required to scavenge DPPH by 50%

Compounds Percentage scavenging activity (%),  IC50 (µg/ml) in brackets)

Compound 2 83.87 ± 0.01 (64.81)

Compound 3 58.58 ± 0.02 (666.85)

Ascorbic acid 95.90 ± 0.05 (2.59 ×  10–16)
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