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Abstract 

Background Diabetic retinopathy (DR) is the second commonest microvascular complication of diabetes mel-
litus. It is characterized by chronic inflammation and angiogenesis. Palm oil-derived tocotrienol-rich fraction (TRF), a 
substance with anti-inflammatory and anti-angiogenic properties, may provide protection against DR development. 
Therefore, in this study, we investigated the effect of TRF on retinal vascular and morphological changes in diabetic 
rats. The effects of TRF on the retinal expression of inflammatory and angiogenic markers were also studied in the 
streptozotocin (STZ)-induced diabetic rats.

Methods Male Sprague Dawley rats weighing 200–250 g were grouped into normal rats (N) and diabetic rats. Diabe-
tes was induced by intraperitoneal injection of streptozotocin (55 mg/kg body weight) whereas N similarly received 
citrate buffer. STZ-injected rats with blood glucose of more than 20 mmol/L were considered diabetic and were 
divided into vehicle-treated (DV) and TRF-treated (DT) groups. N and DV received vehicle, whereas DT received TRF 
(100 mg/kg body weight) via oral gavage once daily for 12 weeks. Fundus images were captured at week 0 (baseline), 
week 6 and week 12 post-STZ induction to estimate vascular diameters. At the end of experimental period, rats were 
euthanized, and retinal tissues were collected for morphometric analysis and measurement of NFκB, phospho-NFκB 
(Ser536), HIF-1α using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). Retinal inflam-
matory and angiogenic cytokines expression were measured by ELISA and real-time quantitative PCR.

Results TRF preserved the retinal layer thickness (GCL, IPL, INL and OR; p < 0.05) and retinal venous diameter 
(p < 0.001). TRF also lowered the retinal NFκB activation (p < 0.05) as well as expressions of IL-1β, IL-6, TNF-α, IFN-γ, iNOS 
and MCP-1 (p < 0.05) compared to vehicle-treated diabetic rats. Moreover, TRF also reduced retinal expression of VEGF 
(p < 0.001), IGF-1 (p < 0.001) and HIF-1α (p < 0.05) compared to vehicle-treated rats with diabetes.

Conclusion Oral TRF provided protection against retinal inflammation and angiogenesis in rats with STZ-induced 
diabetes by suppressing the expression of the markers of retinal inflammation and angiogenesis.
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Background
Diabetic retinopathy (DR) is a common microvascular 
complication of diabetes that affects one-third of dia-
betic population and is the leading cause of blindness in 
people over the age of 50 [1, 2]. About 35 to 60% of DR 
patients progress to the advanced stage of the disease, 
proliferative diabetic retinopathy (PDR), which involves 
neovascularization, vitreous hemorrhage, proliferative 
membrane formation, iris neovascularization, and may 
even lead to glaucoma. Patients can, in fact, lose their 
vision within 10 years of diagnosis [3, 4].

Inflammation is an important factor in the devel-
opment of PDR [5, 7]. The activity of inflammatory 
cytokines such as interleukin-1 beta (IL-1β) and tumor 
necrotic factor-alpha (TNF-α) as well as the pro-inflam-
matory transcription factor, nuclear factor kappa B 
(NFκB), has been found to be significantly increased in 
diabetic retina [8]. NFκB, a heterodimer with a subunit 
p65, modulates transcription of several genes that are 
involved in immune response and inflammation [9, 12]. 
Suppression of NFκB activation reduces pro-inflamma-
tory cytokines expression, including interleukin-6 (IL-6). 
High level of IL-6 is associated with breakdown of blood 
retinal barrier (BRB) and retinal vascular changes in 
hyperglycemic environment [13].

The processes of inflammation and angiogenesis are 
interconnected in progressive DR. Higher inflamma-
tory cytokines expression promotes expression of vas-
cular endothelial growth factor (VEGF), an angiogenic 
marker [14]. On the other hand, VEGF induces expres-
sions of inflammatory cytokines such as TNF-α, IL-1β 
and IL-6 [15]. VEGF is the most recognized angiogenic 
marker in DR and its expression increases with increase 
in the severity of the disease [16]. Current medical treat-
ment of DR achieves a reduction in VEGF signaling by 
using monoclonal antibody that block the binding of 
VEGF to its receptors. Anti-VEGF treatment has been 
shown to successfully slow down the PDR development 
[17]. The expression of VEGF increases under hypoxic 
conditions due to increased activity of hypoxia-inducing 
factor (HIF)-1, a transcription factor and essential oxy-
gen sensor in tissues [18, 19]. In hypoxic tissue, the deg-
radation of HIF-1α is inhibited, therefore, its expression 
is elevated [20, 21]. Higher expression of HIF-1α in the 
vitreous humor of PDR patients compared to those with-
out DR or NPDR patients has been reported [22]. Lower 
HIF-1α expression is associated with reduced VEGF 
expression [23].

Insulin-like growth factor (IGF-1) is another modulator 
of VEGF expression [24]. Transgenic mice overexpressing 
IGF-1 have higher VEGF expression in the retinal glial 
cells [25], which supports the notion that IGF-1 expres-
sion induces VEGF transcription [26, 27]. Other than 

promoting angiogenesis, IGF-1 also modulates neuroin-
flammatory responses [28]. It regulates neuroinflamma-
tory changes through promoting a switch to microglial 
phenotype [29].

Since inflammation and angiogenesis play a critical 
role in DR pathogenesis, substances that can target both 
pathways could be effective in preventing the onset and/
or progression of this disease. Tocotrienol-rich fraction 
(TRF) is a potent antioxidant and consists of 80% tocot-
rienol and 20% tocopherol. Previous studies have shown 
its beneficial effects in inflammatory conditions such as 
atherosclerosis [30], diabetic neuropathy [31], non-alco-
holic fatty liver disease [32], gastric mucosal lesions [33], 
diabetic nephropathy [34], and osteoporosis [35]. TRF 
was also shown to possess anti-cancer properties due to 
its anti-angiogenic effects in hepatocellular carcinoma 
[36], colorectal adenocarcinoma [37], mammary cancer 
[38], gastric cancer [39] and prostate cancer [40]. Addi-
tionally, TRF possesses anti-diabetic property and has 
been shown to improve glycemic control [41]. Further-
more, it improves renal [42] and vascular functions [43]. 
Since its effects in suppressing retinal inflammation and 
angiogenesis remain relatively unexplored, in this study, 
we studied the effects of TRF against retinal inflamma-
tion and angiogenesis in streptozotocin (STZ)-induced 
diabetic rats.

Materials and methods
Animals
The study was approved by Institutional Ethical Com-
mittee (Ethical Approval No: UiTM CARE 3/2019/
(286/2019)) and all animal handling complied with 
Associations for Research in Vision and Ophthalmology 
(ARVO) statement for the use of animals in ophthalmic 
and vision research. Male Sprague-Dawley rats (200–250 
g) were housed on a 12-hour light / dark cycle with access 
to food and water ad libitum. Rats were acclimatized for 
a week and underwent systemic and eye examination 
before commencing the study. Those found normal were 
included in the study.

Induction of diabetes
Rats were fasted overnight prior to intraperitoneal 
(i.p.) injection of STZ (Cat. No. sc-200,719, Santa Cruz 
Biotechnology Inc., CA, US) for induction of diabetes. 
For injection, STZ was dissolved in an ice-cold sodium 
citrate buffer (10 mmol/L, pH 4.5) and was given at 
a dose of 55 mg/kg body weight [44]. Blood from the 
tail vein was collected 48 h after injection to estimate 
blood glucose levels using the Accu Chek Performa 
glucometer (Roche Diagnostic, Rotkreuz, CH). Rats 
with a blood glucose level of more than 20 mmol/L 
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were considered as diabetic [45]. Normal rats similarly 
received i.p. injection of sodium citrate buffer.

Study design
Animals were divided into three groups that con-
sisted of nondiabetic rats treated with vehicle (N), 
diabetic rats treated with vehicle (DV), and diabetic 
rats treated with TRF (DT). A total of 130 rats were 
included in the study, of which 36 rats were nondia-
betic control rats. The rest of the 94 rats were injected 
with STZ to induce diabetes. Among STZ-injected 
rats, 6 rats had blood glucose lower than 20 mmol/L 
and were not included in further study. Rats with 
blood glucose level of more than 20 mmol/L were con-
sidered diabetic and were randomly divided into DV 
and DT. However, during experimentation, 16 diabetic 
rats (8 rats from both DV and DT) developed an infec-
tion and died. The rest of the 72 rats remained diabetic 
and survived (n = 36 for each diabetic group). TRF 
was given orally in a dose of 100 mg/kg body weight 
[46] in the DT, whereas DV and N received olive oil, 
which was used as a vehicle. The palm oil-derived TRF 
used in this study, obtained from ExcelVite Sdn Bhd, 
Perak, MY, contains all isoforms of tocotrienol and 
α-tocopherol (EVNol™ 50%; 12.3% α-tocopherol, 13.1% 
α-tocotrienol, 2.1% β-tocotrienol, 19.4% γ-tocotrienol 
and 5.8% δ-tocotrienol).

Treatment was started 48 h post-STZ injection and 
was given by oral gavage once daily for a period of 12 
weeks. Blood glucose levels and body weight were 
monitored weekly during the experimental period. Fun-
dus images were captured at baseline (week 0), weeks 
6 and 12 post STZ-induction. After 12 weeks of treat-
ment, animals were euthanized with sodium pento-
barbital (50 mg/kg, i.p.; Cat. No. 02095-04, Nacalai 
Tesque, Kyoto, JP) for eyeball enucleation and retinal 
collection. Eyeballs were preserved for histological 
examination whereas retinal tissues were preserved for 
subsequent biochemical analysis. Four eyeballs from 4 
different animals were used for hematoxylin and eosin 
(H&E) (n = 4) and immunohistochemical (IHC) stain-
ing. Sixteen retinas from 8 different animals (2 retinas 
were pooled together, n = 8) were subjected to multi-
plex enzyme-linked immunosorbent assay (ELISA) to 
determine the retinal expression of IL-1β, IL-6, IFN-γ, 
TNF-α and MCP-1. Similarly total NFκB and phospho-
NFκB expression was determined using 16 retinas by 
ELISA; Another set of 16 retinas was used to determine 
expression of iNOS, VEGF, IGF-1 and HIF-1α using 
ELISA. Real-time quantitative polymerase chain reac-
tion was used to determine gene expression of various 
markers using 16 retinas from each group.

Fundus imaging
The technique used for fundus imaging was as described 
previously [47]. Rats were anesthetized with sodium 
pentobarbital (50 mg/kg, i.p.) and tropicamide (Cat. No. 
NDC:0998-0355-15, Mydriacyl® Alcon, Geneva, CH) 
was instilled onto the eye for pupillary dilation 30 min 
prior to imaging. The optic disc was aligned to the field 
of view. Fundus was visualized using diopter lens (78D, 
Volk Optical, Ohio, US) for small animals and images 
were captured using a smartphone camera (iPhone 7 
Plus, Apple Inc., Cupertino, California, US) (Fig. 1A). The 
lens was positioned 1 cm away from the rat’s eye and the 
camera was positioned 8 cm away from the lens.

Captured fundus images were set at 3456 × 4184 pixels, 
1 μm per pixel [48] in JPEG format, and were transferred 
into the Fiji ImageJ software (version 2.5.0, NIH, US) [49]. 
Poor quality images with less than three main retinal ves-
sels (both veins and arteries) observable within the optic 
disc were excluded. The veins were recognized by their 
dark red color with broader caliber whereas, the arteries 
had bright red color with smaller caliber [50]. The images 
were calibrated by fixing the diameter of the optic disc at 
300 μm, which was based on the optic disc average diam-
eter as reported by Cohen et al. [51] (Fig. 1B). The vessel 
diameter analysis process was adapted from Sadikan et al. 
[52]. A circumferential zone was constructed at 0.5- and 
1-disc diameter from the optical disc margin (Fig.  1C). 
The diameter of three widest veins and three widest 
arteries that coursed through the zone between 0.5- and 
1-disc diameter were measured in micrometer and their 
average values were then calculated. The image analysis 
was done by two independent, blinded researchers.

Retinal morphometric analysis
The methods of eyeball fixation, sectioning, and staining 
were as described by Sadikan et al. [53]. The enucleated 
eyeballs were fixed in 10% neutral buffered formalin for 
24 h, and this was followed by paraffin embedding. Tissue 
sections at a thickness of 3 µM were taken at 1 mm from 
the temporal edge of the optic disc and were subjected 
to H&E staining. The stained retinal sections were exam-
ined by two independent observers under a light micro-
scope at 20× magnifications (Olympus IX8, Olympus 
Corporation, Tokyo, JP). Five random areas from each 
retinal section were selected and captured using imag-
ing software (NIS-Elements Basic Research, version 4.30, 
Nikon Instrument Inc., Tokyo, JP) as described by Sadi-
kan et al. [54]. The morphometric measurements on the 
retinal sections were performed using Image J software 
(Image J 1.31, National Institutes of Health, Bethesda, 
MD, US). The measurements included: (1) thickness of 
ganglion cells layer, (2) thickness of the inner plexiform 
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layer (IPL), (3) thickness of the inner nuclear layer (INL), 
and (4) thickness of outer retina (measured between the 
inner edges of the outer plexiform layer and inner bound-
ary of the RPE) in micrometer (µm). The average of the 
measurements by two independent  observers was used 
for analysis.

Retinal total NFκB, phospho‑NFκB and HIF‑1α expression 
using immunohistochemical (IHC) staining
The IHC was performed using 2-step plus poly-HRP 
anti-rabbit/mouse IgG detection kit (Cat. No E-IR-
R213, Elabscience Biotechnology, Houston, Texas, US). 
After the tissue sections were dewaxed and washed in 

Fig. 1 Representative images for the measurement of vessel diameter using ImageJ. A Representative image showing the utilization of 78D lens 
in capturing the fundus image; B Image calibration by setting a scale bar with 300× magnifications; C The diameter of retinal vessel that crossed 
through the circumferential zone of 0.5-to-1-disc diameter from the optic disc margin . Blue arrow: light rays forming real inverted fundus image, 
yellow arrow: illuminating light rays from light source, green line: venous diameter, V: venous, A: arterial
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phosphate-buffered saline (PBS), antigens were retrieved 
by immersing the slides in the antigen retrieval solution 
(10 mM sodium citrate, 0.05% Tween 20, pH 6.0) at boil-
ing point for 20 min. Slides were then cooled down to 
room temperature for 1 h. Slides were rinsed with PBST 
(1X PBS, 0.1% Tween 20) and incubated with 3% hydro-
gen peroxide for 15 min at room temperature in a humid 
chamber to block endogenous peroxidase activity. The 
slides were then incubated with normal goat serum as 
blocking buffer for 30 min at 37 °C followed by anti-NFκB 
antibody (1:100; Cat. No. ab16502, Abcam Biotechnol-
ogy, Cambridge, UK) in a humid chamber overnight at 4 
°C. After washing with PBST, the slides were incubated 
with polymer helper containing antibody enhancer for 20 
min at 37 °C followed by incubation with secondary anti-
body containing polyperoxidase-anti-mouse/rabbit IgG 
(Cat. No. E-IR-R213C, Elabscience Biotechnology) for 30 
min at 37 °C. Slides were stained with 3,3′-diaminobenzi-
dine tetrahydrochloride for 20 min. The slides were then 
counterstained with Mayer’s hematoxylin. Similar steps 
were applied to immunostain phospho-NFΚB (1:50; Cat. 
No. ab86299, Abcam Biotechnology), and HIF-1α (1:100; 
Cat. No. E-AB-31,662, Elabscience Biotechnology) with 
similar incubation time. All slides were independently 
assessed by two observers according to the criteria 
described by Wu et al. [55]. The positively stained nuclei 
in GCL were counted in eight randomly selected fields of 
view at 20× magnification using Fiji ImageJ software.

Retinal total NFĸB, phospho‑NFĸB, iNOS, VEGF, IGF‑1 
and HIF‑1α level using ELISA
The NFκB and phospho-NFκB protein levels were deter-
mined using the NFκB p65 (Total/Phospho) InstantOne™ 
ELISA kit (Cat. No. 85-86083-11 Thermo Scientific, 
Waltham, Massachusetts US). Collected retinas were 
rinsed with ice-cold PBS (0.01 M, pH 7.4) and then 
homogenized using an ultrasonic homogenizer in RIPA 
buffer with protease inhibitor in a ratio of 1 mg of retinal 
weight to 10 µL RIPA buffer. For the total NFκB p65 assay, 
50 µL of standard, control and samples were incubated 
with 50 µL of antibody cocktail containing an equal vol-
ume of NFκB p65 (Total) Capture Antibody Reagent and 
NFκB p65 (Total) Detection Antibody Reagent for 1 h at 
room temperature on a microplate shaker at 300 rpm. 
Similar steps were also used for detection of phospho-
NFκB p65 (Ser536). Then, 3,3’,5,5’-tetramethylbenzidine 
(TMB) Substrate was added, and the wells were incu-
bated at room temperature for 30 min on a microplate 
shaker at 300 rpm. Sulfuric acid (0.16 M) was added to 
stop the reaction and the absorbance was measured using 
a Victor X5 microplate reader (Perkin Elmer, Waltham, 
MA, US) at 450 nm. NFκB p65 and phospho-NFκB 

Ser536 levels were expressed as relative optical density/
mg protein.

The levels of retinal iNOS, VEGF, IGF-1 and HIF-1α 
protein were measured using the commercially avail-
able ELISA kit (Cat. No. E-EL-R0520, E-EL-R2603, E-EL-
R3001, E-EL-R0513, Elabscience Biotechnology Co., Ltd, 
US). Collected retinas were rinsed with ice-cold PBS (0.01 
M, pH 7.4) and then homogenized in RIPA buffer with a 
protease inhibitor in a ratio of 1 mg of retinal weight to 
10 µL RIPA buffer. Hundred µL of standard, control and 
sample supernatant was pipetted into the wells which 
were pre-coated with iNOS/VEGF/IGF-1/HIF-1α anti-
body and incubated at 37 °C for 90 min. Biotinylated 
detection antibody was then added and incubated for 1 h. 
Well plate was washed for 4 times with wash buffer con-
taining 10 mM phosphate buffer pH 7.4, 150 mM NaCl 
and 0.05% Tween 20. Next, horseradish peroxidase (HRP) 
conjugate working solution was added and incubated for 
30 min. After five rounds of washing process, TMB sub-
strate was added and well plate was incubated at 37 °C for 
20 min. The reaction was stopped by adding 0.16 M sul-
furic acid and the absorbance was read at 450 nm using a 
Victor X5 microplate reader.

Retinal IL‑1β, IL‑6, IFN‑γ, TNF‑α and MCP‑1 protein level 
by using Multiplex Immunoassay
A commercially available microparticle (bead)-based 
multiplex cytokine ELISA kit (Cat. No. RECYTMAG-65 
K, Milliplex®, Merck Millipore, Burlington, Massachu-
setts, US) was used for simultaneous measurement of 
several cytokines. In this multiplex assay, the microbead 
is bound to an antibody, which forms antigen-antigen 
complex that are then detected by a secondary detector 
antibody (streptavidin) linked with fluorescent reporter 
(phycoerythrin (PE)) conjugate.

Collected retinas were rinsed with an ice-cold PBS 
(0.01 M, pH 7.4) and then homogenized by ultrasonic 
homogenizer in RIPA buffer with a protease inhibi-
tor in a ratio of 1 mg of retinal weight to 10 µL RIPA 
buffer. For analysis, 50 µL of standard, control and sam-
ples were added to the appropriate wells. Twenty-five µL 
of cytokine detection beads coated with anti-cytokine 
antibodies (anti-rat TNFα/IL-1β/IL-6/IFN-γ/MCP-1) 
were added and incubated on a 300-rpm shaker for 18 
h at 4 °C. After washing, 25 µL of detection antibodies 
were added and incubated with agitation on a 300-rpm 
shaker for 1 h at room temperature. Subsequently, 25 µL 
of streptavidin-PE was added and incubated for 30 min. 
After washing twice, 125 µL of Drive Fluid (a special-
ized lubricant) was added and resuspended for 5 min on 
300 rpm shaker. The mean fluorescence of 200 beads per 
cytokine was used to determine the mean fluorescence 
intensity of each well. The Magpix Milliplex® Analyst 
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5.1 software (Merck Millipore, Billerica, US) was used to 
convert fluorescence readings to cytokine concentrations 
using a calibration curve.

Retinal IL‑1β, IL‑6, IFN‑γ, TNF‑α, iNOS, MCP‑1, VEGF, 
and IGF‑1 gene expression using Real‑Time Quantitative 
PCR (RT‑qPCR)
The extraction and purification of RNA was performed 
using a commercially available spin-column nucleic acid 
purification kit (Cat. No. GF-TRD-100, Vivantis Tech-
nologies Sdn Bhd, Selangor, MY). Samples with RNA 
concentration of more than 40 ng/µL were considered 
suitable for DNA conversion. The cDNA synthesis was 
performed using OneScript® Plus cDNA Synthesis Kit 
(Cat. No. G236, Applied Biological Materials Inc., Rich-
mond, British Columbia, CA). One µL of 10 mM dNTP 
Mix and 1 µL of 10 µM random primers were added to 
the extracted RNA samples. Nuclease free water was 
added to the dNTP-primer-RNA mixture to make up 
a total volume of 14.5 µL. The mixture was incubated 
at 65 °C for 5 min, followed by incubation on ice for 1 
min. Master mix containing 5X RT buffer, RNaseOFF 
Ribonuclease Inhibitor and OneScript RTase were then 
added. The mixture was then incubated at 25 °C for 10 
min, followed by a second incubation at 42 °C for 15 
min. The reaction was stopped by incubating the mix-
ture at 85 °C for 5 min. The cDNA was then stored at 

-20 °C until further use. The primer pair specificity 
was verified using the Nucleotide Basic Local Align-
ment Search Tool (BLASTN) and were supplied by 
Macrogen (Seoul, KR) (Table  1). Stock concentrations 
were diluted to 10 µM prior to use. The RT-qPCR was 
performed according to the manufacturer’s protocol. 
cDNA templates and all the reaction mixture were pre-
pared on ice at 10 µL volume containing 5 µL of Bright-
Green 2X qPCR MasterMix, 0.3 µL of forward/reverse 
primer (10 µM), template DNA and nuclease-free  H2O. 
The cycle threshold (Ct) values were measured using 
Quantstudio 12 K Real Time System (Life Technologies, 
Thermo Scientific). The relative fold expression of each 
target genes was determined using the Livak method 
[56] after normalization to the housekeeping genes, 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
and hypoxanthine-guanine phosphoribosyltransferase 
(HGPRT).

Data analysis
Statistical Package for Social Science (SPSS) soft-
ware version 20.0 was used for all statistical analy-
sis. Data was normally distributed and was confirmed 
using the Shapiro-Wilk test. All data were expressed as 
mean ± SD. One-way ANOVA with post-hoc Bonfer-
roni test was applied for multiple comparison analysis.

Table 1 Primer sequence for tested genes and housekeeping genes

Primer name NCBI
Reference 
Number

Gene Symbol Sequence Annealing 
temperature 
(°C)

Interleukin-1 beta 24,494 IL1B_F
IL1B_R

CTC CAT GAG CTT TGT ACA AGG 
GGG GTT GAC CAT GTA GTC GT

53.4

Interleukin-6 24,498 IL6_F
IL6_R

AAG AAA GAC AAA GCC AGA GTC 
CAC AAA CTG ATA TGC TTA GGC 

52.8

Tumor necrosis factor-alpha 24,835 TNFA_F
TNFA_R

TCA GCC TCT TCT CAT TCC TGC 
TTG GTG GTT TGC TAC GAC GTG 

56.8

Inducible nitric oxide synthase 24,599 INOS_F
INOS_R

CAC CAC CCT CCT TGT TCA AC
CAA TCC ACA ACT CGC TCC AA

56.0

Monocyte Chemoattractant Protein-1 24,770 MCP1_F
MCP1_R

CTC AGC CAG ATG CAG TTA ATGC 
TTC TCC AGC CGA CTC ATT GG

54.5

Interferon-gamma 25,712 IFNG_F
IFNG_R

TAT GGA AGG AAA GAG CCT CC
TCT GTG GGT TGT TCA CCT CG

58.7

Vascular endothelial growth factor A 83,785 VEGFA_F
VEGFA_R

CAG CGA CAA GGC AGA CTA TT
GTT GGC ACG ATT TAA GAG GG

55.0

Insulin-like growth factor-1 24,482 IGF1_F
IGF1_R

GTG TCC GCT GCA AGC CTA C
CAA GTG TAC TTC CTT CTG AGT CTT GG

59.0

Glyceraldehyde 3-phosphate dehydrogenase 24,383 GAPDH_F
GAPDH_R

CCA TGG AGA AGG CTG GGG 
CAA AGT TGT CAT GGA TGA CC

58.2

Hypoxanthine-guanine phosphoribosyltransferase 24,465 HPRT_F
HPRT_R

GAC CGG TTC TGT CAT GTC G
ACC TGG TTC ATC ATC ACT AAT CAC 

55.7
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Results
Effect of TRF on body weight gain and blood glucose level
Diabetic rats generally appeared to be thinner and 
weaker compared to N rats. There was 18.18% mortality 
rate among diabetic rats compared to 0% among N.

The weight gain was significantly lower in DV and DT 
compared to normal control group starting from week 
7 to 12 post-STZ-induction. DT showed significantly 
greater weight gain compared to DV from week 8 post-
STZ-induction until end of the experimental period 
(Fig.  2A). DV showed higher blood glucose level com-
pared to normal control group starting from 48 h post-
STZ-induction until the end of experimental period. 
However, DT exhibited lower blood glucose level com-
pared to diabetic control group starting from week 4 
post-STZ-induction until the end of experimental period 
(Fig. 2B).

Effect of TRF on retinal layer thickness
The thickness of all retinal layers was significantly 
reduced in DV compared to N. However, in DT, the 
thickness of GCL, INL, IPL and OR increased by 1.76-, 
1.73-, 1.82- and 1.44-fold, respectively, compared to 
DV (p < 0.01, p < 0.01, p < 0.05 and p < 0.05, respectively) 
(Fig. 3).

Effect of TRF on retinal venous and arterial diameter
The representative fundus pictures from all groups are 
presented in Fig.  4A. At baseline (week 0), the retinal 
venous diameter among the three groups was compara-
ble to each other. However, it increased in DV and DT at 
week 6 and 12 compared to the corresponding baseline. 
Retinal venous diameter remained unchanged from week 
6 to week 12 in all groups.

DV demonstrated significantly greater retinal venous 
diameter compared to that in the N at week 6 and 12 by 
1.37-fold (p < 0.001) and 1.35-fold (p < 0.001), respectively. 
Retinal venous diameter of DT was smaller than that in 
the DV at week 6 and week 12 by 1.37-fold (p < 0.05) and 
1.19-fold (p < 0.001), respectively. The difference in the 
venous diameter at baseline and week 12 in DT was not 
significant (Fig. 4B).

The retinal arterial diameter among the three groups 
was comparable to each other at baseline. No significant 
changes were observed in N throughout experimental 
period. However, DV showed an increment in the retinal 
arterial diameter at week 6 and 12 compared to its base-
line by 1.17-fold (p < 0.05) and 1.20-fold (p < 0.05), respec-
tively. DT also showed increment in the retinal arterial 
diameter at week 6 when compared to its baseline (1.34-
fold, p < 0.01) but not at week 12. No significant arterial 
diameter changes were seen among all groups at any time 
point (Fig. 4C).

Effect of TRF on the diabetes‑induced changes 
in the expression of markers of retinal inflammation
Inflammatory cytokines
Retinal IL-1β protein expression in DV was significantly 
greater compared to N (2.07-fold, p < 0.01). However, DT 
showed 1.56-fold lower IL-1β expression compared to 
DV (p < 0.05). The IL-1β protein expression in DT was 
comparable to N. IL-1β gene expression as measured by 
RT-qPCR was significantly higher in DV compared to 
N (2.02-fold, p < 0.001). However, DT showed 1.92-fold 
lower IL-1β gene expression compared to DV (p < 0.001) 
(Fig. 5A).

Retinal IL-6 protein expression in DV was significantly 
greater compared to N (1.62-fold, p < 0.05). However, DT 

Fig. 2 Effect of TRF on (A) weight gain (grams), and (B) blood glucose level in STZ-induced DR rats. N: Normal rats with vehicle treatment, DV: 
Diabetic rats with vehicle treatment, DT: Diabetic rats with TRF treatment. Data was parametric and presented as mean ± SD, *p < 0.05/ ***p < 0.05 
versus N, #p < 0.05 / ##p < 0.01 / ###p < 0.001 versus DV. n = 8
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showed 1.63-fold lower IL-6 expression compared to DV 
(p < 0.05). The IL-6 protein expression in DT was com-
parable to N. As determined by RT-qPCR, both DV and 
DT showed greater IL-6 gene expression compared to N 
(1.25- and 1.24-fold respectively, p < 0.05) (Fig. 5B).

Retinal TNF-α protein expression in DV was sig-
nificantly greater compared to N (4.07-fold, p < 0.001). 
However, DT showed 3.77-fold lower TNF-α protein 
expression compared to DV (p < 0.001). The TNF-α pro-
tein expression in DT was comparable to N. Rats in DV 
showed significantly greater TNF-α gene expression 
compared to N (2.15-fold, p < 0.01). However, DT showed 
1.68-fold lower TNF-α gene expression compared to DV 
(p < 0.05). The same in DT was comparable to N (Fig. 5C).

Retinal iNOS protein expression in DV was signifi-
cantly greater compared to N (1.64-fold, p < 0.01). Inter-
estingly, DT showed 1.45-fold lower iNOS protein 

expression compared to DV (p < 0.05), however it was 
comparable to N. Both DV and DT showed significantly 
greater retinal iNOS gene expression compared to N 
(1.28- and 1.16-fold p < 0.001). However, DT showed 
1.10-fold lower iNOS gene expression compared to DV 
(p < 0.05) (Fig. 5D).

Retinal IFN-γ protein expression in DV was signifi-
cantly greater compared to N (1.30-fold, p < 0.01). How-
ever, DT showed 1.33-fold lower IFN-γ protein compared 
to DV (p < 0.01) and this was comparable to N. DV 
showed significantly greater retinal IFN-γ gene expres-
sion compared to N (3.09-fold, p < 0.01). However, DT 
showed 2.82-fold lower IFN-γ gene expression compared 
to DV (p < 0.05) and this was comparable to N (Fig. 5E).

Retinal MCP-1 protein expression in DV was sig-
nificantly greater compared to N (4.35-fold, p < 0.001). 
However, DT showed 2.78-fold lower MCP-1 protein 

Fig. 3 Effect of TRF on the thickness of (A) retinal ganglion cells layer (GCL), (B) inner plexiform layer (IPL), (C) inner nuclear layer (INL), and (D) 
outer retina (OR) in STZ-induced DR rats. N: Normal rats with vehicle treatment, DV: Diabetic rats with vehicle treatment, DT: Diabetic rats with TRF 
treatment. Data was parametric and presented as mean ± SD, *p < 0.05; **p < 0.01; ***p < 0.001. n = 4
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compared to DV (p < 0.001) and this was comparable to 
N. DV showed significantly greater retinal MCP-1 gene 
expression compared to N (2.00-fold, p < 0.001). How-
ever, DT showed 1.36-fold lower MCP-1 gene expression 
compared to DV (p < 0.05) and this was comparable to N 
(Fig. 5FF).

NFκB and phospho‑NFκB
Representative microphotographs of immunostained 
retinal section showing expression of NFκB are presented 
in Fig.  6A. A greater number of NFκB immunostained 
nuclei were detected in DV compared to N. Quantita-
tively, the number of NFκB positive nuclei in DV was 

Fig. 4 A The representative fundus images of rats at week 0, week 6 and week 12 ost-. Effect of TRF on (B) retinal venous and (C) arterial diameter in 
STZ-induced DR rats. N: Normal rats with vehicle treatment, DV: Diabetic rats with vehicle treatment, DT: Diabetic rats with TRF treatment. Data was 
parametric and presented as mean ± SD, *p < 0.05; **p < 0.01; ***p < 0.001. n = 8
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2.33-fold higher compared to N (p < 0.001). In DT, the 
number of NFκB positive nuclei remained greater than 
N (1.96-fold, p < 0.001) and it was comparable with DV 
(1.19-fold, p = 0.207) (Fig. 6B).

Greater immunostaining for phospho-NFκB was 
observed in DV compared to N (Fig. 7A). Quantitatively, 
there was 2.42-fold higher phospho-NFκB expression in 
DV compared to N (p < 0.01). Unlike DV, lesser staining 

Fig. 5 Effect of TRF on the expression of retinal inflammatory markers in STZ-induced DR rats. A IL-1β; (B) IL-6; (C) TNF-α; (D) iNOS; (E) IFN-γ;  (F) 
MCP-1. N: Normal rats with vehicle treatment, DV: Diabetic rats with vehicle treatment, DT: Diabetic rats with TRF treatment. Data was parametric 
and presented as mean ± SD, *p < 0.05; **p < 0.01; ***p < 0.001. n = 8
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for phospho-NFκB was detected in DT and the differ-
ence amounted to1.88-fold compared to DV (p < 0.05) 
(Fig. 7B).

Retinal total NFκB protein expression as measured 
by ELISA did not show any significant differences 
among the three groups (Fig.  6C and D). Whereas reti-
nal phospho-NFκB expression in DV was significantly 
greater compared to N (1.85-fold, p < 0.001). DT showed 
1.65-fold lower phospho-NFκB expression compared to 
DV (p < 0.01) and this was comparable to N (Fig. 7C and 
D).

Ratio of retinal phospho-NFκB p65 to total NFκB p65 
in DV was significantly greater compared to N (1.58-
fold, p < 0.05). However, DT showed 1.57-fold lower ratio 
compared to DV (p < 0.05) and this was comparable to N 
(Fig. 8).

Effect of TRF on the diabetes‑induced changes 
in the expression of markers of retinal angiogenesis
VEGF and IGF‑1 expression
Rats in DV showed 1.54-fold higher retinal VEGF expres-
sion compared to N (p < 0.001) whereas the rats in DT 
showed a 1.82-fold lower VEGF protein expression 

Fig. 6 Effect of TRF on retinal  NFκB expression in STZ-induced DR rats. A Representative immunostained retinal sections showing effect of TRF on 
retinal  NFκB expression; B Quantitative expression of retinal  NFκB positive nuclei per  mm2 (n = 4); C Total NFκB expression measured by ELISA (n = 
8); D Relative fold change of total NFκB. Blue arrows: nuclei positively stained for  NFκB. N: Normal rats with vehicle treatment, DV: Diabetic rats with 
vehicle treatment, DT: Diabetic rats with TRF treatment, GCL: Ganglion cell layer. Data was parametric and presented as mean ± SD, *** p < 0.001 
(Scale bar: 50 μm) (Magnification 20X)
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compared to DV (p < 0.001) (Fig. 9A). Greater VEGF gene 
expression was detected in DV compared to N, (2.06-
fold, p < 0.001). However, lesser expression of VEGF was 
detected in DT which showed 1.23-fold lower expression 
compared to DV (p < 0.01) (Fig. 9B).

Rats in DV showed 6.01-fold higher retinal IGF-1 
expression compared to N (p < 0.001) whereas the rats in 
DT showed a 3.58-fold lower IGF-1 protein expression 
compared to DV (p < 0.01) (Fig.  9C). Greater expression 
of IGF-1 gene was detected in the retinas of rats from 

DV compared to those from N (1.62-fold, p < 0.01). How-
ever, lesser expression of IGF-1 gene was detected in DT 
which showed a 1.33-fold lower gene expression com-
pared to DV, however the difference did not reach the 
significant level (Fig. 9D).

HIF‑1α expression
Representative microphotographs of immunostained 
retinal section showing expression of HIF-1α are pre-
sented in Fig. 10A.Greater HIF-1α immunostaining was 

Fig. 7 Effect of TRF on retinal phospho-NFκB expression in STZ-induced DR rats. A Representative immunostained retinal sections showing effect 
of TRF on retinal phospho-NFκB expression; B Quantitative expression of the effect of TRF on retinal phospho-NFκB positive nuclei per  mm2 (n = 
4); C Phospho-NFκB expression measured by ELISA (n = 8); D Relative fold change of phospho-NFκB. Blue arrows: nuclei positively stained for 
phospho-NFκB. N: Normal rats with oral vehicle treatment, DV: Diabetic rats with oral vehicle treatment, DT: Diabetic rats with oral TRF treatment, 
GCL: Ganglion cell layer. Data was parametric and presented as mean ± SD, *p < 0.05, **p < 0.01, *** p < 0.001 (Scale bar: 50 μm) (Magnification 20X)
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detected in DV compared to N. Quantitatively, there 
were 1.58-fold higher number of HIF-1α positive nuclei 
in DV compared to N (p < 0.001). Unlike DV, lesser 
staining for HIF-1α was detected in DT with 1.17-fold 
lower number of HIF-1α positive nuclei compared to 
DV (p < 0.05) (Fig. 10B).

The expression of HIF-1α protein by ELISA was sig-
nificantly greater in DV compared to N by 1.34-fold 
(p < 0.001). Whereas lower HIF-1α protein expression 
was observed in DT compared to DV (1.05-fold, p < 0.05) 
(Fig. 10C).

Discussion
TRF is a natural compound that is known for its anti-
oxidant, neuroprotective, anti-inflammatory, and anti-
angiogenic properties. This study revealed that TRF 
suppresses retinal expression of the markers of inflamma-
tion and angiogenesis in rats with STZ-induced diabetes 
and this effect of TRF was associated with preservation of 
retinal morphology and retinal vascular diameter.

As observed in other studies, current study also 
showed significantly lower weight gain among diabetic 
rats [57, 58], which could be attributed to negative 
nitrogen balance due to changes in protein metabolism 
leading to loss of muscle mass [59]. Relatively greater 
body weight gain in DT compared to DV correlated 
with relatively lower blood glucose levels among DT. 
This effect of TRF in the current study was in line with 
previous observations [45,6258-]. It is noteworthy that 

hyperglycemia associated typical changes in retinal vas-
culature characterizing DR in human such as neovascu-
larization and vitreous hemorrhages are not observed 
in rats; however, changes in vascular diameter are often 
noted. Accordingly in the current study, we observed 
an increase in the diameter of retinal vessels particu-
larly the veins in DV. Similar observations have been 
made by other researchers using transmission electron 
microscopy [65], flicker-induced dilation [66] and spec-
tral-domain OCT [67]. However, others have reported 
contrasting observations  such as Miyamoto et  al. [68] 
and Wanek et al. [69], which may be attributed to dif-
ferences in the strains of animals used, duration of the 
study, the experimental procedure to induce diabetes 
and severity of hyperglycemia. Although, we observed 
an increased vascular diameter, visually evident vascu-
lar tortuosity of the vessels was not evident as reported 
earlier by Gupta et al. [70]. The difference may be due 
to the shorter duration of diabetes in this study (12 
weeks vs. 16 weeks). The retinal vessel diameters in 
DT were comparable to those in N indicating the effi-
cacy of TRF in attenuating DR-induced retinal vascular 
changes, which form the basis of progressively increas-
ing morphological and functional impairment.

In order to determine if the effects of TRF on vascu-
lar integrity in fact translate into preservation of reti-
nal morphology, we measured the thickness of various 
retinal layers using H&E-stained section. We observed 
a reduction in the thickness of all retinal layers in DV 

Fig. 8 Effect of TRF on the (A) ratio of retinal phospho-NFκB to total NFκB in STZ-induced DR rats. B Relative fold change of the ratio of 
phospho-NFκB to total NFκB. N: Normal rats with vehicle treatment, DV: Diabetic rats with vehicle treatment, DT: Diabetic rats with TRF treatment. 
Data was parametric and presented as mean ± SD, *p < 0.05. n = 8
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and this could be considered as one of the indicators of 
retinal neurodegeneration involving apoptosis of RGCs, 
amacrine cells and photoreceptors [71]. Several studies 
have earlier shown thinning of the retinal layers, affect-
ing the GCL [72, 74], inner layers [73, 75, 76] and outer 
layers [75, 77] in STZ-induced rat model. Thinning of 
inner retina is specifically correlated with gradual loss 
of neural dendrites and synapses [73, 78]. According 
to other view, prolonged hyperglycemia may induce 
edematous changes within the retinal layers, which may 
cause thickening of retinal layers instead of reduction 
in the thickness [79]. Nevertheless, in the current study, 
thickness of various retinal layers among diabetic rats 
treated with TRF was largely comparable to that among 
normal rats indicating the protective effect of TRF 
against diabetes induced neurodegeneration.

Inflammation associated with hyperglycemia is one of 
the key pathophysiological events leading to morpho-
logical and functional alterations in DR. Higher levels of 
inflammatory cytokines such as IL-1β, IL-6, MCP-1 and 
TNF-α have been observed in the ocular fluids of DR 
patients compared to diabetic patients without DR [80]. 
Moreover, the increase in the expression of inflammatory 
cytokines and chemokines tends to correlate positively 
with the progression in the severity of DR [81]. In accord-
ance with these observations, we observed an increased 
retinal gene and protein expressions of IL-1β, IL-6, TNF-
α, IFN-γ, MCP-1, and iNOS in DV compared to N, while 
the same were suppressed in DT indicating the anti-
inflammatory effects of TRF.

Role of various cytokines in DR retinopathy has been 
widely studied. IL-1β, one of the most prominent inflam-
matory cytokines in DR, promotes the expression of 

Fig. 9 Effect of TRF on retinal (A) VEGF protein expression, (B) VEGF gene expression, (C) IGF-1 protein expression, and (D) IGF-1 gene expression 
in STZ-induced DR rats. N: Normal rats with vehicle treatment, DV: Diabetic rats with vehicle treatment, DT: Diabetic rats with TRF treatment, ∆CT: 
threshold cycle values.  Data was parametric and presented as mean ± SD, **p < 0.01, *** p < 0.001, n = 8
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chemokines and macrophage recruitment, thereby facili-
tating the degenerative changes found in DR [82]. TNF-α 
plays an important role in the early and late stage of 
blood-retinal barrier breakdown in DR by increasing the 
mitophagy-associated cell apoptosis [83, 84]. In a recent 
study, TNF-α, alongside with IFN-γ, was reported to play 
a role in the degradation of platelet endothelial cell adhe-
sion molecule-1 (PECAM-1) in DR [85]. PECAM-1 is a 
marker for maintenance of vascular integrity [86], and its 
degradation is associated with cell apoptosis in DR [87]. 
TNF-α activation may also be influenced by the increased 
production of IFN-γ [88]. IFN-γ induces M1 mac-
rophage polarization [89] by elevating IFN-regulatory 

factors (IRFs) production [90], and it activates NFκB and 
STAT-1 [91], which mediate the upregulation of inflam-
matory cytokines, for instance, IL-1β, IL-6, and TNF-α 
[92]. IFN-γ also independently stimulates VEGF expres-
sion in retinal pigment epithelial cells via the PI-3 K/
Akt/mTOR/p70 S6 kinase pathway [93]. Polymorphism 
in the intron of the IFN-γ gene that leads to increased 
IFN-γ expression was reported to be highly associated 
with proliferative DR in type 2 DM patients [94]. In the 
current study, although it is likely that TRF could have 
directly suppressed the expression of various inflam-
matory cytokines, it may partly be also secondary to 
lower expression of retinal IFN-γ [95]. Among the other 

Fig. 10 Effect of TRF on retinal HIF-1α expression in STZ-induced DR rats. A Representative immunostained retinal sections showing effect of 
TRF on retinal HIF-1α expression; (B) Quantitative expression of the effect of TRF on retinal HIF-1α positive nuclei per  mm2 (n = 4); (C) Quantitative 
expression of the effect of TRF on retinal HIF-1α protein expression measured by ELISA (n = 8). Blue arrows: nuclei positively stained for HIF-1α. N: 
Normal rats with vehicle treatment, DV: Diabetic rats with vehicle treatment, DT: Diabetic rats with TRF treatment, GCL: Ganglion cell layer. Data was 
parametric and presented as mean ± SD, *p < 0.05, *** p < 0.001 (Scale bar: 50 μm) (Magnification 20X)



Page 16 of 19Sadikan et al. BMC Complementary Medicine and Therapies          (2023) 23:179 

cytokines measured in the current study, MCP-1 con-
tributes to retinal inflammation in DR through recruit-
ment and activation of monocytes and macrophages 
[96]. Reduced MCP-1 expression in response to TRF 
treatment observed in this study was in accordance with 
previously observed effects of TRF on adipocytes [64, 
97], keratinocytes [98], colon cancer cells [99] and liver 
cells [100]. IL-6 produces immunomodulatory effects via 
JAK-STAT pathways by stimulating trans-signaling and 
contributes to improved glucose uptake and metabolism 
[101]. It is likely that slight improvement in blood glu-
cose level and body weight gain in TRF treated group is 
related to increased IL-6 expression. Similar observation 
was not made in DV despite high IL-6 expression, per-
haps because of significant upregulation of other coun-
terproductive cytokines which was not the case in DT. 
In this regard it is also notable that reduced expression 
of iNOS and other cytokines in DT is likely to translate 
into reduced retinal oxidative stress as shown earlier 
by  Kuhad and Chopra [31] and Abdul Nasir et  al. [45], 
which in turn protects against hyperglycemia associated 
vascular and morphological alterations.

Reduced expression of cytokines among TRF treated 
rats in the current study was associated with reduced 
NFκB activation, a transcription factor known to pro-
mote expression of pro-inflammatory proteins. Hence it 
is likely that the reduced expression of various cytokines 
by TRF, at least partially, was secondary to its effects on 
NFκB. In fact, TRF is known to modulate NFκB signal-
ing pathways through several mechanisms [102], one 
of which involves upregulation of PPARα and PPARγ 
expression [103]. PPARα and PPARγ inhibit the acti-
vation of NFκB through increased expression of IκBα, 
PTEN, and increased antioxidants activity [104, 105]. 
Matsunaga et al. [97] observed that γ-tocotrienol upregu-
lated the PPARγ expression that resulted in the inhibition 
of NFκB activation in TNFα-treated adipocytes. Shen 
et al. [106] also reported the upregulation of PPARγ and 
PPARα by δ- tocotrienol in LPS-induced macrophages. 
Tocotrienol may also suppress NFκB activation by upreg-
ulating the A20 molecule and cylindromatosis (CYLD) 
gene, which are the negative regulator of NFκB activation 
[107].

Retinal inflammation in DR is associated with 
increased expression of the markers of angiogenesis. 
In fact, Niu et  al. [108] observed that MCP-1 induced 
MCPIP (MCP-1-induced protein) transcription factor in 
human peripheral blood monocytes, which upregulated 
the downstream genes responsible in the angiogenic pro-
cess. MCP-1 also promotes VEGF expression through 
activation of the CCR2/ILK/MEK1/2 signaling pathway 
and downregulation of miR-29c, a tumor suppressor 
microRNA (Lien et al. [109]. Reduction of inflammation 

by TRF, as seen in this study, may be one of the reasons 
for the reduction in VEGF gene and protein expression. 
At post-transcriptional level, reduction of VEGF levels 
by tocotrienols was associated with suppression of Ras-
Raf-MEK-ERK signaling pathway [110]. It is known that 
tocotrienols activate the p53 signaling pathway in several 
cancer models [111, 112]. p53 suppresses the IGF-1/Akt 
pathway signaling [113]. IGF binding protein-3 (IGF-BP3) 
acts by binding to the free IGF-1, which prevents IGF-1 
binding to its receptor and therefore inhibits the activa-
tion of the downstream signaling pathway [114]. Hence, 
in this study, tocotrienols may have downregulated IGF-1 
expression through activation of p53. HIF-1α, which acts 
as modulator of pro-angiogenic factors including VEGF 
[115], was also reduced in TRF-treated group compared 
to the DV. These findings of the current study are in 
agreement with previous studies showing that tocotrien-
ols suppress HIF-1α activation in the experimental mod-
els of prostate [116] and colorectal carcinoma [37].

Conclusions
This study showed that 12 weeks of oral treatment of TRF 
in rats with STZ-induced diabetes reduces expression 
of the markers  of retinal inflammation including IL-1β, 
IL-6, TNF-α, IFN-γ, MCP-1, and iNOS. It also suppresses 
expression of VEGF, IGF-1 and HIF-1α that play a role 
in hyperglycemia associated angiogenesis. Suppression 
of the activation of NFκB signaling may at least par-
tially underlie the effects of TRF on the expression of the 
markers of inflammation and angiogenesis. Importantly, 
these effects of TRF were reflected in the preservation of 
retinal vascular diameters and morphology. Overall, TRF 
provided protection against retinal inflammation and 
angiogenesis in rats with STZ-induced diabetes. These 
effects of TRF were associated with protection against 
diabetes-induced changes in retinal venous diameter and 
retinal morphology.
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